第四章能带理论
- 格式:ppt
- 大小:233.50 KB
- 文档页数:20
1第四章固体的电子能带理论4-1 周期场和布洛赫定理晶体具有由大量分子、原子或离子有规则排列的点阵结构因此在固体中有关电子的研究实际上是一个多电子问题不仅应该包括电子与离子相互作用的单电子势还包括电子与电子相互作用的两电子势。
解决多体问题是非常复杂的而且严格解是不可能的。
要解决这些问题只能抓住主要矛盾建立模型作充分的近似才可以求解。
其中把多体问题简化为单电子问题需要经过多次简化。
第一是把原子核与核外内层电子考虑成一个整体——离子实使原子中的多体问题简化为离子实与外层电子的问题。
考虑到离子实的质量比较大离子运动速度相对慢位移相对小在讨论电子问题时可以认为离子是固定在瞬时的位置上这样多种粒子的问题就简化成多电子问题第二是忽略电子之间的相互作用理想电子气多电子问题简化为单电子问题每个电子是在固定的离子势场和其它电子的平均场中运动第三步的简化是认为所有离子势场和其它电子的平均场是周期性势场电子在固体中将受到周期性势场的作用。
在本章的讨论中我们做了独立电子近似。
电子在晶体中所受到的周期场可用一个函数Vr来表示称为有效单电子势函数。
周期性势场Vr应该具有布喇菲格子的周期性即VrRVr其中R为布喇菲格矢。
a电子可以在整个晶体中运动称为共公有化电子。
由于a的数量级为10-8cm势场Vr的周期与索末菲自由电子气模型中的电子德布罗意波长相当因此周期势场对电子运动的影响应在量子力学中考虑。
我们考虑单电子薛定谔方程其中势函数Vr具有布喇菲格子的周期性。
在独立电子近似中每个电子都遵循具有周期势场的单电子薛定谔方程这样的电子称为布洛赫电子。
2固体能带论的两个基本假设是什么布洛赫定理一个在周期场中运动的电子的波函数应具有哪些基本特点在量子力学建立以后布洛赫F.Bloch和布里渊Brillouin等人就致力于研究周期场中电子的运动问题。
他们的工作为晶体中电子的能带理论奠定了基础。
布洛赫定理指出了在周期场中运动的电子波函数的特点。
4.4 用紧束缚近似求出面心立方晶格和体心立方晶格s 态原子能级相对应的能带函数)(k E s先求面心立方晶格s 态原子能级相对应的能带E s (k )函数,利用公式:∑=⋅−−−=NearestR R k i s s s s seR J J k E)()(0ε解:0*01()()[()()]()}0s i s i J J R R U V d ϕξξξϕξξ==−−−>∫ 01()s s ik R ss R NearestE k J J eε−⋅==−−∑ s 原子态波函数具有球对称性,则:解:只计入最近邻格点原子的相互作用时,s 态原子能级相对应的能带函数表示为:∑=⋅−−−=NearestR R k i s s ss seR J J k E )()(0ε4.7 有一一维单原子链,原子间距a ,总长度为L =Na 1) 用紧束缚近似方法求出与原子s 态能级相对应的能带函数2) 求出其能带密度函数的表达式3) 如每个原子s 态中只有一个电子,计算T=0K 时的费密能级和处的能态密度0F E 0FE )(E N二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953个电子可填入其它状态中。
如果布里渊区边界上存在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B点)。
这样,晶体将只有绝缘体性质。
然而由(2)可知,B点的能量比A点高很多,从能量上看,这种电子排列是不利的。
事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Fermi面。
因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能。
实际上,多数的二价金属具有六角密堆和面心立方结构,能带出现重达,所以可以导电。
4.8题解答完毕。