数字基带信号实验及数字调制与解调实验
- 格式:doc
- 大小:17.79 MB
- 文档页数:20
实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。
c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。
d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。
归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。
单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。
实验4 PSK(DPSK)及QPSK 调制解调实验配置一:PSK(DPSK)模块一、实验目的1. 掌握二相绝对码与相对码的码变换方法;2. 掌握二相相位键控调制解调的工作原理及性能测试;3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.PSK 调制模块,位号A3.PSK 解调模块,位号C4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M 双踪示波器1 台7.小平口螺丝刀1 只8.频率计1 台(选用)9.信号连接线4 根三、实验原理相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。
在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。
本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。
相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。
(一) PSK 调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。
相位键控调制解调电原理框图,如图6-1 所示。
1.载波倒相器模拟信号的倒相通常采用运放来实现。
来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。
2.模拟开关相乘器对载波的相移键控是用模拟开关电路实现的。
0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。
通信原理课程设计报告一. 2DPSK基本原理1.2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。
现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。
图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。
如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。
所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。
定义∆Φ为本码元初相与前一码元初相之差,假设:∆Φ=0→数字信息“0”;∆Φ=π→数字信息“1”。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0 π π 0 π π 0 π 0 0 π或:π 0 0 π 0 0 π 0 π π 02. 2DPSK信号的调制原理一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。
2DPSK 信号的的模拟调制法框图如下图 1.2.1,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。
图1.2.1 模拟调制法2DPSK信号的的键控调制法框图如下图1.2.2,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。
选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。
图1.2.2 键控法调制原理图3. 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。
(1) 2DPSK信号解调的极性比较法它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。
数字调制与解调实验报告
实验目的:
1.掌握数字信号调制与解调的基本理论和方法。
2.熟悉激励、显示、调制、解调等仪器和设备操作方法。
3.理解不同调制方式的优缺点及适用场合。
实验器材:
数字信号发生器、混频器、低通滤波器、示波器、数字信号处理器、计算机、电缆等。
实验原理:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。
调制的目的是将讯息信号改为适合传输的信号;而解调则是将传输信号还原为原讯息信号。
实验步骤:
1.基带信号的调制实验
将固定频率的基带信号通过数字信号发生器产生一个频率为f1的固定载波信号,并通过混频器进行调制,产生频率为f1+f2和f1-f2的调制信号。
通过低通滤波器滤除掉高频成分,以得到目标信号。
在示波器上观察波形和频谱,并用数字信号处理器检测和还原基带信号。
2.幅度调制实验
实验数据:
输入基带信号:
载波信号:
调制信号:
实验结论:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。
通过本次实验,我们实现并了解了不同调制方式的基本原理及其优缺点。
在幅度调制和频率调制实验中,我们掌握了两种数字调制方式的原理和实现方法,通过数字信号发生器制作载波和基带信号,完成幅度调制和频率调制实验。
通过示波器观察得到了不同调制方式的调制信号波形和频谱,并用数字信号处理器检测和还原出原基带信号。
总之,数字调制解调技术在数据传输、通信等方面应用广泛,其优点是抗干扰、可靠性高、传输速度快,具有重要的意义。
硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。
(2)掌握AMI,HDB3的编码规则。
(3)掌握从HDB3码信号中提取位同步信号的方法。
(4)掌握集中插入帧同步码时分复用信号的帧结构特点。
(5)了解HDB3(AMI)编译码集成电路CD22103。
(6)掌握绝对码,相对码概念及他们之间的变换关系。
(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。
(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。
(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。
(10)掌握2DPSK相干解调原理。
(11)掌握2FSK过零检测解调原理。
三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。
2.接通数字信号源模块的电源。
用示波器观察熟悉信源模块上的各种信号波形。
(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。
用示波器观察AMI(HDB3)编译单元的各种波形。
(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。
一、实验目的1. 理解数字解调的基本原理和方法。
2. 掌握数字解调实验的基本步骤和操作技巧。
3. 分析数字解调过程中的信号波形和性能指标。
4. 熟悉数字通信系统中的调制解调技术。
二、实验原理数字解调是数字通信系统中的关键环节,其主要任务是从接收到的数字信号中恢复出原始信息。
本实验主要涉及以下几种数字解调技术:1. 相干解调:利用接收到的信号与本地产生的参考信号进行相位同步,从而恢复出原始信息。
2. 非相干解调:不依赖接收信号与参考信号的相位同步,直接从信号中提取信息。
3. 锁相环解调:利用锁相环技术实现相位同步,从而提高解调性能。
三、实验仪器与设备1. 数字信号发生器:用于产生实验所需的数字信号。
2. 双踪示波器:用于观察信号波形。
3. 数字解调器:用于实现数字解调功能。
4. 计算机及实验软件:用于数据处理和分析。
四、实验内容与步骤1. 相干解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。
(2)将基带信号调制为BPSK信号,载波频率为1MHz。
(3)将已调信号输入数字解调器,设置相干解调参数。
(4)观察解调后的信号波形,分析解调性能。
2. 非相干解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。
(2)将基带信号调制为FSK信号,两个载波频率分别为1MHz和1.1MHz。
(3)将已调信号输入数字解调器,设置非相干解调参数。
(4)观察解调后的信号波形,分析解调性能。
3. 锁相环解调实验(1)设置数字信号发生器,产生一个基带信号(例如:2KHz的方波信号)。
(2)将基带信号调制为BPSK信号,载波频率为1MHz。
(3)将已调信号输入数字解调器,设置锁相环解调参数。
(4)观察解调后的信号波形,分析解调性能。
五、实验结果与分析1. 相干解调实验结果通过观察解调后的信号波形,可以发现相干解调能够有效地恢复出原始信息。
同时,相干解调对信号的相位同步要求较高,若相位差较大,解调性能会受到影响。
通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。
这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。
实验步骤:第一步:实现数字基带信号的产生。
我们采用MATLAB编写代码来产生数字基带信号。
具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。
第二步:实现数字基带信号的传输。
我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。
具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。
第三步:实现数字基带信号的调制。
我们采用调制器进行数字信号的调制。
常见的数字调制方式有AM调制、FM调制、PM调制等。
此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。
第四步:实现数字基带信号的解调。
我们采用解调器来实现数字基带信号的解调。
常见的数字解调方式有包络检测法、抑制互调法等。
此处我们选择了直接判决法来进行数字基带信号的解调。
第五步:实现数字基带信号的重构。
我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。
此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。
实验结果:通过对仿真实验的分析,我们得出了一些结论。
首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。
其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。
第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。
最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。
实验二数字调制实验一、实验目的1.掌握绝对码、相对码概念及它们之间的编译码规则。
2.掌握用键控法产生2ASK、2FSK、2PSK、2DPSK信号的方法。
3.掌握相对码与2DPSK、绝对码与2PSK信号波形之间的对应关系。
4.了解2ASK、2FSK、2PSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。
二、实验内容1.用示波器观察绝对码波形、相对码波形。
2.用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。
3.用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。
三、基本原理本实验使用数字信源模块和数字调制模块。
1.数字信源本模块是整个实验系统的发送端,其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:∙ CLK 晶振信号测试点∙ BS-OUT 信源位同步信号输出点/测试点∙ FS 信源帧同步信号输出点/测试点∙ NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电原理图,图1-1中各单元与图1-3中的元器件对应关系如下:∙晶振CRY:晶体;U1:反相器74LS04∙分频器U2:计数器74LS161;U3:计数器74LS193;U4:计数器74LS160∙并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应∙八选一U5、U6、U7:8位数据选择器74LS151∙三选一U8:8位数据选择器74S151∙倒相器U20:非门74LS04∙抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
实验五2PSK调制与解调一. 实验目的1.掌握2PSK调制与解调原理;2.掌握载波恢复的方法;3.理解2PSK解调存在中的相位模糊问题;4.进一步掌握抽样判决的实现方法。
二.实验要求1. 使用SystemView设计一个2PSK调制与解调系统,自由选择调制方法;2. 基带调制信号是振幅为1V,频率10Hz,初相0的二进制NRZ双极性方波序列;3. 载波是振幅为1V,频率50Hz,初相0的正弦波;4. 不考虑信道噪声;5. 使用专业库中的Costas环来产生本地载波;6. 安装下列步骤环节来完成实验并书写实验报告。
三.设计方案二进制相移键控(2PSK)是用二进制基带信号控制载波的两位相位,它们是利用载波振荡相位的变化来传送数字信息的。
在二进制数字解调中,当正弦载波的相位随二进制数字基带信号离散变化,则就产生二进制移相键控(2PSK)信号。
2PSK已调信号的时域表达式为1、2PSK的调制原理2PSK的调制可采用相乘法和键控法,相乘法示意图如图5_1所示,键控法示意图如图5_2所示,本次实验采用相乘法。
图5_1图5_22、2PSK解调原理2PSK信号类似于模拟调制中的DSB信号,必须采用相干解调。
其原理方框图如图5_3所示:图5_3四.系统实现根据以上的设计方案可在System View上得到仿真图如图5_4所示:图5_4基带调制信号是振幅为1V,频率10Hz,初相0的二进制NRZ双极性方波序列,即图中的token 0,其设置参数如图5_5所示:图5_5载波是振幅为1V,频率50Hz,初相0的正弦波,即图中的token 1,设置参数如图5_6所示:图5_6本次实验采用costas环恢复本地载波,参数设置如图5_7:图5_7低通滤波器滤出模拟基带信号包络,低通滤波器参数设置如图5_8所示:5_8采用矩形脉冲对基带信号包络进行抽样,然后判决,矩形脉冲(token 23)参数设置如图5_9,抽样器(token 22)参数设置如图5_10,判决器(token 14)如图5_11:图5_9图5_10图5_11五.系统测试系统运行参数设置如图5_12图5_122PSK信号,本地载波恢复,乘法器输出,低通滤波器输出如图5_13所示:图5_13定时脉冲信号如图5_14所示:图5_14基带模拟信号与最后的复原信号的比较:图5_15由图可以看出最后的复原信号相对于基带模拟信号只是在时间上有了一些延迟,但这不影响它的原理,因此仿真结果正确。
实验十一BPSK调制及解调实验一、实验目的1、掌握BPSK调制和解调的基本原理2、掌握BPSK数据传输过程,熟悉典型电路3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念;4、熟悉BPSK调制载波包络的变化5、掌握BPSK载波恢复特点与位定时恢复的基本方法二、实验器材1、主控&信号源、9号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理2、BPSK调制解调(9号模块)实验框图说明基带信号的1电平和电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。
四、实验步骤实验项目一BPSK调制信号观测(9号模块)1、连线2、开电、设置主控菜单3、此时系统初始状态为:PN序列输出频率32KHz4、实验操作及波形观测。
(1)以9号模块“NRZ-I”为触发,观测“T”;(2)以9号模块“NRZ-Q”为触发,观测“Q”。
(3)以9号模块“基带信号”为触发,观测“调制输出”。
思考:分析似上观测的波形,分析与ASK有何关系?ASK基带中带有直流分量,与载波相乘后有载波分量;BPSK反相后基带信号由单极性变成双极性,相乘后,就没有载波分量,也就是没有频谱中没有尖峰。
实验项目二BPSK解调观测(9号模块)概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。
观测解调中间观测点TP8,深入理解BPSK解调原理。
1、保持实验项目一中的连线。
将9号模块的S1拨为“0000”2、以9号模块的“基带信号”为触发,观测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。
3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。
观测“BPSK解调输出”的变化。
实验八 PSK/DPSK 调制、解调原理实训一、实验目的1、掌握二相 BPSK(DPSK)调制解调的工作原理及电路组成;2、了解载频信号的产生方法;3、掌握二相绝对码与相对码的码变换方法。
图 8-1 PSK/DPSK 调制解调实验模块二、实验电路工作原理(一)调制实验:在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相移键控。
本实验中PSK 调制二相PSK(DPSK)的载波为1.024MHz,数字基带信号有32Kbit/s 伪随机码、2KHz 方波、CVSD 编码信号等。
模拟信号1.024MHz 载波输入到载波倒相器的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。
调节电位器VR801 和VR802 可使0 相载波与π相载波的幅度相等。
对载波的相移键控是用模拟开关电路实现的。
0 相载波与π相载波分别加到两个模拟开关的输入端,在数字基带信号的信码中,它的正极性加到模拟开关1 的输入控制端,它反极性加到模拟开关2 的输入控制端,用来控制两个同频反相载波的通断。
当信码为“1”码时,模拟开关1 的输入控制端为高电平,开关1 导通,输出0 相载波;而模拟开关2 的输入控制端为低电平,开关2 截止。
反之,当信码为“0”码时,模拟开关1 的输入控制端为低电平,开关1 截止;而模拟开关2 的输入控制端却为高电平,开关2 导通,输出π相载波。
两个模拟开关的输出通过载波输出开关J801 合路叠加后输出为二相PSK 调制信号。
DPSK 是利用前后相邻码元对应的载波相对相移来表示数字信息的一种相移键控方式。
绝对码是以基带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。
相对码是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。
(二)解调实验:该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。
通信原理实验指导书物理与电子电气工程学院二0一一年三月目录实验一、AM调制解调通信系统实验 (3)实验二、数字基带信号实验 (6)实验三、数字调制实验 (15)实验四、数字解调实验 (20)实验一AM调制解调通信系统一、实验目的1. 掌握集成模拟乘法器的基本工作原理;2. 掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;3. 学习调制系数m及调制特性(m-Uωm )的测量方法,了解m<1 和m=1及 m>1时调幅波的波形特点。
4. 掌握用集成电路实现同步检波的方法。
二、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M5模拟调制解调模块三、基本原理图1-1 AM调制电路原理图本实验调制部分电路如图1-1所示。
图中MC1496芯片引脚1和引脚4接两个51Ω和两个100Ω电阻及51K电位器用来调节输入馈通电压,调偏RP1,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅。
如需要产生抑制载波双边带调幅波,则应仔细调节RP1,使MC1496输入端电路平衡。
另外,调节RP1也可改变调制系数m。
MC1496芯片引脚2和引脚3之间接有负反馈电阻R3,用来扩展uΩ的输入动态范围。
载波电压uc由引脚8输入。
MC1496芯片输出端(引脚12)接有一个三极管组成的射随器,来增加电路的带载能力。
幅度解调实验电路——同步检波器如图1-2所示。
本电路中MC1496构成解调器,载波信号加在8—10脚之间,调幅信号加在1—4脚之间,相乘后信号由12脚输出,经C11、C12、R25、R26、R31和U3组成的低通滤波器输出解调出来的调制信号。
图1-2 AM 解调电路原理图四、实验内容及步骤1、实验连线:a .实验连接线:b. 实验连接线:保持调制实验连接线不变,增加以下连接线2、低频正弦信号源:OUT1输出频率范围为:0-5.5KH Z (通过调节电阻RP1进行调整),幅度范围为:0-15V PP (通过调节电阻RP2进行调整)。
systemview关于解调与调制的实验指导绪论数字通信系统,按调制⽅式可以分为基带传输和带通传输。
数字基带信号的功率⼀般处于从零开始到某⼀频率(如0~6M)低频段,因⽽在很多实际的通信(如⽆线信道)中就不能直接进⾏传输,需要借助载波调制进⾏频谱搬移,将数字基带信号变换成适合信道传输的数字频带信号进⾏传输,这种传输⽅式,称为数字信号的频带传输或调制传输、载波传输。
所谓调制,是⽤基带信号对载波波形的某参量进⾏控制,使该参量随基带信号的规律变化从⽽携带消息。
对数字信号进⾏调制可以便于信号的传输;实现信道复⽤;改变信号占据的带宽;改善系统的性能。
和模拟调制不同的是,由于数字基带信号具有离散取值的特点,所以调制后的载波参量只有有限的⼏个数值,因⽽数字调制在实现的过程中常采⽤键控的⽅法,就像⽤数字信息去控制开关⼀样,从⼏个不同参量的独⽴振荡源中选参量,由此产⽣的三种基本调制⽅式分别称为振幅键控(ASK,Amplitude-Shift keying)、移频键控(FSK,Frequency-Shift keying)和移相键(PSK,Phase-Shift keying )或差分移相键(DPSK,DifferentPhase-Shift keying)。
数字调制系统的基本结构如图1所⽰:图1 数字调制系统的基本结构图在数字调制中,数字基带信号可以是⼆进制的,也可以是多进制的,对应的就有⼆进制数字调制和多进制数字调制两种不同的数字调制,最简单的情况即是以⼆进制数字基带信号作为调制信号的⼆进制数字调制,本次课程设计主要针对就是最常⽤的⼆进制数字调制⽅式即⼆进制振幅键控、移频键控和移相键控三进⾏系统仿真分析,通过学习Systemview仿真软件,对对三种系统进⾏仿真,熟悉2ASK、2FSK、2PSK和2DPSK的原理、已调信号的频谱特点和各系统的抗噪声性能。
第⼀章、Systemview软件简介1.1 Systemview软件特点Systemview是El ANIX公司推出的⼀个完整的动态系统设计、模拟和分析的可视化软件。
实验6 FSK(ASK)调制解调实验一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。
观测基带数字和FSK(ASK)调制信号的频谱。
改变信噪比(S/N),观察解调信号波形。
四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成 ASK, FSK 调制,还可以完成 PSK, DPSK, QPSK, OQPSK 等调制方式。
不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。
在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。
下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。
基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或 FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过 D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。
(2)掌握AMI,HDB3的编码规则。
(3)掌握从HDB3码信号中提取位同步信号的方法。
(4)掌握集中插入帧同步码时分复用信号的帧结构特点。
(5)了解HDB3(AMI)编译码集成电路CD22103。
(6)掌握绝对码,相对码概念及他们之间的变换关系。
(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。
(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。
(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。
(10)掌握2DPSK相干解调原理。
(11)掌握2FSK过零检测解调原理。
三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验内容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。
2.接通数字信号源模块的电源。
用示波器观察熟悉信源模块上的各种信号波形。
(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。
用示波器观察AMI(HDB3)编译单元的各种波形。
源端口目的端口1.数字信源单元:NRZ-OUT AMI(HDB3)编译码单元:NRZ-IN2.数字信源单元:BS-OUT AMI(HDB3)编译码单元:BS-1N(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。
观察AMI码时将开关K1置于A端,延迟了4个码元。
(2)将K1,K2,K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的AMI码和HDB3码。
(3)将K1,K2,K3置于任意状态,K4(码型选择开关)置于A端或H端,CH1接NRZ-OUT,CH2分别接(AMI)HDB3-D,BPF,BS-R和NRZ,观察这些信号波形。
观察时应注意:∙ NRZ信号(译码输出)迟后于NRZ-OUT信号(编码输入)8个码元。
∙ AMI、HDB3码是占空比等于0.5的双极性归零码,AMI-D、HDB3-D是占空比等于0.5的单极性归零码。
∙ BS-OUT是一个周期基本恒定(等于一个码元周期)的TTL电平信号。
∙本实验中若24位信源代码中只有1个“1“码,则无法从AMI码中得到一个符合要求的位同步信号,因此不能完成正确的译码。
若24位信源代码全为“0”码,则更不可能从AMI信号(亦是全0信号)得到正确的位同步信号。
信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),译码输出NRZ越不稳定。
而HDB3码则不存在这种问题。
(二)数字调制实验1.熟悉数字信源单元及数字调制单元的工作原理。
2.按照下表连线:数字调制单元的CLK,BS-IN,NRZ-IN,分别连至数字信号源单元的CLK,BS-OUT,NRZ-OUT源端口目的端口1.数字信源单元:BS-OUT 数字调制:BS-IN2.数字信源单元:NRZ-OUT 数字调制:NRZ-IN3.数字信源单元:CLK 数字调制:CLK3.接通数字信源模块与数字调制模块的电源。
示波器CH1接AK(NRZ-IN),CH2接BK,信源模块的K1,K2,K3置于任意状态(非全0),观察AK,BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。
4.仔细观察CAR和CAR-D信号,分析载波信号的特点。
5.示波器CH1接2DPSK-OUT,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。
注意:2DPSK信号的幅度可能不一致,但这并不影响信息的正确传输。
6.示波器CH1接AK,CH2依次接2FSK-OUT和2ASK-OUT;观察着两个信号与AK 的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。
(三)数字解调实验本实验使用M6数字信源模块,M4数字调制模块,它们之间的信号连结方式如下图所示。
实际通信系统中,解调器的位同步信号来自位同步提取单元。
本实验中这个信号直接来自数字信源。
在做2DPSK解调实验时,位同步信号送给2DPSK解调单元。
做2FSK解调实验时则送到2FSK解调单元。
1.按照下表连线。
源端口目的端口1.数字信源单元:BS-OUT 数字调制:BS-IN2.数字信源单元:NRZ-OUT 数字调制:NRZ-IN3.数字信源单元:BS-OUT 2FSK解调:BS-IN4.数字信源单元:BS-OUT 2DPSK解调:BS-IN5.数字调制:2DPSK-OUT 2DPSK解调:2DPSK-IN6.数字调制:2DPSK-OUT 载波同步:2DPSK-IN7.数字调制:2FSK-OUT 2FSK解调:2FSK-IN8:载波同步:CAR-OUT 2DPSK解调:CAR-IN2,、接通M6数字信源模块,M4数字调制模块的电源,并检查其是否已工作正常。
3.2DPSK解调实验(1)将示波器的CH1接数字调制单元的BK,CH2接2DPSK解调单元的MU。
MU 与BK同相或反相。
(2)示波器的CH2接LPF,可看到LPF与MU反相。
当一帧内BK中“1”码“0”码个数相同时,LPF的正,负极性信号与0电平对称,否则不对称。
(3)断开,接通电源若干次,使数字调制单元CAR信号与载波同步单元CAR-OUT 信号同相,观察数字调制单元的BK与2DPSK解调单元的MU,LPF,BK之间的关系,再观察数字调制单元中AK信号与2DPSK解调单元的MU,LPF,BK,AK-OUT信号之间的关系。
(4)再断开,接通电源若干次,使CAR信号与CAR-OUT信号反相,重新进行步骤(3)中的观察。
在进行上述各步骤时应注意运放是一个反相放大器。
4.2FSK解调实验示波器探头CH1接数字调制单元中的AK,CH2分别接2FSK解调单元的DW1,DW2,FD,LPF,CM及AK-OUT,观察2FSK过零检测解调器的解调过程(注意:低通及整形2都有倒相作用)。
五、实验结果记录与分析(一)数字基带信号实验1.用示波器观察NRZ-OUT,为双极性非归零码。
2.K1,K2,K3全置1,则AMI码为:HDB3码为:3.K1,K2,K3全置0,则AMI码为:HDB3码为:4.将K1,K2,K3置于0111 0010 0000 1100 0010 0000,则AMI码为:实验结果与理论值01-11 00-10 0000 1-100 0010 0000一致。
HDB3码为:实验结果与理论值0-11-1 0010 0010 -11-10 00-11 0010一致。
综上分析:上述的编码结果与实验结果相符,验证了实验的正确性。
5.将K1,K2,K3置于0000 1111 0000 1111 0000 1111,将K4(码型选择开关)置于A端,CH1接NRZ-OUT,CH2分别接(AMI)HDB3-D,BS-R和NRZ,则(1)NRZ-OUT与(AMI)HDB3-D波形对照:实验结果分析:此图为译码器输出信号与(AMI)HDB3整流输出信号的对比。
(2)NRZ-OUT与BS-R波形对照:(3)NRZ-OUT与NRZ波形对照:实验结果分析:上述三个图给出了译码输出过程中的各个信号与译码器输出波形的对照。
(二)数字调制实验1.K1,K2,K3为1111 0111 1111 0111 1111 0111时,AK与BK的波形对照为:由实验结果可知:①绝对码至相对码的变换规律“1”变“0”不变,即绝对码的“1”码时相对码发生变化,绝对码的“0”码时相对码不发生变化——此为信号差分码。
②相对码至绝对码的变换规律相对码的当前码元与前一码元相同时对应的当前绝对码为“0”码,相异时对应的当前绝对码为“1”码。
2.CAR与CAR-D波形对照:实验结果分析:上图为2DPSK信号载波与2DPSK信号载波倒相的对比图,结果正确。
3.(1)2DPSK-OUT与BK波形对照:实验结果分析:上图为2DPSK调制输出与相对码的对比图,实验结果与理论相符合。
(2)2DPSK-OUT与AK波形对照:实验结果分析:上图为2DPSK调制输出与绝对码的对比图,实验结果与理论相符合。
4.(1)2ASK-OUT与AK的波形对照:实验结果分析:上图为2ASK调制输出与绝对码的对比图,实验结果与理论相符合。
(2)2FSK-OUT与AK的波形对照:实验结果分析:上图为2FSK调制输出与绝对码的对比图,实验结果与理论相符合。
(三)数字解调实验1.BK与MU的波形对照:实验结果分析:上图为解调输出相对码与相乘器输出信号的图形,实验结果与理论相符合。
2.BK与LPF的波形对照:3.使数字调制单元CAR信号与载波同步单元CAR-OUT信号同相如下图所示(1)BK与MU的波形对照:实验结果分析:若调制与解调的载波信号同相,则解调输出相对码与相乘器输出信号的图形如上。
(2)BK与LPF的波形对照:(3)BK与BK的波形对照:(4)AK与MU的波形对照:(5)AK与LPF的波形对照:(6)AK与BK的波形对照:(7)AK与AK-OUT的波形对照:实验结果分析:以上为当数字调制单元CAR信号与载波同步单元CAR-OUT信号同相时,调制单元和解调单元各部分的对比,实验结果与理论相符合。
4.使CAR信号与CAR-OUT信号反相如下图所示(1)BK与MU的波形对照:(2)BK与LPF的波形对照:(3)BK与BK的波形对照:(4)AK与MU的波形对照:(5)AK与LPF的波形对照:(6)AK与BK的波形对照:(7)AK与AK-OUT的波形对照:实验结果分析:以上为当数字调制单元CAR信号与载波同步单元CAR-OUT信号同相时,调制单元和解调单元各部分的对比,实验结果与理论相符合。