测井解释的基本理论和方法
- 格式:docx
- 大小:40.67 KB
- 文档页数:7
测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
一、电阻率测井1、普通电阻率测井电阻率测井就是沿井身测量井周围地层地层电阻率的变化。
普通电阻率测井是把一个普通的电极系(由三个电极组成)放入井内,测量井内岩石电阻率变化的曲线。
在测量地层电阻率时,要受井径、泥浆电阻率、上下围岩及电极距等因素的影响,测得的参数不等于地层的真电阻率,而是被称为地层的视电阻率。
因此普通电阻率测井又称为视电阻率测井。
2、侧向测井是利用聚焦电流测量地层电阻率的一种测井方法。
在地层厚度较大,地层电阻率与泥浆电阻率相差不太悬殊的情况下,可以用普通电极系的横向测井,能比较准确地求出地层电阻率。
但是在地层较薄且电阻率很高,或者在盐水泥桨的条件下由于泥浆电阻率很低,使供电电极流出的电流,大部分都由井内和围岩中流过,流入测量层内的电流很少,因此测量的视电阻率曲线变化平缓,不能用来划分地层,判断岩性。
为了解决这些问题,创造了带有聚焦电极的侧向测井。
他是在主电极两侧加有同极性的屏蔽电极,把主电极发出的电流聚焦成一定厚度的平板状电流束,沿垂直于井轴方向进入地层,使井的分流作用和围岩的影响大大减小。
实践证明,侧向测井在高电阻率薄层和高矿化度泥浆的井中,比普通电阻率测井曲线变化明显。
3、感应测井是利用电磁感应原理来研究地层电层电阻率的一种测井方法。
电阻率测井法都需要井内有导电的液体,使供电电极电流通过它进入地层,在井内形成直流电场。
然后测量井轴上的电位分布,求出地层电阻率。
这些方法只能用于导电性能好的泥浆中。
为了获得地层的原始含油饱和度,需要在个别的井中使用油基泥浆,在这样的条件下,井内无导电性介质,就不能使用普通电阻率测井方法。
感应测井就是为了解决测量油基泥浆电阻率的需要而产生的,它也能用于淡水泥浆的井中,在一定条件下,它比普通电阻率测井法优越,受高阻临层影响小、对低电阻率地层反应灵敏。
感应测井和普通电阻率测井一样记录的是一条随深度变化的视电导率曲线,也可同时记录出视电阻率变化曲线。
二、介电测井介电测井也称电磁波传播测井,它是用来测量井下地层的介电常数。
第一篇测井解释基础与测井方法测井广泛应用于石油地质和油田勘探开发的全过程。
利用测井资料,我们不仅可以划分井孔地层剖面,确定岩层厚度和埋藏深度,确定储层并识别油气水层,进行区域地层对比,而且还可以探测和研究地层主要矿物成分、孔隙度、渗透率、油气饱和度、裂缝、断层、构造特征和沉积环境与砂体的分布等,对于评价地层的储集能力、检测油气藏的开采情况,细致地分析研究油层地质特征等具有重要意义。
随着测井技术及其解释处理方法的飞速发展,测井资料的应用日益深化,其作用也越来越明显。
第一章测井解释的基本理论和方法第一节测井解释的基本任务测井资料解释,就是按照预定的地质任务和评价目标选择几种测井方法采集所需的测井资料,依据已有的测井解释方法,结合地质、钻井、录井、开发等资料,对测井资料进行综合分析,用以解决地层划分、油气层和有用矿藏的评价及其勘探开发中的其它地质、工程问题。
测井解释的基本任务主要有:1.进行产层性质评价。
包括孔隙度、渗透率、有效厚度、孔径分布、粒径大小及分选性、裂缝分布、润湿性等的分析。
2.进行产液性质评价。
包括孔隙流体性质和成分(油、气、水)的确定,可动流体(油、气、水)饱和度、不可动流体(束缚水、残余油)饱和度的计算。
3.进行油藏性质评价。
包括研究构造、断层、沉积相,地层对比,分析油藏和油气水分布规律,计算油气储量、产能和采收率;指导井位部署、制订开发方案和增产措施。
4.进行钻采工程应用。
在钻井工程中,测量井眼的井斜、方位和井径等几何形状,估算地层孔隙流体压力和岩石的破裂压力梯度,指导钻井液密度的合理配制,确定套管下深和水泥上返高度,计算固井水泥用量和检查固井质量等;在采油工程中,进行油气井射孔,生产剖面和吸水剖面测量,识别水淹层位和水淹级别,确定出水层位和串槽层位,检查射孔质量、酸化和压裂效果等。
第二节岩性确定方法储层的岩性评价是指确定储层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,进一步确定泥质在岩石中分布的形式和粘土矿物的成分。
VSP测井基础理论及其应用贺小黑,孟召平,薛鲜群中国矿业大学资源与地球科学系,北京 (100083)E-mail: lanchaoheiniang@摘要: 垂直地震剖面法(VSP)是一种井中地震观测技术,即激发震源位于地表,在井中不同深度进行观测,研究井附近地质剖面的垂直变化。
VSP较地面地震信噪比、分辨率更高,波的运动学和动力学特征更明显,但也有井场时间长,经费开支大,接收器组合级数少,叠加次数低,处理流程不完善等缺点。
本文采用了地质学、岩体(石)力学和地震波动力学等方法,结合前人研究成果,探索了一条应用VSP测井信息来计算岩体物理力学参数,进而得出地下岩层的岩石物理性质的途径;系统总结了VSP测井原理;并对影响VSP测井的控制因素进行了分析,得出影响VSP测井的控制因素有深度、岩性、频率、视速度、岩石密度等。
这为本区岩性反演和岩体物理力学参数计算提供理论了依据,适应了当前发展的需要。
关键词:VSP;岩体物理力学参数;影响因素;层速度1. 引言多年以来,地震勘探工作一直是在地面布置测线,设置排列,这种方法称为水平地震勘探方法,所得剖面是常规的地震剖面。
随着时代的发展,我们的勘探技术水平也在不断提高。
近些年来,出现了在井中与地面结合起来设置观测系统的地震勘探方法。
该方法在地表附近激发,在井中不同深度布置一些多级多分量的检波器进行观测。
即:检波器放在井中,测线沿井孔垂向布置,所以这种方法称为垂直地震剖面法,简称为VSP(Vertical Seismic Profiling)。
地震源放置于地面,接收的检波器置于深井中,地面激发震动后由不同深度的检波器接收地震波讯号,减少了表层干扰和吸收,可获得较高频段信息。
这种方法获得的地震波讯号是单程的,而不是反射或折射回来的,对分析和认识地下地质构造情况更为准确。
与常规的水平地震勘探相比,VSP资料具有信噪比高、分辨率高、波的运动学和动力学特征明显等优点,由下行P波和转换SV 波下行波场,求得各地层纵、横波速度比、泊松比以及各种弹性模量参数,与地层岩性进行比较,可对储集层含油气特征予以评价。
第五章:生产测井解释原理(一) 专业术语持率(Y):是一种已知介质所占管内体积的百分数。
YL :持液率 Yo :持油率 Yg:持气率 Yw持水率其中持水率具体定义如下:它是指在某一定长度的管子内水流相的体积和该管段体积的百分比:Yw=Vw/V*100%含水率:是指单位时间内通过管子某一截面水流相的体积与全部流体体积的百分比。
kw=Qw/Q*100%在两相流中: Yw+Yg=1Yg+Yo=1Yo+Yw=1在三相流中:Yo+Yw+Yg=1相速度:描述多相流中多个相的平均速度中心速度:是管子中心处理想的流体速度(Vc),在层流中Vc=2V,在紊流中Vc=1.25V滑脱速度:是多相流中各相平均速度之间的差。
表观速度:主要是在多相流中用于描述没有滑脱速度影响的平均流体速度的术语。
门限速度:是流量计涡轮开始启动时最小流体速度。
视速度:是根据连续流量计计算出的管子中心流体的速度。
生产测井资料的定性分析(1)流量计测量井眼流体流速是定量解释产液剖面或吸水剖面的主要依据。
Atlas 的PLT组合仪和Sondex公司的流量计均为涡轮(spinner)流量计。
研究表明,涡轮的转速RPS与流体流速呈线性关系,且RPS与管子内径、流体黏度、流体密度有关。
一般采用井下刻度的方法求流体的流速,最精确的刻度方法用几组上、下测量数据进行刻度。
实际应用中要求至少四组上、下测流量响应RPS,电缆速度曲线。
因涡轮流量计测的是中心最大流速Vf,而流体流速V是平均速度,故根据流动流体的流态是层流、紊流,利用雷诺数校正系数换算。
考虑仪器结构的非对称性,还需作校正。
(2)测井曲线流量响应曲线主要显示量的概念,变化幅度大小,表明产出或吸入的多少。
2.流体识别测井流量识别测井主要识别井眼流体性质特征,测定各相持率,包括流体密度测井和流体持水率测井。
(1) 流体密度测井:Ⅰ.识别流体成份:油、气、水三相流体中,产层密度减小,表明产油、气,减小的幅度大,表明产轻烃;产层密度增加,表明产出水或重烃。
测井解释原理一:储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。
必须具备两个条件:(1)孔隙性(孔隙、洞穴、裂缝)具有储存油气的孔隙、孔洞和裂缝等空间场所。
(2)渗透性(孔隙连通成渗滤通道)孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。
储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。
储集层的分类•按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。
•按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。
碎屑岩储集层•1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。
•2、组成:–矿物碎屑(石英、长石、云母)–岩石碎屑(由母岩类型决定)–胶结物(泥质、钙质、硅质)•3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
•4、有关的几个概念–砂岩:骨架由硅石组成的岩石都称为砂岩。
骨架成份主要为SiO 2–泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。
–砂泥岩剖面:由砂岩和泥岩构成的剖面。
碳酸盐岩储集层•1、定义:–由碳酸盐岩石构成的储集层。
•2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩•3、特点:–储集空间复杂有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等)次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)–物性变化大:横向纵向都变化大•4 、分类按孔隙结构:•孔隙型:与碎屑岩储集层类似。
•裂缝型:孔隙空间以裂缝为主。
裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。
•孔洞型:孔隙空间以溶蚀孔洞为主。
孔隙度可能较大、但渗透率很小。
•洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。
•裂缝-孔洞型:裂缝、孔洞同时存在。
碳酸盐岩储集空间的基本类型砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主;碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。
测井解释的基本理论和方法测井是石油勘探和开发中的一项重要技术,通过测井可以获取地下地层的信息,包括油气层段的性质和储集条件等。
测井的基本理论和方法主要包括电测井、声测井、密度测井和自然伽马测井等。
电测井是测井技术中最为常用的方法之一、其原理是利用电阻率差异来判断地层的性质。
电阻率是指地层对电流通过的阻力大小,不同的地层岩石具有不同的电阻率。
电测井通常采用双电极法或四电极法进行,通过测量电压和电流大小来计算地层电阻率。
由于各种地层有不同的电阻率,因此可以判断地层中是否存在储集物质,如油气等。
电测井可以提供岩性判别、孔隙度计算、渗透率计算等参数,对于勘探和开发有较高的应用价值。
声测井是测井技术中用来判断地层性质的方法之一、声测井原理是通过探测声波在地层中传播的速度和衰减来分析地层结构和油气储层状况。
地层岩石的声波速度和声波衰减也因岩石的密度、孔隙度、渗透率等参数不同而不同,因此可以利用声波测井数据对地层性质进行解释。
声测井可以提供地层速度、声波衰减、孔隙度、渗透率等参数,并能够对地层进行划分,有助于确定储层的位置和厚度。
密度测井是测井技术中用来衡量地层密度和岩石类型的方法之一、密度测井利用放射性射线的吸收特性来测量地层密度。
放射性射线穿过地层时,其强度会随着地层中不同物质的吸收而发生变化。
不同岩石类型有不同的密度,因此可以通过密度测井来判断地层中的岩石类型,并计算地层的密度值。
密度测井还可以用于计算孔隙度、渗透率等参数,对于油气储集条件的分析和评估有一定的意义。
自然伽马测井是测井技术中用来测量地层伽马射线强度的方法之一、自然伽马射线是地壳中含有的放射性物质自然辐射产生的射线。
不同地层岩石对伽马射线的吸收和散射有不同的特性,因此可以通过自然伽马测井来判断地层的岩石类型和含油气情况。
自然伽马测井可以提供伽马射线强度和伽马射线计数率的数据,并通过岩石校准数据计算出地层伽马射线强度,对油气勘探和开发具有一定的意义。
测井解释的基本理论和方法
第一篇
测井解释基础与测井方法
测井广泛应用于石油地质和油田勘探开发的全过程。
利用测井资料,
我们不仅可以划分井孔地层剖面,确定岩层厚度和埋藏深度,确定储层并
识别油气水层,进行区域地层对比,而且还可以探测和研究地层主要矿物
成分、孔隙度、渗透率、油气饱和度、裂缝、断层、构造特征和沉积环境
与砂体的分布等,对于评价地层的储集能力、检测油气藏的开采情况,细
致地分析研究油层地质特征等具有重要意义。
随着测井技术及其解释处理
方法的飞速发展,测井资料的应用日益深化,其作用也越来越明显。
第一节测井解释的基本任务
测井资料解释,就是按照预定的地质任务和评价目标选择几种测井方
法采集所需的测井资料,依据已有的测井解释方法,结合地质、钻井、录井、开发等资料,对测井资料进行综合分析,用以解决地层划分、油气层
和有用矿藏的评价及其勘探开发中的其它地质、工程问题。
测井解释的基
本任务主要有:
1.进行产层性质评价。
包括孔隙度、渗透率、有效厚度、孔径分布、粒径大小及分选性、裂缝分布、润湿性等的分析。
2.进行产液性质评价。
包括孔隙流体性质和成分(油、气、水)的
确定,可动流体(油、气、水)饱和度、不可动流体(束缚水、残余油)
饱和度的计算。
3.进行油藏性质评价。
包括研究构造、断层、沉积相,地层对比,
分析油藏和油气水分布规律,计算油气储量、产能和采收率;指导井位部署、制订开发方案和增产措施。
4.进行钻采工程应用。
在钻井工程中,测量井眼的井斜、方位和井
径等几何形状,估算地层孔隙流体压力和岩石的破裂压力梯度,指导钻井
液密度的合理配制,确定套管下深和水泥上返高度,计算固井水泥用量和
检查固井质量等;在采油工程中,进行油气井射孔,生产剖面和吸水剖面
测量,识别水淹层位和水淹级别,确定出水层位和串槽层位,检查射孔质量、酸化和压裂效果等。
第二节岩性确定方法
储层的岩性评价是指确定储层岩石所属的岩石类别,计算岩石主要矿
物成分的含量和泥质含量,进一步确定泥质在岩石中分布的形式和粘土矿
物的成分。
1.岩石类别测井地层评价是按岩石的主要矿物成分确定岩石类别,如
砂岩、泥质砂岩、粉砂岩、砾岩、石灰岩、白云岩、石膏、硬石膏、盐岩、花岗岩、变质岩、石灰质白云岩等。
2.泥质含量和粘土含量泥质含量是岩石中颗粒很细的细粉砂(小于0.1mm)与湿粘土的体积占岩石体积的百分数,用符号Vsh表示。
当需要
把泥质区分为细粉砂和湿粘土时,则要计算岩石的粘土含量,它表示岩石
中湿粘土的体积占岩石体积的百分数,用符号Vcl表示。
岩石中除了泥质以外的其他造岩矿物构成的岩石固体部分,我们称之
为岩石骨架,这是测井的专用术语。
所谓确定岩石矿物成分及其含量,就
是确定岩石骨架的矿物成分及其体积占岩石体积的百分数。
由于岩石的矿
物成分较复杂,而测井的分辨能力有限,故一般只考虑一、二种主要矿物
成分,最多能考虑六种矿物成分,其它忽略不计。
3.泥质分布形式和粘土矿物成分泥质分布形式是指泥质在岩石中分布
的状态,一般有三种形
式:
①分散泥质,是分布在粒间孔隙表面的泥质,其体积是粒间孔隙体积
的一部分,故它使泥质砂岩的有效孔隙度减少;
②层状泥质,是呈条带状分布的泥质,其体积取代了相应的纯砂岩颗
粒及粒间孔隙度;③结构泥质,是呈颗粒状分布的泥质,但不改变其粒间
孔隙度。
因此,泥质分布形式,对泥质砂岩的有效孔隙度有很大影响。
岩石中
常见的粘土矿物有高岭石、蒙脱石、伊利石和绿泥石等。
测井项目中的岩性-密度测井、补偿中子、补偿密度、补偿声波、自
然伽马能谱等测井方法,可用于确定岩石的矿物成分和含量、粘土矿物成
分及其含量(附表1-2-1中列出了地层主要岩石的测井响应特征)。
第三节储层划分方法
具备下述两个条件的岩石叫做储层:一是具有储存油、气、水的孔隙、裂缝和孔洞等空间场所;二是孔隙、裂缝和孔洞必须相互连通,能够形成油、气、水流动的通道。
人们常说的油层、气层、油水同层、含油水层和
水层都是储层。
储层是形成油气藏的基本要素之一,自然也是形成油气层
的基本要素之一,因而是测井地层评价的基本对象。
地层中能够储存油气的岩石很多,但按岩性可以分为碎屑岩储层、碳
酸盐岩储层和其它类型储层,前两类是主要的储层。
由于孔隙、裂缝和孔
洞对测井地层评价有不同的影响,在地层评价中常把储层分为孔隙性储层、裂缝性储层和孔隙-裂缝性储层。
在进行测井地层评价时,应突出强调不
同储集类型对岩石形成储集性质的决定性作用和它们对测井地层评价带来
的差别。
下面重点介绍孔隙性和裂缝性储层。
一、孔隙性储层
粒间孔隙对岩石储集性质起决定作用的储层。
岩性以碎屑岩为主,以
砂岩储层为代表,其它还有鲕状灰岩、生物灰岩、生物碎屑灰岩、内碎屑
灰岩及细粒以上白云岩等碳酸盐岩石。
孔隙以粒间孔隙为主,也可有溶孔、印模孔、粒内孔隙、生物骨架孔隙、微裂缝等,是成岩作用或后生变化形
成的,一般与构造作用无关。
孔隙分布均匀,横向变化较小。
孔隙度较高,低者10%左右,高者30%左右,一般15%~25%。
孔隙性储层,尤其是碎屑岩剖面内的孔隙性储层,是测井地层评价应
用较成熟的一类储层。
碎屑岩剖面内的孔隙性储层有以下特点:
① 储层之间有泥岩隔层,而泥岩的性质较稳定,使夹在它们之间的
储层较易识别,在钻井液滤液电阻率(Rmf)与地层水电阻率(Rw)有差
别的条件下,使用自然电位测井(SP)成了识别储层最简便易行的方法,
具有孔隙性和渗透性的储层可形成较明显的自然电位异常;
②储层孔隙度较高,地层因素对电阻率的贡献下降,使储层的定性评
价和定量评价都有良好的效果;
③储层的岩性、物性、含油性较均匀,横向变化小,使各种探测特性不同的测井方法具有良好的重复性,容易实现比较理想的组合,评价效果较好。
对孔隙性储层来说,研究孔隙大小、形状及其分布,研究泥质含量、粘土类型、分布形式对储层性质和测井解释方法的影响,是现代测井解释的主要课题。
二、裂缝性储层
因裂缝较发育而使岩石具有储集性质的储层。
裂缝性储层以碳酸盐岩中最多,也曾在火成岩
变质岩、砾岩甚至泥岩中发现此类储层。
除了泥岩裂缝储层,这些裂缝性岩石一般比较纯(不含泥质或泥质含量很低),性脆,基质孔隙度很低(一般小于5%),因构造作用、成岩作用、水流作用而生成构造缝、层间缝、成岩缝、压溶缝(缝合线)及溶蚀裂缝和孔洞,才使这些岩石具有储集性质。
因此,其孔隙结构复杂,孔隙类型多,分布不均匀,横向变化较大。
其中以构造缝对岩石的储集性质影响最大,尤其是近于垂直的构造缝。
构造缝发育程度与局部构造的形成有关,一般在构造高点、长轴、断裂带附近较发育。
裂缝发育和孔隙度较高(一般10%左右)的裂缝性储层,测井地层评价的效果较好。
而裂缝发育程度有限、孔隙度很低(5%~7%)的裂缝性储层,常规测井资料的应用效果相对差一些。
低孔隙度裂缝性储层的地层评价,有以下特点值得注意:
①储层之间是比较纯的低孔隙度致密岩石,或者说储层是这些纯岩石中孔隙度稍高的部分,即裂缝性储层具有岩性纯(不含泥质或泥质含量
低)、孔隙度稍高、有缝洞孔隙等地质特征,这是识别这类储层的地质依据;在常规测井资料上表现为:a)无铀自然伽马呈低值;b)深侧向电阻
率呈相对低值,深-浅双侧向出现差异,微聚焦电阻率出现跳动;c)补偿
中子、补偿声波数值增大而密度测井数值降低。
②储层上下方的致密围岩使井内自然电流不能在储层界面附近形成回路,因而不能用自然电位划分储层,而要根据测井资料综合识别储层。
③识别裂缝、溶孔、溶洞的发育程度是这类储层评价的关键,因而除
了常规测井方法以外,还应增加一些专门识别裂缝的测井项目,如声、电
成像测井、偶极子阵列声波测井、核磁共振测井等,这些测井技术对裂缝
性储层的评价具有快速、直观、有效的特点。
裂缝性储层的测井评价与其它类型储层的测井评价一样,都需要解决
有效储层划分、流体性质识别和储层参数计算等基本问题。
由于裂缝的数量、形状和分布极不均匀,使裂缝性储层的孔、渗和孔隙结构具有多变性,油水分布也很不规律,而且裂缝还具有渗透率高和钻井液侵入深的特点,
使测井地层评价变得相对困难,使用通常适用于孔隙性储层的那些测井资
料和解释方法常常不能有效区分油气水层。
因而除了要加强测井新技术的
推广应用、测井质量控制和解释方法的研究以外,还应加强地质综合研究
和分析。
第四节主要储层地质参数计算方法
储层的油气评价是测井解释的主要任务,是向地质分析人员提供孔、渗、饱等反映储层性能的地质参数和油气水层解释结论。
下面是孔隙度、
渗透率、饱和度等主要储层地质参数常用的计算方法。
1.泥质含量(SH或Vsh)计算
一般采用如下公式计算:
2GCUR?SH1?1SH?2GCUR?1(1-4-1)SH1?SHLG?GMINGMAX?GMIN(1-4-2)式中SH—泥质含量;
SH1—相对泥质含量;
GMIN—用来计算泥质含量的曲线在纯岩石的测井值;GMAX—用来计算
泥质含量的曲线在纯泥岩的测井值;。