《对数函数》教学设计(精品)
- 格式:docx
- 大小:37.07 KB
- 文档页数:4
4《对数函数》课时1 一等奖创新教学设计《对数函数》教学设计课时1对数函数的概念、图象与性质必备知识学科能力学科素养高考考向1.对数函数的概念学习理解能力观察记忆概括理解说明论证应用实践能力分析计算推测解释简单问题解决迁移创新能力综合问题解决猜想探究发现创新数学抽象【考查内容】考查对数函数的图象与性质应用,常考的形式有:以对数函数为载体,与其函他函数、方程、不等式综合应用. 【考查题型】选择题、填空题为主2.对数函数的图象与性质直观想象数学运算3.指数函数与对数函数的关系数学运算4.不同函数增长的差异数学建模一、本节内容分析本节主要内容是对数函数的概念、图象和性质,不仅反映出对数函数和指数函数的关系,也蕴含了化归、分类讨论、数形结合等数学思想.本节内容所涉及的核心知识及所体现的核心素养如下:核心知识1.对数函数的概念2.对数函数的图象与性质3.指数函数与对数函数的关系4.不同函数增长的差异数学抽象直观想象数学运算数学建模核心素养二、学情整体分析从初中到现在,学生已经学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,对其概念、基本性质、研究方法有了一定的了解和掌握.通过类比的方法学习对数函数的知识,还是比较轻松的.但由于指数函数、对数函数和幂函数的增长变化复杂,这就使得学生在研究过程中可能遇到困难.在情感方面,多数学生对新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不均衡,故仍需要教师给予指导点拨.学情补充:______ _________________ _________三、教学活动准备【任务专题设计】1.对数函数的概念2.对数函数的图象与性质3.指数函数与对数函数的关系4.不同函数增长的差异【教学目标设计】1.理解对数函数的概念和意义,掌握对数函数定义域、值域的求法.2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.3.掌握对数函数的单调性,会进行同底对数和不同底对数大小的比较.4.了解反函数的概念,掌握互为反函数的两个函数之间的联系及两个函数图象的特征.5.结合具体函数图象,总结一次函数、指数函数、对数函数的增长差异,通过图象,了解“直线上升”“对数增长”“指数爆炸”的含义.【教学策略设计】1.教师创设问题情境,以学生看,学生想,学生议,学生练为主,在学生仔细观察、类比、想象的基础上,通过问题串的形式加以引导点拨,使新学知识更牢固,理解更深刻.2.类比指数函数的图象和性质来研究对数函数的相关内容.强调认识底数a对函数值变化的影响,鼓励学生积极主动地参与获得性质的过程.3.学生是教学活动的主体,他们在学习过程中的参与状态和参与程度是影响教学效果最重要的因素,因此在学法上要重视动手操作、自主探索,让学生利用图象直观的性质,观察图象,合作探究,并通过正、反例的构造,来完成从感性认识到理性认识的转变.【教学方法建议】情境教学法、问题教学法,还有______【教学重点难点】重点:1.对数函数的概念、图象及性质.2.对数函数性质的初步应用.3.研究一次函数、指数函数和对数函数增长方式的差异.难点:1.对数式与指数式的互化.2.底数a对对数函数的影响.对数函数性质的初步应用.3.函数的增长快慢的差异.【教学材料准备】1.常规材料:多媒体课件、______2.其他材料:______ _四、教学活动设计教学导入师:在4.2.1的问题2中,我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢?进一步地,死亡时间x是碳14的含量y的函数吗?【学生思考,讨论,交流,教师板书课题】【设计意图】由实际问题引入,激发学生的学习兴趣.教学精讲探究1 对数函数的概念师:下面请看对数函数的定义.【要点知识】对数函数的定义一般地,函数,且)叫做对数函数(logarithmic function),其中是自变量,定义域是.师:在对数函数定义中,为什么要限定,且为什么对数函数,且的定义域是【学生思考,教师引导学生回答问题】生:(1)根据指数式与对数式的关系,知可化为.由指数的概念,要使有意义,必须规定,且.生:(2)因为可化为,不管取什么值,由指数函数的性质,知.师:怎样判断一个函数是不是对数函数【学生思考,分组讨论,回答问题,教师总结】师:依据定义,抓住其解析式的三个结构特征进行判断:①的系数为1;②底数满足,且;③真数为且.只有同时具备以上三个条件才是对数函数,否则就不是.【以学定教】经历讨论、交流的过程,培养学生的分析、概括理解能力,体现了逻辑推理核心素养.【典型例题】对数函数的应用例1 求下列函数的定义域:(1);(2),且.生解:(1)因为,即,所以函数的定义域是.(2)因为,即,所以函数的定义域是.师:求对数函数的定义域应注意:①对数的真数大于零,对数的底数大于0且不等于1;②使式子符合实际背景;③对底数含有字母的对数式要注意分类讨论.【分析计算能力】通过演练,进一步理解对数函数的定义,培养学生的分析计算能力,体现了数学运算素养.【学生讨论,自由回答,教师总结】师:由指数和对数的关系,我们可以得到对数的基本性质.【典型例题】对数函数的应用(二)例2 假设某地初始物价为1,每年以的增长率递增,经过年后的物价为.(1)该地的物价经过几年后会翻一番(2)填写下表,并根据表中的数据,说明该地物价的变化规律.【学生独立回答问题,教师总结】生:(1)由题意可知,经过年后物价为,即.由对数与指数间的关系,可得.由计算工具可得,当时,.所以,该地区的物价大约经过14年后会翻一番.(2)根据函数,利用计算工具,可得下表:由表中的数据可以发现,该地区的物价随时间的增长而增长,但大约每增加1倍所需要的时间在逐渐缩小.【简单问题解决能力】通过解决实际问题,让学生体会对数函数在实际生活中的应用,培养简单问题解决能力、分析计算能力.师:(1)这里中,是的函数,是一个指数函数,而中,是的函数,是一个对数函数.(2)解决对数函数模型的实际问题时,通常先用指数函数列出数量关系,再转化为对数式,下面我们进行巩固练习.【巩固练习】对数函数的定义的应用求出函数的定义域,并画出它的大致图象.【学生独立完成,汇报结果,教师总结】生:函数的定义域为函数解析式可化为其大致图象如图所示(其特征是关于轴对称),如图所示:师:解决类似问题,先去掉绝对值,转化成分段函数后再画出大致图象,求函数的定义域,结果必须用集合表示.【推测解释能力】结合对数函数定义、分段函数的知识解决问题,培养学生的推测解释、分析计算能力.探究2 对数函数的图象和性质师:下面我们研究对数函数的图象和性质.与研究指数函数一样,先画出图象,然后借助图象研究其性质.请同学们画出的图象.【学生思考、讨论后,列表、画图象,并展示结果,教师总结】生:列表、描点、连线画出的图象.生:列表、描点、连线画出的图象.【情境学习】利用画图象引入,同时复习了函数图象的画法,为新知识做铺垫.师:接下来请同学们思考下面的问题.【情境设置】探究底数互为倒数的对数函数图象的关系我们知道,底数互为倒数的两个指数函数的图象关于轴对称.对于底数互为倒数的两个对数函数,比如和,它们的图象是否也有某种对称关系呢可否利用其中一个函数的图象画出另一个函数的图象【教师提示:利用换底公式,得出和的关系,根据这个关系画图象,并把两个函数的图象放在同一直角坐标系中.学生思考后回答问题】生:因为,点与点关于轴对称,所以函数和的图象关于轴对称.作出的图象,再作此图象关于轴的对称图形.如图所示:【少讲精讲】学生综合所学知识独立分析函数和的图象关系,教师精讲的图象和性质.师:底数互为倒数的两个对数函数的图象关于轴对称.好了,我们思考下面的问题.【情境设置】探究对数函数的图象和性质选取底数,且的若干个不同的值,在同一直角坐标系内画出相应的对数函数的图象.观察这些图象的位置、公共点和变化趋势,它们有哪些共性由此你能概括出对数函数的值域和性质吗【教师提示:函数的图象按照底数的取值为和两种类型进行分析,学生讨论,合作探究,回答问题】师:你知道怎样快速画出对数函数,且)的图象吗生:描出点三点后,连线即可.【学生画出图象,并观察图象,师生共同总结对数函数的图象特点】师:对数函数的图象特点如下.【归纳总结】,且)的图象特点1.图象都在轴的右侧,且都过点;2.图象都无限地靠近轴,但不会与轴相交;3.当时,图象自左向右“上升”,当时,图象自左向右“下降”.【概括理解能力】总结对数函数的图象特点,为学习对数函数的性质做准备,培养学生概括理解、归纳总结能力.师:对数函数的图象和性质如下.【归纳总结】对数函数的图象和性质解析式底数图象定义域值域R单调性在上是增函数在上是减函数共点性图象过定点,即时,函数值特点时,; 时, 时, 时,对称性函数与的图象关于轴对称【观察记忆能力】根据图象,总结、记忆对数函数的性质,进一步理解对数函数图象的特点,培养观察记忆、概括理解能力.师:根据对数函数的图象和性质,你能说出底数的大小与函数值的变化有什么关系吗观察下面两个图象,你能说出对数函数底数的大小与图象有什么关系吗【学生思考,讨论,回答问题,教师总结】【深度学习】通过观察图象,总结对数函数底数的大小与图象的关系,加深学生对对数函数图象的理解和观察,为近一步通过图象得到性质进行铺垫.师:两个单调性相同的对数函数,它们的图象在位于直线右侧部分是“底大图低”.学完了对数函数的性质,下面看一道例题.【典型例题】利用对数函数性质求值例3 比较下列各题中两个值的大小:(1),且【根据对数函数的性质,学生独立完成,教师总结】生:(1)和可看作函数的两个函数值.因为底数,对数函数是增函数,且,所以.(2)和可看作函数的两个函数值.因为底数,对数函数是减函数,且,所以.(3)和可看作函数的两个函数值.当时,因为函数是增函数,且,所以;当时,因为函数是减函数,且,所以.【分析计算能力】结合对数函数的性质,合作学习解决比较两个对数值的大小问题,培养学生猜想探究能力、概括理解能力.师:当底数确定时,利用对数函数的单调性求值,当底数不确定时,要分类讨论.解决完例1题,请看例2题.【典型例题】用对数函数性质解决实际问题例4 溶液酸碱度是通过计量的,的计算公式为,其中表示溶液中氢离子的浓度,单位是摩尔升.(1)根据对数函数性质及上述的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯净水中氢离子的浓度为摩尔/升,计算纯净水的.生:(1)根据对数的运算性质,有,在上,,随若的增大,减小,相应地,也减小,即pH减小.所以,随着的增大,减小,即溶液中氢离子的浓度越大,溶液的酸性就越强.生:(2)当时,,所以,纯净水的是7.师:胃酸中氢离子的浓度是摩尔/升,胃酸的是多少生:.【简单问题解决能力】运用对数函数性质解决实际问题,培养学生分析理解、简单问题解决能力.探究3 指数函数与对数函数的关系师:下面,请同学们阅读教材,回答什么是反函数互为反函数的两个函数的定义域和值域有什么关系它们之间有什么关系【学生阅读教材,画图象进行观察、讨论,教师总结】师:反函数的定义如下.【要点知识】反函数的定义一般地,对于函数,设它的值域为,我们根据这个函数中的关系,用把表示出来,得到.如果对于在中任何一个值,通过在A中都有唯一的值和它对应,那么就表示是自变量的函数,这样的函数叫做函数的反函数.【先学后教】学生阅读教材,自主学习反函数概念,教师引导,总结体现了先学后教的教学策略.师:只有定义域和值域满足“一一对应”的函数才有反函数.那么,反函数具有什么样的性质呢我们一起探讨下.【情境设置】探究反函数的性质对于指数函数,你能利用指数与对数间的关系,得到与之对应的对数函数吗它们的定义域、值域之间有什么关系它们也互为反函数吗生:由得,所以函数是函数的反函数,与的定义域与值域正好互换,与互为反函数.师:一般地,指数函数,且与对数函数,且互为反函数,它们的定义域与值域正好相反.师:画出一对反函数图象,你能说说反函数有什么性质吗【学生合作探究,教师规范语言,师生共同得出反函数的性质】师:反函数的性质如下.【归纳总结】反函数的性质1.互为反函数的两个函数的图象关于直线对称.2.若函数的图象上有一点,则必在其反函数的图象上.反之,若点在反函数的图象上,则必在其原函数的图象上.3.反函数的定义域是原函数的值域,反函数的值域是原函数的定义域.4.单调函数的反函数与原函数有相同的单调性.5.若一个奇函数存在反函数,则它的反函数也是奇函数.【发现创新能力】综合所学知识,探究反函数的性质,培养学生的总结、发现创新能力.师:结合所学知识,比较指数函数和对数函数的图象和性质.【学生思考,教师提示:从图象、定义域、值域和函数值的变化情况等方面进行比较】【要点知识】指数函数和对数函数的图象与性质比较名称指数函数对数函数一般形式,且,且图象定义域值域函数值的变化情况当时, 当时, 当时, 当时,【概括理解能力】对比指数函数和对数函数的图象和性质,培养学生的概括理解、总结归纳能力.师:这节课你学到了什么【课堂小结】对数函数的概念、图象与性质【设计意图】学生独立回顾知识点,教师完善、帮助学生形成知识体系,培养学生的归纳总结、逻辑思维能力.教学评价本节课学习了对数函数的概念、图象与性质,不同函数增长的差异.应用所学知识,完成下题:大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中,为常数.已知一条鲑鱼在静止时的耗氧量为100个单位,而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式.(2)当一条鲑鱼的游速不高于时,其耗氧量的最大值是多少个单位解析:要求“当一条鲑鱼的游速不高于时,其耗氧量的最大值是多少个单位”,就是求游速与其耗氧量单位数之间的函数的最大值.具体解题过程如下:(1)由题意,得,解得.故游速与其耗氧量单位数之间的函数解析式为.(2)由题意,得,即,∴,由对数函数的单调性,有,解得,所以当一条鲑鱼的游速不高于时,其耗氧量的最大值是24300个单位.【设计意图】本题考查学生求对数函数最大值的方法.既引导学生回顾对数函数的相关知识,又培养学生的推测解释分析计算能力,同时提升逻辑推理、数学运算核心素养.教学反思本节教学案例,严格按照教材体例和顺序编写,在学习对数函数时,可让学生适当做一些练习,强化对对数函数概念的理解.在解有关求定义域的问题时,学生可能会忽略底数的取值范围以及真数必须大于0这些条件,教师要适时指导,在学习对数函数图象时,要注意画图的准确性;总结图象特征和性质时,教师要关注每位学生的表现,在教学中应多给学生创造尝试、思考、交流、讨论表述的机会;在不同函数增长差异中,先设计两个探究,通过讨论、探究、推导,找出一次函数与指数函数、一次函数与对数函数的增长方式的差异.在设计第一个探究时,不能只用函数和得出一次函数与指数函数增长方式的差异,应再举一些例子,在探究一次函数与对数函数的增长差异时,也要多举一些例子.可以通过多媒体展示.使我们的推论更有说服力.【以学定教】综合对数函数概念、图象和性质,深层理解对数函数与指数函数的关系,体会函数图象的增长差异,从而解决问题.【以学论教】在学生的实际学习过程中,教师应根据具体学情,使学生理解对数函数的概念,在学习图象特征和性质时,教师要关注每一个学生的表现,在学习不同函数增长差异时,要多举一些例子,在整体学习过程中,教师应多给学生创造尝试、思考、交流、讨论表述的机会.1 / 15。
《对数函数》教学设计完美版【教学目标】1. 了解对数函数的定义、性质及其在数学和实际中的作用;2. 能够准确地表示对数函数及其反函数的图像;4. 培养学生逻辑思维能力、分析问题的能力和解决问题的能力。
1. 对数函数的定义及基本性质。
3. 对数函数的反函数的图像、定义域、值域以及单调性。
4. 指数函数与对数函数的关系。
5. 利用对数函数解决实际问题。
2. 对数函数图像的绘制。
1. 前置知识启发法借助生活实例及数学实例,引出对数函数的产生背景和基本意义,使学生从熟悉的生活现象及数学运算中获得对对数函数的初步理解。
2. 形象化教学法通过图像或示例说明对数函数的性质,图像生动形象,有利于学生直观的理解对数函数的性质。
3. 探究式教学法在教学中,通过引导学生对例题进行讨论,探究对数函数的问题,发现问题,解决问题,从而培养学生的分析问题、解决问题的能力。
4. 实践教学法通过解决实际问题,让学生主动参与到教学中,根据所学到的知识解决生活中遇到的实际问题,不仅能够增加学生的学习兴趣和动力,同时还能够让学生了解到对数函数对实际问题的解决具有重要作用。
引导学生了解对数函数的定义,并让学生理解对数函数的基本性质,包括定义域、值域、单调性等。
通过讨论,让学生掌握对数函数图像的特点,并通过绘制对数函数的图像,让学生加深对数函数图像的记忆和了解。
通过引导学生思考,让学生初步理解反函数的概念及性质,并用图像和示例进行说明,让学生了解反函数的图像及性质。
通过对指数函数和对数函数的定义、性质及其在数学和实际中的作用的讨论,让学生理解指数函数与对数函数之间的关系。
6. 总结回顾1. 每节课结束后进行问题的测试,检查学生是否掌握了主要内容。
2. 每节课结束后,通过讨论和笔记的方式,让学生对所学内容进行总结和回顾。
3. 通过布置作业,检查学生是否能够巩固和应用所学知识。
4. 通过考试进行评估,检查学生是否对对数函数的定义、性质、图像及其应用有所了解。
对数函数教学设计一、教学目标1、知识与技能目标理解对数函数的概念,掌握对数函数的定义域、值域。
掌握对数函数的图象和性质,能利用对数函数的性质解决简单的数学问题。
2、过程与方法目标通过对数函数的图象和性质的探究过程,培养学生的观察、分析、归纳和逻辑推理能力。
让学生体会从特殊到一般、从具体到抽象的研究数学问题的方法。
3、情感态度与价值观目标通过对数函数在实际生活中的应用,让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过小组合作探究,培养学生的团队合作精神和创新意识。
二、教学重难点1、教学重点对数函数的概念、图象和性质。
利用对数函数的性质解决简单的数学问题。
2、教学难点对数函数的图象和性质的探究过程。
对数函数性质的应用。
三、教学方法讲授法、探究法、练习法相结合四、教学过程1、导入新课回顾指数函数的概念和性质,提出问题:如果已知指数式中的指数,如何求底数?例如,已知\(2^x = 8\),如何求\(x\)?引导学生思考,引出对数的概念。
2、讲解对数的概念定义:如果\(a^x = N\)(\(a > 0\)且\(a ≠ 1\)),那么数\(x\)叫做以\(a\)为底\(N\)的对数,记作\(x =\log_a N\),其中\(a\)叫做对数的底数,\(N\)叫做真数。
举例说明:\(\log_2 8 = 3\),\(\log_3 9 = 2\)等。
3、引入对数函数给出对数函数的定义:一般地,函数\(y =\log_a x\)(\(a> 0\)且\(a ≠ 1\))叫做对数函数。
强调对数函数的定义域为\((0, +∞)\)。
4、探究对数函数的图象和性质让学生分组,分别画出\(y =\log_2 x\)和\(y =\log_{1/2} x\)的图象。
引导学生观察图象,从定义域、值域、单调性、奇偶性等方面进行分析。
总结对数函数的性质:当\(a > 1\)时,函数在\((0, +∞)\)上单调递增;当\(0 <a < 1\)时,函数在\((0, +∞)\)上单调递减。
对数函数教学设计知识目标1.学生理解对数函数的定义;2.学生掌握对数函数的性质、特点和图像;3.学生能够应用对数函数解决实际问题;4.学生提高数学思维和解决问题的能力。
教学内容第一节:对数函数的定义1.引入对数函数的概念;2.介绍对数函数的定义和性质;3.给出许多实际问题,让学生了解对数函数的意义。
第二节:对数函数的特点和图像1.讲解对数函数的图像特点;2.教学对数函数的反函数的图像特点;3.比较对数函数和指数函数图像。
第三节:对数函数的应用1.应用对数函数解决实际问题;2.教学对数函数运用在生活、科学和工程中的技术;3.补充许多实际问题的解决方法。
教学方法1.演讲法:引领学生入门,提供新知识给学生认识和理解;2.询问题:针对不同学生需要的信息而产生的对话修改;3.小组讨论:激发学生的合作意识和实际操作能力;4.集体探究:选取与对数函数教学相应的问题,鼓励学生在自愿的情况下查阅信息、发表观点、对问题进行探讨;5.实验教学:在本节课中使用实验设备,让学生实际操作,以便更好地了解对数函数的图像特点。
教学评估1.平时评估:针对学生的课堂表现和作业;2.综合测评:期末考试等大型考试;3.学生评估:以温馨的声音,收回学生的课后反馈。
教学资源1.《高中数学教育》;2.电子版教材;3.课程讲义;4.PPT幻灯片;5.示范视频。
总结在上述对数函数的教学设计中,我们可以看到选取实例和图像进行教学是非常重要的。
学生从实例中发现问题,从图像中看到模式,从逐渐深化不断理解,这些解决问题的策略和思考方式,都是通过对数函数的学习所获得的知识,也是对现实生活有用的技能。
对数函数优秀教案对数函数优秀教案目标本教案的目标是通过教授对数函数的基本概念和性质,帮助学生掌握对数函数的基本概念和解题方法。
教学内容1. 对数函数的定义对数函数是指满足一定条件的函数,其定义如下:$$y = \log_b{x}$$其中,$y$ 表示对数函数的值,$b$ 表示底数,$x$ 表示真数。
2. 对数函数的性质对数函数具有以下性质:- 对数函数与指数函数是互逆的关系;- 对数函数的图像与指数函数的图像关于直线 $y = x$ 对称;- 对数函数的定义域为正实数集,值域为实数集;- 对数函数在 $x$ 轴右侧单调递增,在 $x$ 轴左侧单调递减;- ...3. 对数函数的应用对数函数在实际问题中有广泛的应用,例如:- 指数增长和衰减问题;- 求解复利问题;- 求解相关系数问题;- ...教学步骤1. 引入对数函数的定义,通过实例和图像展示对数函数的基本特点;2. 讲解对数函数的性质,通过练题加深理解;3. 引入对数函数的应用,并通过实际问题进行演示和练;4. 总结对数函数的重要性和应用领域,鼓励学生多加练和思考。
教学评估为了评估学生对对数函数的掌握程度,可以采用以下评估方式:1. 练题:布置一些关于对数函数的练题,以检验学生对于对数函数的掌握和运用能力;2. 实际问题解答:给学生提供一些实际问题,并要求他们利用对数函数进行求解;3. 小组讨论:组织学生进行小组讨论,让他们就对数函数的应用提出自己的见解和观点。
通过以上评估方式,可以全面了解学生对对数函数的掌握程度,并及时进行教学调整和辅导。
参考资料- XXX教材第X章以上是本教案对数函数的基本内容和教学步骤,希望能对您有所帮助。
如果有任何问题,请随时与我联系。
《对数函数》优秀教案一、教材分析对数函数是在学习指数函数、对数的基础上引入的,由此我制定了这样的教学目标。
1、通过指数与对数的联系,掌握对数函数的概念、图象、性质并能简单应用。
2、在教学过程中,通过数形结合、分类讨论等数学思想方法,发展学生的逻辑思维能力,提高他们的信息检查和整合能力。
教学重点:对数函数的概念、图象和性质.教学难点:由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
二、指导思想和教学方法利用多媒体辅助教学,通过讨论启发学生归纳对数函数的概念图像及性质,同时在教学中渗透“类比联想”、“数形结合”及“分类讨论”的数学思想方法。
三、教学过程1、提出问题我们来看下上节课的2.1.2的例8:截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?1999年底,我国人口约13亿;经过1年(即2000年),人口数为13+13*1%=13*(1+1%)(亿)经过2年(即2001年),人口数为13*(1+1%)+13*(1+1%)*1%=13*(1+1%)2(亿)经过3年(即2002年),人口数为13*(1+1%)2+13*(1+1%)2*1%=13*(1+1%)3(亿)。
所以经过x 年,人口数为y=x %)11(*13+=x 01.1*13(亿)当x=20时,1601.1*1320≈=y (亿)所以经过20年后我国人口数最多为16亿。
咱们上节课的例题,我们能从关系式x y 01.1*13=中,算出任意一个年头x 的人口总数,那反之,如果问,哪一年的人口数可达到18亿,20亿,30亿,该如何解决? 上述问题实际上就是从x x x 01.11330,01.11320,01.11318===,...中分别求出x ,即已知底数和幂的值,求指数这是我们这节课将要学习的对数函数问题,通过我们学习的对数表示方法,咱们可以把上面的式子表示成:x y =01.1log ,其中y=人口数/13,y 是自变量,x 是y 的函数,但习惯上,用x 表示自变量,y 表示它的函数,因此对上式进行改写:x y 01.1log =。
高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
对数函数教学设计对数函数教学设计(精选10篇)作为一名教学工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
我们该怎么去写教学设计呢?以下是小编为大家收集的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga (1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53 又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数教学设计篇2一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
对数函数教案一、教学目标通过本节课的学习,学生应能够掌握以下知识和技能: - 理解对数函数的概念 - 理解对数函数的性质 - 掌握对数函数的图像和性质 - 熟练应用对数函数解决实际问题二、教学重点•对数函数的概念和性质•对数函数的图像和性质三、教学难点•对数函数的图像和性质四、教学准备•教材:《数学教材》•讲义:对数函数讲义•板书:对数函数的图像和性质•教具:投影仪、黑板、粉笔五、教学过程1. 导入1.1 导入新课•引导学生回顾指数函数的概念和性质,并提问:你们还记得指数函数的特点吗?1.2 引入对数函数的概念•引导学生思考:如何将指数函数的思想应用到解决对数问题上?•讲解对数函数的概念:对数函数是指满足以下关系的函数:\(y = \log_a(x)\),其中 \(x > 0\), \(a > 0\) 且 \(aeq 1\),则 \(y\) 是 \(x\) 关于底数 \(a\) 的对数。
2. 对数函数的性质•讲解对数函数的性质,包括:–\(a^{\log_a(x)} = x\) (对数和指数是互逆运算)–\(\log_a(x \cdot y) = \log_a(x) + \log_a(y)\) (对数的乘法法则)–\(\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y)\) (对数的除法法则)–\(\log_a(x^r) = r \cdot \log_a(x)\) (对数的幂函数法则)3. 对数函数的图像和性质•根据对数函数的性质,画出对数函数 \(y = \log_a(x)\) 的图像,并解释图像的特点。
•强调对数函数的增减性和奇偶性。
4. 应用举例•通过一些实际问题的例子,如pH值的计算、音量的计算等,引导学生应用对数函数解决问题。
六、课堂练习•学生进行课堂练习,综合运用对数函数的性质和图像解决问题。
七、课后作业•完成课后习题:P.60 第1题-第10题八、教学反思本节课以对数函数为内容,通过引入对数函数的概念、讲解对数函数的性质以及展示对数函数的图像,让学生全面认识对数函数,并通过实际问题的应用让学生更好地理解和掌握对数函数的概念和性质。
对数函数教案
一、教学目标:
1. 了解对数的定义和性质。
2. 掌握对数函数的基本公式和计算方法。
3. 能够应用对数函数解决实际问题。
二、教学重点与难点:
1. 对数的定义和性质。
2. 对数函数的基本公式和计算方法。
三、教学过程:
1. 导入新知识:
让学生回顾指数函数的概念和计算方法,引导学生思考指数与对数之间的关系。
2. 对数的定义和性质:
通过讲解对数的定义和性质,如对数的意义、对数的底数、对数的特殊值等,让学生理解对数的概念和基本性质。
3. 对数函数的基本公式和计算方法:
教师通过例题和习题,讲解对数函数的基本公式和计算方法,如对数函数的图像、对数函数的性质等。
4. 对数函数的实际应用:
通过实际问题的解答,让学生学会应用对数函数解决实际问题,如指数增长问题、对数模型问题等。
五、课堂练习:
结合课堂所学知识,布置一些练习题,让学生巩固对数函数的基本公式和计算方法。
六、课堂小结:
通过总结本节课所学内容,让学生回顾课堂所学知识。
七、课后作业:
布置对数函数的相关习题作为课后作业,要求学生独立完成,并将解答过程详细写出。
八、教学反思:
通过对学生的学习情况进行反思,总结本节课的教学效果,为下节课的教学准备提供参考。
对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程组织学生充分讨论、交流,使≠1..师:用多媒体演示函数图象,对数函数图象有以下特征相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升的,y=log x的图象是下降的备选例题例1 求函数)416(log )1(x x y -=+的定义域.【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x x x ,其图象如图所示(其特征是关于y 轴对称).对数函数及其性质(二)(一)教学目标 1.知识技能(1)掌握对数函数的单调性.x(2)会进行同底数对数和不同底数的对数的大小比较.2.过程与方法(1)通过师生双边活动使学生掌握比较同底对数大小的方法.(2)培养学生的数学应用的意识.3.情感、态度与价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(二)教学重点、难点1、重点:利用对数函数单调性比较同底对数大小.2、难点:不同底数的对数比较大小.(三)教学方法启发式教学利用对数函数单调性比较同底对数的大小,而对数函数的单调性对底数分1a>和a<<两种情况,学生应能根据题目的具体形式确定所要考查的对数函数;如果题目中含有01字母,即对数底数不确定,则应该分两种情形讨论.对于不同底数的对数大小的比较,应插入中间数,转化为两组同底数的对数大小的比较,从而使问题得以解决.(四)教学过程备选例题例1 比较下列各组数的大小:(1)log0.7 1.3和log0.71.8;(2)log35和log64.(3)(lg n)1.7和(lg n)2 (n>1);【解析】(1)对数函数y= log0.7x在(0, +∞)内是减函数. 因为1.3<1.8,所以log0.71.3>log0.71.8.(2)log35和log64的底数和真数都不相同,需找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33 = 1 = log66>log64,所以log35>log64.(3)把lg n看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lg n讨论.若1>ln n>0,即1<n<10时,y = (lg n)x在R上是减函数,所以(lg n)1.7>(lg n)2;若lg n>1,即n>10时,y = (lg n)2在R上是增函数,所以(lg n)1.7<(lg n)2.若ln n = 1,即n = 10时,(ln n)1.7 = (ln n)2.【小结】两个值比较大小,如果是同一函数的函数值,则可以利用函数的单调性来比较.在比较时,一定要注意底数所在范围对单调性的影响,即a >1时是增函数,0<a <1时是减函数,如果不是同一个函数的函数值,就可以对所涉及的值进行变换,尽量化为可比较的形式,必要时还可以“搭桥”——找一个与二者有关联的第三量,以二者与第三量(一般是–1、0、1)的关系,来判断二者的关系,另外,还可利用函数图象直观判断,比较大小方法灵活多样,是对数学能力的极好训练.例2 求证:函数f (x ) =xx-1log 2在(0, 1)上是增函数. 【分析】根据函数单调性定义来证明. 【解析】设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212221log log 11x xx x --- 21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1, ∴12x x >1,2111x x -->1.则2112211log x x x x --⋅>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数.对数函数及其性质(三)(一)教学目标 1.知识与技能(1)了解反函数的概念,加深对函数思想的理解.(2)能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质. 2.过程与方法(1)熟练利用对数函数的性质进行演算,通过交流,使学生学会共同学习. (2)综合提高指数、对数的演算能力.(3)渗透运用定义、数形结合、分类讨论等数学思想.3.情感、态度、价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(3)加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,培养学生数学交流能力.(二)教学重点、难点重点:对数函数的特性以及函数的通性在解决有关问题中的灵活应用.难点:反函数概念的理解.(三)教学方法通过对应关系与图象的对称性,理解同底的对数函数与指数函数互为反函数.(四)教学过程设计课堂练习答案备选例题例1 函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(1,4),求a 的值. 【解析】根据反函数的概念,知函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(4,1),∴1log 3a =, ∴3a =.【小结】若函数()y f x =的图象经过点(,)a b ,则其反函数的图象经过点(,)b a .例2 求函数y = log 4 (7 + 6 x – x 2)的单调区间和值域.【分析】考虑函数的定义域,依据单调性的定义确定函数的单调区间,同时利用二次函数的基本理论求得函数的值域.【解析】由7 + 6 x – x 2>0,得(x – 7) (x + 1)<0,解得–1<x <7. ∴函数的定义域为{x |–1<x <7}.设g (x ) = 7 + 6x – x 2 = – (x – 3)2 + 16. 可知,x <3时g (x )为增函数,x >3时,g (x )为减函数.因此,若–1<x 1<x 2<3. 则g (x 1)<g (x 2) 即7 + 6x 1 – x 12<7 + 6x 2 – x 22, 而y = log 4x 为增函数.∴log(7 + 6 x1–x12)<log4 (7 + 6x2–x22),4即y1<y2.故函数y = log4 (7 + 6x–x2)的单调增区间为(–1, 3),同理可知函数y = log4 (7 + 6x–x2)的单调减区间为(3, 7).又g (x) = – (x– 3)2 + 16在(–1, 7)上的值域为(0, 16].所以函数y = log4(7 + 6x–x2)的值域为(–∞, 2].【小结】我们应明白函数的单调区间必须使函数有意义. 因此求函数的单调区间时,必先求其定义域,然后在定义域内划分单调区间. 求函数最值与求函数的值域方法是相同的,应用函数的单调性是常用方法之一.。
完整版)对数函数教学设计本节课的主题和目标。
2)引入对数函数的必要性,例如在科学研究中的应用等,激发学生研究的兴趣。
二)知识讲解1)介绍对数函数的概念和性质,包括对数函数与指数函数的关系。
2)通过实例演示,让学生理解对数函数的计算方法和特点。
3)引导学生探究对数函数的性质,例如单调性、奇偶性等。
三)探究活动1)分组探究对数函数的重要性质,例如对数函数的图象和反函数的性质。
2)通过练加深对对数函数的理解和掌握。
四)总结归纳1)引导学生总结对数函数的概念和性质,并与指数函数进行比较。
2)强调对数函数在日常生活和科学研究中的重要作用。
五)作业布置布置相关的练和作业,巩固对数函数的理解和掌握。
七、教学反思通过本节课的教学,学生对对数函数的概念和性质有了更深入的理解,同时也培养了学生的数学思维能力和独立思考能力。
在教学过程中,需要注意引导学生探究和思考,让学生在实践中掌握知识,提高教学效果。
设计意图:通过对称变换的方法画函数图象,加深学生对互为反函数的两个函数之间的认识,便于将对数函数与指数函数的图象和性质对照。
使用描点法画函数图象更为方便,两种方法可同时进行,让学生自由选择画法,调动学生自主研究的积极性。
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点。
抓住对数函数是指数函数的反函数这一要领,可先在同一坐标系内画出两个对数函数的图象,让学生分析它们的图象特征和性质。
然后出示课件,教师进行补充。
再分a >1与<a<1两种情况列出对数函数图象和性质表,让学生对比着记忆。
这种讲法严谨又直观易懂,让学生主动参与教学过程,对培养学生的创新能力有帮助。
利用表格可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表。
通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。
《对数函数》教学设计
一、教学目标
1、知识与技能
①理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
②掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
2、过程与方法
①通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
②通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
③通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
3、情感态度与价值观
①通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
②在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
二、学情分析:
本节课是继指数函数之后的一节重要课程,学生在学习指数函数的过程中有了一定的体验、知识与技能和思想方法,完全具备学习对数函数的能力。
三、教学重点难点
重点:对数函数的定义、图象和性质。
难点:对数函数性质的初步应用。
《对数函数》教学设计方案(第一课时)一、教学目标1. 理解对数函数的概念及性质;2. 掌握对数函数的图像及特点;3. 学会运用对数函数解决实际问题。
二、教学重难点1. 教学重点:理解对数函数的性质,掌握其图像特征;2. 教学难点:如何将实际问题转化为对数函数问题,并加以解决。
三、教学准备1. 准备教学用具:黑板、白板、投影仪等;2. 准备教学材料:对数函数相关例题及习题;3. 设计课程大纲及教案,准备逐步展开教学。
四、教学过程:本节课是《对数函数》第一课时,是在学生已经掌握了指数函数的基础上展开教学的,因此教学设计中我注重从学生已有知识出发,以“问题串”的形式引导学生自主探索对数函数的性质,并适时介绍对数在生产实践中的应用和对促进科学技术发展中的作用,以增强学生的学习兴趣和用数学解决实际问题的意识。
具体安排如下:1. 引入课题通过两个实例让学生感受对数在生产实践中的应用和对促进科学技术发展中的作用,同时复习旧知识指数函数的性质,为新知识的引入做好准备。
设计意图:通过实例和复习旧知识,为新知识的引入做好准备。
2. 探索新知(1)提出问题:根据已有的指数知识,你能类比指数函数的性质,试着说出对数函数的性质吗?(2)学生自主探索:利用计算器,通过画图、观察、分析,得出对数函数的性质。
设计意图:通过类比指数函数的性质,让学生自主探索得出对数函数的性质,培养学生的类比归纳能力。
3. 合作交流(1)组内交流:让各小组学生对本组的探究成果进行组内交流。
(2)展示成果:请小组代表到讲台前展示本组的探究成果,同时说出自己的探究过程与心得。
教师给予评价。
设计意图:培养学生语言表达能力和合作交流能力,通过交流与展示达到学生对对数函数性质的内化。
4. 巩固提高通过基础练习、拓展训练和综合提升三个层次加深本节课的重难点的理解,提高学生的学习能力。
同时对学生实施德育教育,增强学生学习数学的信心。
设计意图:巩固提高,加深学生对对数函数性质的理解;实施德育教育,增强学生学习数学的信心。
《对数函数》教学设计河北定州实验中学杨丽先一、教材分析本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.二、学情分析大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.三、设计思路学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.四、教学目标1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. .3、通过学生分组探究进行活动,掌握对数函数的重要性质。
通过做练习,使学生感受到理论与实践的统一.4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.五、重点与难点重点:(1)对数函数的概念;(2)对数函数与指数函数的相互转化.难点:(1)对数函数概念的理解;(2)对数函数性质的理解.六、过程设计(一)复习导入(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何?学生回答,并用课件展示指数函数的图象和性质。
4.2.4对数函数【教学目标】1.掌握对数函数的概念㊁图象和性质,并会简单的应用.2.能利用对数函数的图象和性质比较两个值的大小,会求对数函数的定义域.3.乐于发现㊁善于探索,逐步养成勤于动脑㊁独立思考等良好的思维品质.【教学重点】对数函数的图象㊁性质及其应用.【教学难点】对数函数图象和性质的发现过程.【教学方法】本节课主要采用引导发现式的教学方法.结合对数函数的内容特点,教学过程中让学生动手做㊁动脑想㊁大胆猜,这样既增强了学生的参与意识又教给他们思考问题的方法㊁获取知识的途径,从而提高学生的学习能力,加深学生对所学知识的理解.【教学过程】教学环节教学内容师生互动设计意图在指数函数的引入问题中,已经得出某种放射性物质的质量的初始值为1,它的剩留量与经过的年数的函数关系为y=0.84x(xȡ0),①其中x为自变量,表示经过的年数, y为对应的剩留量.根据①式画出函数图象,求约经过多少年,剩留量是原来的一半(结果保留一位有效数字).教师指出:根据①式,给定一个x值(经过的年数),就能计算出唯一的函数值y.实际上,在这个问题中知道的是y值,要求的是对应的x值.所以用对数形式表示,即x=l o g0.84y.②提出问题,激发学生学习的好奇心.教学环节教学内容师生互动设计意图新课导 入解:经过的年数 x =l o g 0.840.5=l g 0.5l g 0.84ʈ-0.30-0.08ʈ4.0.即约经过4年,该放射性物质的剩留量是原来的一半.学生解题.教师引导学生发现:在②式中,对于任意一个 剩留量y 都可以求出唯一的 经过的年数x .所以 经过的年数x 是 剩留量y 的函数.通常我们用x 表示自变量,用y 表示因变量,于是上述的函数关系,可表示为y =l o g 0.84x . 使学生初步感受对数函数是刻画现实世界的又一重要数学模型.一㊁对数函数的概念 一般地,函数y =l o g a x (a >0,a ʂ1,x >0)称为对数函数,其中x 是自变量,函数的定义域为(0,+ɕ). 板书课题.教师引导学生联系上面②的表达式,请学生思考并讨论对数函数的概念.教师提问:(1)为什么要规定a >0且a ʂ1(2)为什么对数函数的定义域是(0,+ɕ)? 学生讨论,回答这两个问题.让学生牢记底数大于零且不等于1,真数大于零.教学环节教学内容师生互动设计意图新课二㊁对数函数的图象和性质探索研究画出函数y=l o g2x与y=l o g12x的图象.(1)列表(略).将学生分为两组,各作一个函数图象.教师提问:画函数图象的三个步骤分别是什么学生回答:列表㊁描点㊁连线.教师引导:列表时,我们能否借助作指数函数y=2x与y=12æèçöø÷x的图象时所列的表格让学生进一步体会指数函数与对数函数的联系.学生自主画图,加深对图象的感性认识.(2)描点(略).学生思考教师提出的问题,并列表.教师指出:描点之前我们要建立平面直角坐标系,观察你所列的表格,如何建立平面直角坐标系?学生尝试回答,教师点评后,让学生建立平面直角坐标系并完成描点,教师适当指导.教师提示:描点后请用光滑的曲线将点连起来.(3)连线.教学环节设计意图师生互动教学内容新课因为3<3.5,所以l o g23<l o g23.5.(2)考察对数函数y=l o g0.7x,它在(0,+ɕ)上是减函数.因为1.6<1.8,所以l o g0.71.6>l o g0.71.8.练习1比较大小:(1)l g6l g8;(2)若l g m<l g n,则m n.练习2比较大小:(1)l o g0.56l o g0.58;(2)若l o g0.5m<l o g0.5n,则m n.学生独立完成练习1和练习2,教师予以点评.巩固对数函数的单调性.小结回顾本节主要内容,深入理解对数函数的概念㊁图象和性质.作业学生课后完成.针对学生实际,对课后书面作业实施分层设置.必做题:本节练习A组第2题.选做题:本节练习B组题目.1.对数函数的定义.2.对数函数的图象与性质.简洁明了地概括本节课的重要知识.。
《对数函数》公开课教案对数函数公开课教案一、教学目标- 了解对数函数的概念和基本性质- 掌握对数函数的图像和常用性质- 能够灵活运用对数函数解决实际问题二、教学重点和难点重点- 对数函数的定义和基本性质- 对数函数的图像和变换- 对数函数在实际问题中的应用难点- 对数函数的解析表达式的推导- 自然对数函数和常用对数函数的区别三、教学内容和步骤内容1. 对数函数的引入和概念解释2. 对数函数的定义和基本性质的讲解3. 对数函数的图像和常用性质的展示和分析4. 对数函数的变换和图像的绘制5. 对数函数在实际问题中的应用举例步骤1. 导入:通过引入一个实际问题,引起学生对对数函数的兴趣2. 概念解释:简明扼要地介绍对数函数的概念和基本性质3. 示范分析:通过几个简单的例子,演示对数函数的计算和性质的验证4. 图像展示:展示对数函数的图像,并解析图像的特点和常用性质5. 变换绘制:教授对数函数的平移、伸缩和翻转等变换方法,并指导学生绘制变换后的图像6. 实际应用:给出一些实际问题,引导学生运用对数函数解决问题,并进行讨论和总结四、教学评价与反馈1. 教师评价:通过学生的课堂表现、作业完成情况和课堂互动等多方面进行评价2. 学生评价:鼓励学生积极参与,提供机会让学生表达对教学内容的理解和意见3. 教学反馈:根据学生的研究情况和反馈,及时调整教学方法,提升教学效果五、教学资源和参考书目1. 教学资源:投影仪、计算器、白板、教材、参考课件等2. 参考书目:《高中数学课程标准实验教科书》、《高中数学学科教学大纲解读与教案解析》等六、教学延伸1. 给学生布置相关的题,巩固对对数函数的理解和应用能力2. 提供拓展性的研究资源,鼓励有兴趣的学生进一步探究对数函数的高级性质。
对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程组织学生充分讨论、交流,使≠1..师:用多媒体演示函数图象,对数函数图象有以下特征相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升的,y=log x的图象是下降的备选例题例1 求函数)416(log )1(x x y -=+的定义域.【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x x x ,其图象如图所示(其特征是关于y 轴对称).对数函数及其性质(二)(一)教学目标 1.知识技能(1)掌握对数函数的单调性.x(2)会进行同底数对数和不同底数的对数的大小比较.2.过程与方法(1)通过师生双边活动使学生掌握比较同底对数大小的方法.(2)培养学生的数学应用的意识.3.情感、态度与价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(二)教学重点、难点1、重点:利用对数函数单调性比较同底对数大小.2、难点:不同底数的对数比较大小.(三)教学方法启发式教学利用对数函数单调性比较同底对数的大小,而对数函数的单调性对底数分1a>和a<<两种情况,学生应能根据题目的具体形式确定所要考查的对数函数;如果题目中含有01字母,即对数底数不确定,则应该分两种情形讨论.对于不同底数的对数大小的比较,应插入中间数,转化为两组同底数的对数大小的比较,从而使问题得以解决.(四)教学过程备选例题例1 比较下列各组数的大小:(1)log0.7 1.3和log0.71.8;(2)log35和log64.(3)(lg n)1.7和(lg n)2 (n>1);【解析】(1)对数函数y= log0.7x在(0, +∞)内是减函数. 因为1.3<1.8,所以log0.71.3>log0.71.8.(2)log35和log64的底数和真数都不相同,需找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33 = 1 = log66>log64,所以log35>log64.(3)把lg n看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lg n讨论.若1>ln n>0,即1<n<10时,y = (lg n)x在R上是减函数,所以(lg n)1.7>(lg n)2;若lg n>1,即n>10时,y = (lg n)2在R上是增函数,所以(lg n)1.7<(lg n)2.若ln n = 1,即n = 10时,(ln n)1.7 = (ln n)2.【小结】两个值比较大小,如果是同一函数的函数值,则可以利用函数的单调性来比较.在比较时,一定要注意底数所在范围对单调性的影响,即a >1时是增函数,0<a <1时是减函数,如果不是同一个函数的函数值,就可以对所涉及的值进行变换,尽量化为可比较的形式,必要时还可以“搭桥”——找一个与二者有关联的第三量,以二者与第三量(一般是–1、0、1)的关系,来判断二者的关系,另外,还可利用函数图象直观判断,比较大小方法灵活多样,是对数学能力的极好训练.例2 求证:函数f (x ) =xx-1log 2在(0, 1)上是增函数. 【分析】根据函数单调性定义来证明. 【解析】设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212221log log 11x xx x --- 21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1, ∴12x x >1,2111x x -->1.则2112211log x x x x --⋅>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数.对数函数及其性质(三)(一)教学目标 1.知识与技能(1)了解反函数的概念,加深对函数思想的理解.(2)能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质. 2.过程与方法(1)熟练利用对数函数的性质进行演算,通过交流,使学生学会共同学习. (2)综合提高指数、对数的演算能力.(3)渗透运用定义、数形结合、分类讨论等数学思想.3.情感、态度、价值观(1)用联系的观点分析、解决问题.(2)认识事物之间的相互转化.(3)加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,培养学生数学交流能力.(二)教学重点、难点重点:对数函数的特性以及函数的通性在解决有关问题中的灵活应用.难点:反函数概念的理解.(三)教学方法通过对应关系与图象的对称性,理解同底的对数函数与指数函数互为反函数.(四)教学过程设计课堂练习答案备选例题例1 函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(1,4),求a 的值. 【解析】根据反函数的概念,知函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(4,1),∴1log 3a =, ∴3a =.【小结】若函数()y f x =的图象经过点(,)a b ,则其反函数的图象经过点(,)b a .例2 求函数y = log 4 (7 + 6 x – x 2)的单调区间和值域.【分析】考虑函数的定义域,依据单调性的定义确定函数的单调区间,同时利用二次函数的基本理论求得函数的值域.【解析】由7 + 6 x – x 2>0,得(x – 7) (x + 1)<0,解得–1<x <7. ∴函数的定义域为{x |–1<x <7}.设g (x ) = 7 + 6x – x 2 = – (x – 3)2 + 16. 可知,x <3时g (x )为增函数,x >3时,g (x )为减函数.因此,若–1<x 1<x 2<3. 则g (x 1)<g (x 2) 即7 + 6x 1 – x 12<7 + 6x 2 – x 22, 而y = log 4x 为增函数.∴log(7 + 6 x1–x12)<log4 (7 + 6x2–x22),4即y1<y2.故函数y = log4 (7 + 6x–x2)的单调增区间为(–1, 3),同理可知函数y = log4 (7 + 6x–x2)的单调减区间为(3, 7).又g (x) = – (x– 3)2 + 16在(–1, 7)上的值域为(0, 16].所以函数y = log4(7 + 6x–x2)的值域为(–∞, 2].【小结】我们应明白函数的单调区间必须使函数有意义. 因此求函数的单调区间时,必先求其定义域,然后在定义域内划分单调区间. 求函数最值与求函数的值域方法是相同的,应用函数的单调性是常用方法之一.。
高一数学教案范文:对数函数教案高一数学教案范文:对数函数教案精选6篇(一)教案主题:对数函数教学目标:1. 理解对数的定义和性质;2. 熟练掌握对数函数的图像和性质;3. 能够解决与对数函数相关的实际问题。
教学重点:1. 对数的定义和性质;2. 对数函数的图像和性质。
教学难点:对数函数的应用和解决实际问题。
教学过程:Step 1:导入通过一幅图片展示一张单调递增函数的图像,并引导学生思考这个函数的性质。
Step 2:激发兴趣提问:上述的函数图像中,这个函数的自变量是否能取任意实数?为什么?这个函数的值域是否有限制?存在哪些特殊的点,比如零点、极值点等?Step 3:引入概念引导学生思考自然对数的定义和性质,然后介绍对数的定义和常见的特殊情况。
Step 4:讲解对数函数的基本性质1. 对数函数的图像特点:单调递增、定义域、值域;2. 对数函数的零点和极值点;3. 对数函数的性质关系式:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) - ln(y)。
Step 5:示例演练结合具体的实例,让学生通过计算和图像分析的方法,熟悉对数函数的表达式和性质。
Step 6:拓展应用通过一些实际问题的展示,引导学生运用对数函数解决实际问题,如指数增长问题、物质衰减问题等。
Step 7:总结提高总结对数函数的定义、性质和应用,并引导学生思考对数函数与指数函数的关系。
Step 8:作业布置要求学生完成与对数函数相关的习题,巩固所学内容。
评价与反馈:通过学生作业的批改和讲解,及时反馈学生对对数函数概念和应用的掌握程度。
教学资源:1. PPT;2. 教科书;3. 白板、彩色粉笔;4. 实际问题的案例材料。
教学延伸:对数函数在科学和工程领域中具有广泛的应用,可以通过提供更多实际问题的案例,培养学生运用对数函数分析和解决问题的能力。
高一数学教案范文:对数函数教案精选6篇(二)教学目标:1. 理解对数函数的概念及性质。
《对数函数》教学设计(精品)对数函数教学设计(精品)
1. 引言
对数函数是高中数学教学中重要的内容之一。
它不仅在数学领域有广泛的应用,而且在其他学科中也扮演着重要的角色。
本教学设计旨在帮助学生全面理解和掌握对数函数的基本概念、性质和应用。
2. 研究目标
- 了解对数函数的定义和基本性质
- 掌握对数函数的图像、变换和反函数
- 熟练运用对数函数解决实际问题
3. 教学内容
3.1 对数函数的定义和基本性质
- 介绍对数函数的定义和符号表示方法
- 阐述对数函数的基本性质,如对数函数的定义域、值域和增减性质等
3.2 对数函数的图像和变换
- 绘制对数函数的基本图像,解释图像的特点和变化规律
- 引导学生分析对数函数的平移、伸缩、翻转等变换方式
3.3 对数函数的反函数
- 介绍对数函数与指数函数的关系
- 推导对数函数的反函数,并解释反函数的性质和图像
3.4 对数函数的应用
- 阐述对数函数在实际问题中的应用,如指数增长、财务管理和科学计算等
- 引导学生运用对数函数解决实际问题,并进行相关练和讨论
4. 教学策略
- 采用启发式教学方法,引导学生积极思考和发现对数函数的性质和规律
- 结合具体实例和案例分析,加深学生对对数函数的理解和应用能力
- 利用多媒体技术辅助教学,展示对数函数的图像和实际应用
场景
- 组织小组活动和讨论,促进学生合作研究和问题解决能力
5. 教学评估
- 设计对数函数的练和测验,测试学生对于对数函数概念和性
质的理解程度
- 观察学生在实际问题中运用对数函数解决能力的表现
- 利用小组合作评价学生在讨论和合作研究中的参与和贡献程
度
6. 教学资源
- 教科书:XXX
- 多媒体教学软件:XXX
- 实际应用案例:XXX
7. 教学总结
通过本次教学,学生将全面了解对数函数的定义、性质和应用,提升对数函数的理解和解决实际问题的能力。
同时,学生将培养合
作研究和问题解决的能力,为后续数学研究打下良好基础。
以上为《对数函数》教学设计(精品)的纲要,具体教学细节可以根据实际情况进行调整和补充。