2018-2019学年福建省莆田市秀屿区湖东学校九年级(上)第一次月考数学试卷
- 格式:pdf
- 大小:289.05 KB
- 文档页数:6
福建省莆田市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单项选择题(每小题2分,共12分) (共6题;共12分)1. (2分) (2018九上·瑞安月考) 与二次函数y=2x2+3形状相同的抛物线表达式为()A . y=1+ x2B . y=(2x+1)2C . y=(x﹣1)2D . y=2x22. (2分)一元二次方程x2=1的解是()A . x=1B . x=﹣1C . x1=1,x2=﹣1D . x=03. (2分) (2020八下·温州期中) 用配方法解一元二次方程x²-4x-2=0,下列变形正确的是()A . (x-4)²=-2+16B . (x-4)²=2+16C . (x-2) ²=-2+4D . (x-2)²=2+44. (2分)(2017·东莞模拟) 把抛物线y=x2+4先向左平移1个单位,再向下平移3个单位,得到的抛物线的解析式为()A . y=(x+1)2+1B . y=(x﹣1)2+1C . y=(x﹣1)2+7D . y=(x+1)2+75. (2分)(2011·玉林) 已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A . 第一、二、三象限B . 第二、三、四象限C . 第一、二、四象限D . 第一、三、四象限6. (2分) (2019九上·乌鲁木齐期末) 宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A . (180+x﹣20)(50﹣)=10890B . (x﹣20)(50﹣)=10890C . x(50﹣)﹣50×20=10890D . (x+180)(50﹣)﹣50×20=10890二、填空题(每小题3分,共24分) (共8题;共24分)7. (3分)(2018·泸县模拟) 关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是________.8. (3分) (2018九上·宁都期中) 将抛物线,绕着点旋转后,所得到的新抛物线的解析式是________.9. (3分) (2017九上·秦皇岛开学考) 二次三项式 4x2﹣(k+2)x+k﹣1 是完全平方式,则k=________.10. (3分) (2016九上·罗平开学考) 已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=________.11. (3分) (2018九上·上杭期中) 已知抛物线y=a(x+1)2 经过点,,则________ 填“ ”,“ ”,或“ ” .12. (3分) (2018九上·黄冈月考) 用长度一定的绳子围成一个矩形,如果矩形的一边长与面积满足函数关系式,则当矩形面积最大时,矩形的一条对角线长为________.13. (3分) (2019九上·台州开学考) 已知二次函数的图象如图所示,则点在第________象限.14. (3分)二次函数y=x2的图象如图,点A0位于坐标原点,点A1 , A2 ,A3…An在y轴的正半轴上,点B1 , B2 ,B3…Bn在二次函数位于第一象限的图象上,点C1 , C2 ,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1 ,四边形A1B2A2C2 ,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周长为________三、解答题(每小题5分,共20分) (共4题;共20分)15. (5分) (2020八下·滨江期末) 解一元二次方程:(1)(2)16. (5分) (2018九上·雅安期中) 解答下列各题:(1)解方程:(x+2)(x+3)=2x+16(2)已知a、b、c均为非零的实数,且满足,求的值.17. (5分) (2016九上·南充开学考) 已知二次函数的图象经过点A(3,0),B(2,﹣3),C(0,﹣3),求函数的关系式.18. (5.0分) (2016九上·绵阳期中) 解下列方程(1) x(x﹣3)+x﹣3=0(2) 4x2+12x+9=81.四、解答题(每小题7分,共28分) (共4题;共28分)19. (7分)关于x的一元二次方程,其根的判别式的值为1,求m的值及这个方程的根.20. (7.0分)已知二次函数y=2x2+4x-6.(1)将其化成y=a(x-h)2+k的形式;(2)写出开口方向,对称轴方程,顶点坐标;(3)求图象与两坐标轴的交点坐标;(4)画出函数图象;(5)说明其图象与抛物线y=x2的关系;(6)当x取何值时,y随x增大而减小;(7)当x取何值时,y>0,y=0,y<0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,-4<x<0;(10)求函数图象与两坐标轴交点所围成的三角形面积.21. (7.0分) (2019九上·芜湖月考) 某市特产大闸蟹,2016年的销售额是亿元,因生态优质美誉度高,销售额逐年增加2018年的销售额达亿元,若2017、2018年每年销售额增加的百分率都相同.(1)求平均每年销售额增加的百分率;(2)该市这3年大闸蟹的总销售额是多少亿元?22. (7分) (2019九上·宜昌期中) 空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图,求所利用旧墙AD的长;五、解答题(每小题8分,共16分) (共2题;共16分)23. (8分)(2016·德州) 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.24. (8.0分) (2016九上·无锡期末) 如图,在直角坐标平面内,直线y=-x+5与轴和轴分别交于A、B两点,二次函数y= +bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且 ABP的面积为10,求点P的坐标.六、解答题(每小题10分,共20分) (共2题;共20分)25. (10.0分) (2017九上·江北期中) 如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2 ,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.26. (10.0分)(2020·岐山模拟) 陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量及以下,终端水价为元/ .第二阶梯:年用水量(含),终端水价为元/ .第三阶梯:年用水量以上,终端水价为元/ .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为,应缴水费为(元).(1)写出该户居民2019年的年用水量为含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为元,则该户居民2019年的年用水量为多少.参考答案一、单项选择题(每小题2分,共12分) (共6题;共12分) 1-1、2-1、3-1、4-1、5-1、6-1、二、填空题(每小题3分,共24分) (共8题;共24分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题(每小题5分,共20分) (共4题;共20分)15-1、答案:略15-2、答案:略16-1、16-2、答案:略17-1、答案:略18-1、四、解答题(每小题7分,共28分) (共4题;共28分)19-1、答案:略20-1、20-2、20-3、20-4、20-5、20-6、20-7、20-8、20-9、20-10、答案:略21-1、答案:略22-1、答案:略五、解答题(每小题8分,共16分) (共2题;共16分) 23-1、答案:略23-2、23-3、答案:略24-1、24-2、答案:略24-3、答案:略六、解答题(每小题10分,共20分) (共2题;共20分) 25-1、答案:略25-2、答案:略26-1、答案:略26-2、答案:略。
福建省莆田市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分)(2017·淅川模拟) 从标有号数1到10的10张卡片中,随意抽取一张,其号数为3的倍数的概率是()A .B .C .D . 无法确定2. (3分)(2017九上·江津期末) 小明在做一道正确答案是2的计算题时,由于运算符号(“+”“-”“×”或“÷”)被墨迹污染,看见的算式是“4■2”,那么小明还能做对的概率是()A .B .C .D .3. (3分) (2020九下·西安月考) 已知二次函数y=ax2+bx+c(a≠0)的图像如图,则下列结论正确的是()A . abc<0B . b2-4ac<0C . a-b+c<0D . 2a+b=04. (3分)(2017·东兴模拟) 二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A . 4个B . 3个C . 2个D . 1个5. (3分)(2018·镇平模拟) 四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A .B .C .D .6. (3分)将某样本数据分析整理后分成8组,且组距为5,画频数分布折线图时,求得某组的组中值恰好为18.则该组是()A . 10.5~15.5B . 15.5~20.5C . 20.5~25.5D . 25.5~30.57. (3分) (2017九上·寿光期末) 甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A . 掷一枚正六面体的骰子,出现1点的概率B . 抛一枚硬币,出现正面的概率C . 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D . 任意写一个整数,它能被2整除的概率8. (3分)已知一元二次方程x2+bx﹣3=0的一根为﹣3,在二次函数y=x2+bx﹣3的图象上有三点(-,y1)、(-,y2)、(,y3),y1、y2、y3的大小关系是()A . y1<y2<y3B . y2<y1<y3C . y3<y1<y2D . y1<y3<y29. (3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a+bm<m(am+b)(m≠1);④(a+c)2<2;⑤a>.其中正确的是()A . ①⑤B . ①②⑤C . ②⑤D . ①③④10. (3分)如图在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y= x2﹣2交于A,B两点,且A点在y轴左侧,P点坐标为(0,﹣4),连接PA,PB.以下说法正确的是()①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=﹣时,BP2=BO•BA;④三角形PAB面积的最小值为.A . ③④B . ①②C . ②④D . ①④二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分)(2018·南宁模拟) 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有________粒.12. (4分) (2019九上·中原月考) 在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为 ________13. (4分)(2017·邓州模拟) 经过某十字路口的汽车,直行、向左转或向右转的可能性大小相同,则两辆汽车经过该十字路口都直行的概率为________.14. (4分) (2016九上·庆云期中) 已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x ﹣2)2﹣m的图象上,则y1 , y2 , y3的大小关系为________.15. (4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x 轴的另一个交点为(3,0);④abc>0.其中正确的结论是________ (填写序号).16. (4分)(2017·银川模拟) 如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是________.三、解答题(本大题共8小题,共66分) (共8题;共90分)17. (15分)(2017·瑞安模拟) 某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查人________ ,请在补全条形统计图并标出相应数据________ ;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列树状图或列表说明).18. (5分) (2017九上·沙河口期中) 已知 +3x+6是二次函数,求m的值,并判断此抛物线开口方向,写出顶点坐标及对称轴19. (5分) (2019九上·杭州月考) 如图所示,一个运动员推铅球,铅球在点处出手,出手时球离地面约.铅球落地点在处,铅球运行中在运动员前处(即)达到最高点,最高点高为.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?20. (5分) (2018九上·宁江期末) 从甲、乙、丙、丁4名选手中随机抽取两名选手参加乒乓球比赛,请用画树状图或列表的方法列出所有可能的结果,并求甲、乙两名选手恰好被抽到的概率.21. (15分)(2011·衢州) 研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?22. (15分)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)b的值及点D的坐标。
2018-2019学年福建省莆田市秀屿区秀山中学九年级(上)月考数学试卷(A卷)(12月份)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)若=,则的值为()A.1B.C.D.2.(4分)小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是()A.B.C.D.3.(4分)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB =8,则CD的长是()A.2B.3C.4D.54.(4分)如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°5.(4分)如图,AE,BD相交于点C,BA⊥AE于点A,ED⊥BD于点D.若AC=4,AB=3,CD=2,则CE的长是()A.1B.2C.1.5D.2.56.(4分)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是()A.6.4米B.7米C.8米D.9米7.(4分)如图,线段AB是⊙O的直径,点C、D为⊙O上的点,过点C作⊙O 的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于()A.20°B.25°C.30°D.40°8.(4分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于()A.B.C.D.9.(4分)半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:3 10.(4分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.1二、填空题(共6小题,每小题3分,共24分)11.(3分)已知圆O的半径是3cm,点O到直线l的距离为4cm,则圆O与直线l的位置关系是.12.(3分)已知正六边形的边长为2cm,则它的外接圆的半径为,它的内切圆的半径为.13.(3分)在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,要使△ABC与△DEF相似,则需添加的一个条件是(写出一种情况即可).14.(3分)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于度,扇形的面积是.(结果保留π)15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AD=3,BD=6,CD的长为.16.(3分)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是.三、解答题(共86分)17.(10分)如图所示,残缺的圆形轮片上,弦AB的垂直平分线CD交圆形轮片于点C,垂足为点D,若弦AB=8,CD=3,求圆形轮片所在圆的半径R.18.(10分)如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)用圆规和直尺在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC∽△BDC.19.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并写出C2的坐标.20.(8分)如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.21.(10分)如图,在▱ABCD中,E是BC边上一点.且BE=EC,BD,AE 相交于点F.(1)求△BEF的周长与△AFD的周长之比;(2)若△BEF的面积S△BEF =6cm2.求△AFD的面积S△AFD.22.(10分)如图,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线.(2)若⊙O的半径为2,求的长.23.(10分)如图,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及P A,PB的长.24.(10分)如图,在△ABC中,∠BAC=90°,BC的垂直平分线交BC于D,交AB于E,交CA的延长线于F.求证:AD2=DE•DF.25.(14分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.2018-2019学年福建省莆田市秀屿区秀山中学九年级(上)月考数学试卷(A卷)(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)若=,则的值为()A.1B.C.D.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选:D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.(4分)小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是()A.B.C.D.【分析】根据90°的圆周角所对的弦是直径进行判断.【解答】解:A、不是圆周角,故本选项不能判断;B、根据90°的圆周角所对的弦是直径,本选项符合;C、不是圆周角,故本选项不能判断;D、不是圆周角,故本选项不能判断.故选:B.【点评】此题考查了圆周角定理的推论,即检验半圆的方法,90°的圆周角所对的弦是直径,所对的弧是半圆.3.(4分)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB =8,则CD的长是()A.2B.3C.4D.5【分析】根据垂径定理由OC⊥AB得到AD=AB=4,再根据勾股定理可求出OD,然后用OC﹣OD即可得到DC.【解答】解:∵OC⊥AB,∴AD=BD=AB=×8=4,在Rt△OAD中,OA=5,AD=4,∴OD==3,∴CD=OC﹣OD=5﹣3=2.故选:A.【点评】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,勾股定理等知识,解题的关键是熟练掌握基本概念解决问题,属于基础题.4.(4分)如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°【分析】由AB是圆的直径,则∠ADB=90°,由圆周角定理知,∠ABD=∠ACD =15°,即可求∠BAD=90°﹣∠B=75°.【解答】解:连接BD,∵AB是圆的直径,∴∠ADB=90°,∴∠ABD=∠ACD=15°,∴∠BAD=90°﹣∠ABD=75°.故选:D.【点评】本题考查了直径对的圆周角定理是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(4分)如图,AE,BD相交于点C,BA⊥AE于点A,ED⊥BD于点D.若AC=4,AB=3,CD=2,则CE的长是()A.1B.2C.1.5D.2.5【分析】利用条件可证明△ABC∽△DEC,根据相似三角形的对应边成比例可求得CE.【解答】解:∵BA⊥AE于点A,ED⊥BD,∴∠A=∠D=90°,且∠ACB=∠DCE,∴△ABC∽△DEC,∴=,在Rt△ABC中,AC=4,AB=3,根据勾股定理得,BC=5,∴=,解得CE=2.5.故选:D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的对应边成比例是解题的关键,注意勾股定理的应用.6.(4分)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是()A.6.4米B.7米C.8米D.9米【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得,h=8米.故选:C.【点评】本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.7.(4分)如图,线段AB是⊙O的直径,点C、D为⊙O上的点,过点C作⊙O 的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于()A.20°B.25°C.30°D.40°【分析】连接OC,根据切线的性质可知∠OCE=90°,再由直角三角形的性质得出∠COE的度数,由圆周角定理即可得出结论.【解答】解:连接OC,∵CE是⊙O的切线,∴∠OCE=90°,∵∠E=50°,∴∠COE=90°﹣50°=40°,∴∠CDB=∠COE=20°.故选:A.【点评】本题考查的是切线的性质,熟知圆的切线垂直于经过切点的半径是解答此题的关键.8.(4分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于()A.B.C.D.【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD=1,DB=2,∴AB=AD+DB=3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=.故选:D.【点评】本题考查了三角形的判定和性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.9.(4分)半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:3【分析】从中心向边作垂线,构建直角三角形,通过解直角三角形可得.【解答】解:设圆的半径是r,则多边形的半径是r,则内接正三角形的边长是2r sin60°=r,内接正方形的边长是2r sin45°=r,正六边形的边长是r,因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比为::1.故选:B.【点评】正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.10.(4分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.1【分析】连接OD、OE,先设AD=x,再证明四边形ODCE是矩形,可得出OD =CE,OE=CD,从而得出CD=CE=4﹣x,BE=6﹣(4﹣x),可证明△AOD ∽OBE,再由比例式得出AD的长即可.【解答】解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴=,∴=,解得x=1.6,故选:B.【点评】本题考查了切线的性质.相似三角形的性质与判定,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形,证明三角形相似解决有关问题.二、填空题(共6小题,每小题3分,共24分)11.(3分)已知圆O的半径是3cm,点O到直线l的距离为4cm,则圆O与直线l的位置关系是相离.【分析】根据圆心O到直线l的距离大于半径即可判定直线l与⊙O的位置关系为相离.【解答】解:∵圆心O到直线l的距离是4cm,大于⊙O的半径为3cm,∴直线l与⊙O相离.故答案为:相离.【点评】此题考查了直线与圆的位置关系,根据圆心到直线的距离d与半径r的大小关系解答.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d >r,则直线与圆相离.12.(3分)已知正六边形的边长为2cm,则它的外接圆的半径为2cm,它的内切圆的半径为cm.【分析】利用正多边形的概念计算.【解答】解:长为2cm的正六边形可以分成六个边长为a的正三角形,而正多边形的内切圆的半径即为每个边长为a的正三角形的高,所以正多边形的内切圆的半径等于×2=cm,外接圆半径是2cm,内切圆半径是cm.故答案为:2cm;cm.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.13.(3分)在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,要使△ABC与△DEF相似,则需添加的一个条件是∠A=∠D或BC:EF=2:1(写出一种情况即可).【分析】因为两三角形三边对应成比例,那么这两个三角形就相似,从题目知道有两组个对应边的比为2:1,所以第三组也满足这个比例即可.【解答】解:则需添加的一个条件是:BC=2EF,且2<BC<14,1<EF<7.∵在△ABC中,AB=8,AC=6,在△DEF中,DE=4,DF=3,∴AB:DE=2:1,AC:DF=2:1,∵BC:EF=2:1.∴△ABC∽△DEF.则添加的条件可以为:①∠A=∠D或②BC:EF=2:1.故答案为:①∠A=∠D或②BC:EF=2:1.【点评】本题考查相似三角形的判定定理,关键知道两三角形三边对应成比例的话,两三角形相似.14.(3分)已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于120度,扇形的面积是3πcm2.(结果保留π)【分析】设扇形的圆心角的度数是n°,根据弧长公式即可列方程求得n的值,然后利用扇形的面积公式即可求得扇形的面积.【解答】解:设扇形的圆心角的度数是n°,则=2π,解得:n=120,扇形的面积是:=3π(cm2).故答案是:120,3πcm2.【点评】本题考查弧长公式和扇形的面积公式,正确记忆公式是关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AD=3,BD=6,CD的长为3.【分析】根据射影定理列式计算.【解答】解:由射影定理得,CD2=AD•BD=18,解得,CD=3,故答案为:3.【点评】本题考查的是射影定理,直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.16.(3分)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是2π﹣3.【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=求出扇形的面积,求差得到答案.【解答】解:∵正△ABC的边长为2,∴△ABC的面积为×2×=,扇形ABC的面积为=π,则图中阴影部分的面积=3×(π﹣)=2π﹣3,故答案为:2π﹣3.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=是解题的关键.三、解答题(共86分)17.(10分)如图所示,残缺的圆形轮片上,弦AB的垂直平分线CD交圆形轮片于点C,垂足为点D,若弦AB=8,CD=3,求圆形轮片所在圆的半径R.【分析】连接圆心与A,根据勾股定理即可求得半径.【解答】解:连接OA,∵CD是弦AB的垂直平分线,∴AD=AB=4,设圆的半径是r.在直角△ADO中,AO=r,AD=4,D0=r﹣3.根据勾股定理得,r2=16+(r﹣3)2,解得r=.【点评】本题考查的是垂径定理和勾股定理的应用,垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.18.(10分)如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)用圆规和直尺在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC∽△BDC.【分析】(1)利用基本作图作线段AB的垂直平分线;(2)先根据线段垂直平分线的性质得到BD=AD,则∠ABD=∠A=40°,再通过计算得到∠DBC=∠BAC,然后根据相似三角形的判定方法得到△ABC∽△BDC.【解答】(1)解:如图,DE为所求.(2)证明:∵DE是AB的垂直平分线,∴BD=AD.∴∠ABD=∠A=40°.∴∠DBC=∠ABC﹣∠ABD=80°﹣40°=40°.∴∠DBC=∠BAC.∵∠C=∠C,∴△ABC∽△BDC.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定.19.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并写出C2的坐标.【分析】(1)把A、B、C的纵坐标不变,横坐标都减去6可得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的横纵坐标分别乘以可得到A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,C2的坐标为(2,﹣2).【点评】本题考查了作作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接下来根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了平移变换.20.(8分)如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.【分析】求出∠A=∠BCE=∠E,即可得出AD=DE,从而判定等腰三角形.【解答】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.【点评】考查了圆内接四边形的性质、等腰三角形的判定的知识,属于基础题,相对比较简单.21.(10分)如图,在▱ABCD中,E是BC边上一点.且BE=EC,BD,AE 相交于点F.(1)求△BEF的周长与△AFD的周长之比;(2)若△BEF的面积S△BEF =6cm2.求△AFD的面积S△AFD.【分析】(1)先利用平行四边形的性质得AD=BC,AD∥BC,再利用BE=EC 得到BE=AD,接着证明△BEF∽△DAF,然后利用相似三角形的性质可得到△BEF的周长与△AFD的周长之比;(2)根据相似三角形的性质计算△AFD的面积.【解答】解:(1)∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∵BE=EC,∴BE =BC ,∴BE =AD ,∵AD ∥BE ,∴△BEF ∽△DAF ,∴△BEF 的周长:△AFD 的周长=BE :AD =1:3;(2)∵△BEF ∽△DAF ,∴△BEF 的面积:△AFD 的面积=12:32;∴S △AFD =9S △BEF =9×6=54(cm 2).【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在利用相似三角形的性质时主要利用相似比进行几何计算.也考查了平行四边形的性质.22.(10分)如图,已知CD 是⊙O 的直径,点A 为CD 延长线上一点,BC =AB ,∠CAB =30°.(1)求证:AB 是⊙O 的切线.(2)若⊙O 的半径为2,求的长.【分析】(1)连接OB ,如图所示,由BC =AB ,利用等边对等角得到一对角相等,由∠CAB 的度数得出∠ACB 的度数,再由OC =OB ,利用等边对等角得到一对角相等,确定出∠CBO 的度数,由∠AOB 为△BOC 的外角,利用外角的性质求出∠AOB 的度数,在△AOB 中,利用三角形的内角和定理求出∠ABO 为90°,可得出AB 为圆O 的切线,得证;(2)利用弧长公式求解.【解答】(1)证明:连接OB ,如图所示:∵BC=AB,∠CAB=30°,∴∠ACB=∠CAB=30°,又OC=OB,∴∠CBO=∠ACB=30°,∴∠AOB=∠CBO+∠ACB=60°,在△ABO中,∠CAB=30°,∠AOB=60°,可得∠ABO=90°,即AB⊥OB,则AB为圆O的切线;(2)∵OB=2,∠BOD=60°,∴的长度l=.【点评】此题考查了切线的判定,等腰三角形的性质,三角形的外角性质,以及弧长公式的运用,切线的判定方法有两种:有点连接,证明垂直;无点作垂线,证明垂线段等于半径.23.(10分)如图,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及P A,PB的长.【分析】(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证.(2)连接OP,根据切线长定理得直角三角形,运用三角函数求解.【解答】(1)证明:连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.(1分)∴∠AOB=180°﹣30°﹣30°=120°.(2分)∵P A切⊙O于点A,∴OA⊥P A,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°﹣90°﹣60°﹣120°=90°.(3分)∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(4分)(2)解:连接OP;∵P A、PB是⊙O的切线,∴P A=PB,∠OP A=∠OPB=∠APB=30°.(5分)在Rt△OAP中,∠OAP=90°,∠OP A=30°,∴OP=2OA=2×2=4,(6分)∴P A=.(7分)∵P A=PB,∠APB=60°,∴P A=PB=AB=2.(8分)(此题解法多样,请评卷老师按解题步骤给分)【点评】此题考查了切线的判定、切线长定理、三角函数等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(10分)如图,在△ABC中,∠BAC=90°,BC的垂直平分线交BC于D,交AB于E,交CA的延长线于F.求证:AD2=DE•DF.【分析】利用直角三角形的性质以及等角对等边得出∠B=∠DAB,∠B=∠D,进而得出△ADE∽△FDA,即可得出答案.【解答】解:∵∠BAC=90°,∴∠B+∠C=90°,∠D+∠C=90°,∴∠B=∠D,∵BC的垂直平分线交BC于点F,∠BAC=90°.∴DA=BD,∴∠B=∠BAD,∴∠F=∠BAD,∵∠EDA=∠ADF,∴△ADE∽△FDA.∴=.∴AD2=DE•DF.【点评】此题主要考查了相似三角形的判定与性质以及直角三角形的性质,根据已知得出∠EAB=∠D是解题关键.25.(14分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB ==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x,在Rt△EHB中,可得(5﹣x)2=x2+()2,解方程即可解决问题;【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB,∵EH⊥AB,∴∠EHB=∠CAB,∵∠EBH=∠CBA,∴△HBE∽△ABC.(2)连接AF.∵AB是直径,∴∠AFB=90°,∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2,∵=,∴∠EAF=∠EAH,∵EF⊥AF,EH⊥AB,∴EF=EH,∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x,在Rt△EHB中,(5﹣x)2=x2+()2,∴x=2,∴EH=2.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.。
2018-2019学年福建省莆田市秀屿区秀山中学九年级(上)月考数学试卷(B卷)(12月份)一、选择题(共10小题,每小题4分,满分40分)1.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm2.(4分)已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断3.(4分)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60°B.45°C.35°D.30°4.(4分)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm 5.(4分)如图,四边形ABCD内接于⊙O,若∠BOD=130.,则∠BCD的大小是()度.A.50B.130C.115D.1256.(4分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.(4分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.8.(4分)在下列语句中,叙述正确的个数为()①相等的圆周角所对弧相等;②同圆等圆中,同弦或等弦所对圆周角相等;③平分弦的直径垂直于弦;④等弧所对圆周角相等;⑤圆的内接平行四边形是矩形;A.1个B.2个C.3个D.4个9.(4分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺10.(4分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)一个正多边形的边长和其外接圆的半径都是2,则它的面积是.12.(4分)已知圆锥的母线长为6cm,侧面积为12πcm2,那么它的底面圆半径为cm.13.(4分)如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是.14.(4分)如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长AC 和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD =10mm,则零件的厚度x=mm.15.(4分)如图,△ABC中,∠C=90°,BC=8m,AB=10m,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动.若P、Q同时分别从B、C出发,经过秒,△CPQ∽△CBA.16.(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒1度的速度旋转,CP与量角器的半圆弧交于点E,第30秒时,点E在量角器上对应的读数是度.三、本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)解方程:2x2﹣7x+5=0.18.(8分)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.如图是一段管道,其中直管道部分AB的长为3000mm,弯形管道部分BC,CD 弧的半径都是1000mm,∠O=∠O′=90°,计算图中中心虚线的长度.19.(8分)如图,在Rt△ABC中,∠C=90°,BC=1,AC=2,以点B为圆心,BC长为半径画弧交AB于点D;以点A为圆心AD长为半径画弧,交AC于点E,保留作图痕迹,并求的值.20.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.65m,求路灯杆AB的高度.21.(9分)如图:已知在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE,直线CD与AE相交于点F.(1)求证:DC=AE;(2)求证:AD2=DC•DF.22.(9分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过1300台?23.(10分)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC 上.(1)若这个矩形是正方形,那么边长是多少?(2)当PQ的值为多少时,这个矩形面积最大,最大面积是多少?24.(12分)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O 于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.25.(14分)如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM•AN的最大值;(3)当M为BC中点时,求ME的长.2018-2019学年福建省莆田市秀屿区秀山中学九年级(上)月考数学试卷(B卷)(12月份)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.2.(4分)已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:r==2.5,∵d=5>2.5,点P在⊙O外,故选:C.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d <r时,点在圆内.3.(4分)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60°B.45°C.35°D.30°【分析】直接根据圆周角定理求解.【解答】解:连结OC,如图,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故选:D.【点评】本题考查了圆周角定理定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.(4分)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【分析】连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.(4分)如图,四边形ABCD内接于⊙O,若∠BOD=130.,则∠BCD的大小是()度.A.50B.130C.115D.125【分析】根据圆周角定理求出∠A的度数,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.【解答】解:∵弧BCD对的圆周角是∠A,圆心角是∠BOD,∠BOD=130°,∴∠A=∠BOD=65°,∵A、B、C、D四点共圆,∴∠A+∠BCD=180°,∴∠BCD=115°,故选:C.【点评】本题考查了圆周角定理,圆内接四边形的性质的应用,关键是求出∠A 的度数和得出∠A+∠BCD=180°.6.(4分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.(4分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.【点评】本题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键.8.(4分)在下列语句中,叙述正确的个数为()①相等的圆周角所对弧相等;②同圆等圆中,同弦或等弦所对圆周角相等;③平分弦的直径垂直于弦;④等弧所对圆周角相等;⑤圆的内接平行四边形是矩形;A.1个B.2个C.3个D.4个【分析】①等弧是针对于同圆或等圆来说的,它不适用于大小不等的圆,若没有条件“在同圆或等圆中”,相等的圆周角所对弧不一定相等,此没有为假命题;②同圆或等圆中,同弦或等弦所对圆周角不一定相等,可画出图形,举出反例说明此命题为假命题,如图所示;③根据垂径定理解答;④根据等弧所对圆周角相等正确.等弧是指在同圆或等圆.;⑤根据圆内四边形的性质和矩形的判定方法判断.【解答】解:①在同圆或等圆中,相等的圆周角所对弧相等,等弧是针对于同圆或等圆来说的,它不适用于大小不等的圆,此命题为假命题;②同圆或等圆中,同弦或等弦所对圆周角不一定相等,如图:BC为圆O的弦,∠A与∠D都为弦BC所对的圆周角,但是∠A与∠D互补,不一定相等,此命题为假命题;③平分弦的直径垂直弦,被平分的弦不是直径,错误;④等弧所对圆周角相等,此命题为真命题,本选项正确;⑤根据平行四边形的对角相等和圆内接四边形的对角互补,可得圆的内接四边形的两组对角都是直角,故此结论正确;故选:B.【点评】此题考查了圆周角定理,利用了数形结合及转化的思想,解答此类题时,常常要明白要说明一个命题为真命题必须经过严格的证明,要说明一个命题为假命题,只需举一个反例即可.9.(4分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.10.(4分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.【分析】连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a﹣x+b﹣x=c,求出x 即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OF A得出=,代入求出y即可.【解答】解:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OF A,∴=,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选:C.【点评】本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.二、填空题(共6小题,每小题4分,满分24分)11.(4分)一个正多边形的边长和其外接圆的半径都是2,则它的面积是6.【分析】首先根据正多边形的边长和其外接圆的半径相等得到该多边形的中心角的度数,从而确定正多边形的边数,然后利用正多边形的面积计算公式求得面积即可.【解答】解:∵正多边形的边长和其外接圆的半径都是2,∴相邻的两条的半径和一条边长构成一个等边三角形,∴中心角为60°,∴正多边形的边数为=6,∴其边心距为,∴面积=×2×6×=6,故答案为:6.【点评】本题考查了正多边形和圆的知识,解题的关键是根据边长等于半径确定中心角的度数,难度不大.12.(4分)已知圆锥的母线长为6cm,侧面积为12πcm2,那么它的底面圆半径为2cm.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的底面半径长为r,底面周长为C,则有12π=C×6,∴C =4π=2πr,∴r=2cm.故答案为:2.【点评】本题利用了圆的周长公式和扇形面积公式求解,难度较小,属于基础题.13.(4分)如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是3.【分析】由BC=AC知=,再根据AD∥BE∥CF知=,即=,解之可得.【解答】解:∵BC=AC,∴=,∵直线AD∥BE∥CF,∴=,即=解得:EF=3,故答案为:3.【点评】此题主要考查了平行线分线段成比例定理,关键是掌握三条平行线截两条直线,所得的对应线段成比例.14.(4分)如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长AC 和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD =10mm,则零件的厚度x= 2.5mm.【分析】要求零件的厚度,由题可知只需求出AB即可.因为CD和AB平行,可得△AOB∽△COD,可以根据相似三角形对应边成比例即可解答.【解答】解:∵两条尺长AC和BD相等,OC=OD∴OA=OB∵OC:OA=1:2∴OD:OB=OC:OA=1:2∵∠COD=∠AOB∴△AOB∽△COD∴CD:AB=OC:OA=1:2∵CD=10mm∴AB=20mm∴2x+20=25∴x=2.5mm.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出零件的内孔直径AB即可求得x的值.15.(4分)如图,△ABC中,∠C=90°,BC=8m,AB=10m,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动.若P、Q同时分别从B、C出发,经过 2.4秒,△CPQ∽△CBA.【分析】设经过t秒时,△CPQ∽△CBA,根据相似三角形的性质得到CP:CB =CQ:CA,解方程即可得到结论.【解答】解:设经过t秒时,△CPQ∽△CBA,∵如图,△ABC中,∠C=90°,BC=8m,AB=10m,∴由勾股定理求得:AC===6(m).∵△CPQ∽△CBA,∴CP:CB=CQ:CA,即(8﹣2t):8=t:6.∴t=2.4.故答案是:2.4.【点评】本题考查的是相似三角形的判定和性质,关键是知道哪些线段对应成比例时两个三角形相似.16.(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒1度的速度旋转,CP与量角器的半圆弧交于点E,第30秒时,点E在量角器上对应的读数是60度.【分析】首先连接OE,由∠ACB=90°,根据圆周角定理,可得点C在⊙O上,即可得∠EOA=2∠ECA,又由∠ECA的度数,继而求得答案.【解答】解:连接OE,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA,∵∠ECA=1×30°=30°,∴∠AOE=2∠ECA=2×30°=60°.故答案为:60.【点评】此题考查了圆周角定理,此题难度适中,解题的关键是证得点C在⊙O上,注意辅助线的作法,注意数形结合思想的应用.三、本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)解方程:2x2﹣7x+5=0.【分析】方程利用因式分解法求出解即可.【解答】解:分解因式得:(2x﹣5)(x﹣1)=0,可得2x﹣5=0或x﹣1=0,解得:x1=2.5,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.18.(8分)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.如图是一段管道,其中直管道部分AB的长为3000mm,弯形管道部分BC,CD 弧的半径都是1000mm,∠O=∠O′=90°,计算图中中心虚线的长度.【分析】先计算出扇形的弧长再加上直管道的长度3000即可.【解答】解:l===500π,中心虚线的长度为3000+500π×2=3000+1000π,答:中心虚线的长度为(3000+1000π)mm.【点评】此题主要考查了扇形的弧长公式,这个公式要牢记.弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).19.(8分)如图,在Rt△ABC中,∠C=90°,BC=1,AC=2,以点B为圆心,BC长为半径画弧交AB于点D;以点A为圆心AD长为半径画弧,交AC于点E,保留作图痕迹,并求的值.【分析】根据题意得出BD,AD的长,进而得出AE的长,即可得出答案.【解答】解:如图所示:由题意可得,BD=BC=1,∵∠C=90°,BC=1,AC=2,∴AB==,∴AE=AD=﹣1,∴=.【点评】此题主要考查了复杂作图以及勾股定理,正确得出AE的长是解题关键.20.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.65m,求路灯杆AB的高度.【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【解答】解:∵CD∥EF∥AB,∴△CDF∽△ABF,△ABG∽△EFG,∴=,=,又∵CD=EF,∴=,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴=,∴BD=9,BF=9+3=12,∴AB=6.6m.【点评】本题考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.21.(9分)如图:已知在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE,直线CD与AE相交于点F.(1)求证:DC=AE;(2)求证:AD2=DC•DF.【分析】(1)利用“SAS”证明△DBC≌△ECA即可;(2)由△DBC≌△ECA可知∠E=∠D,根据外角定理可知∠AFC=∠E+∠FCE =∠D+∠BCD=∠ABC=60°,可证△DCA∽△DAF,利用相似比得出结论.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,BC=CA(2分)∴∠DBC=∠ECA=180°﹣60°=120°(1分)在△DBC与△ECA中∴△DBC≌△ECA(SAS)(2分)∴DC=AE;(1分)(2)∵△DBC≌△ECA,∴∠DCB=∠EAC(1分)又∠ACB=∠BAC∴∠DCA=∠DAF(1分)又∠D=∠D∴△DCA∽△DAF(2分)∴(1分)∴AD2=DC•DF.(1分)【点评】本题考查了全等三角形、相似三角形的判定与性质.关键是根据等边三角形的性质找角相等的条件.22.(9分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过1300台?【分析】设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x的值,并且3轮后共有(1+x)3台被感染,比较该数同1300的大小,即可作出判断.【解答】解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=121,整理得(1+x)2=121,则x+1=11或x+1=﹣11,解得x1=10,x2=﹣12(舍去),则(1+x)2+x(1+x)2=(1+x)3=(1+10)3=1331>1300.答:每轮感染中平均每一台电脑会感染10台电脑,3轮感染后,被感染的电脑会超过1300台.【点评】本题考查了一元二次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.23.(10分)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC 上.(1)若这个矩形是正方形,那么边长是多少?(2)当PQ的值为多少时,这个矩形面积最大,最大面积是多少?【分析】(1)根据正方形的性质PQ∥BC,根据相似三角形的性质得到比例关系式,代入数据求解即可;(2)设PQ=x根据比例式得到PN=80﹣x,根据矩形的面积公式即可得到结论.【解答】解:(1)设边长为xmm,∵矩形为正方形,∴PQ∥BC,∴△APQ∽△ABC,∵AD⊥BC,∴AD⊥PQ,∴=,∴=,解得PQ=48;答:若这个矩形是正方形,那么边长是48mm;(2)设PQ=x∵=,∴=,∴PN=80﹣x,∴S=x(80﹣x)=﹣x2+80x=﹣(x﹣60)2+2400,四边形PQMN的最大值=2400mm2.当PQ=60时,S四边形PQMN【点评】本题考查了相似三角形的应用,正方形的性质,结合了平行线的比例关系求解,注意数形结合的运用.24.(12分)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O 于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【分析】(1)连接OC,由C是的中点,AB是⊙O的直径,则CO⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.【解答】(1)证明:连接OC,∵C是的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.【点评】本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.25.(14分)如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM•AN的最大值;(3)当M为BC中点时,求ME的长.【分析】(1)根据矩形的性质和平行线的性质证明即可;(2)作NH⊥AM于H,证明△NAH∽△AMB,根据相似三角形的性质得到AN•BM=AM2,根据勾股定理计算即可;(3)由(2)的结论,结合相似三角形的性质求出CE,根据勾股定理计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,又∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)解:作NH⊥AM于H,∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠AMN=∠AMB,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,在Rt△AMB中,AM2=AB2+BM2=9+BM2,∵BM≤2,∴9+BM2≤13,∴AN•BM≤,即当BM=2时,BM•AN的最大值为;(3)解:∵M为BC中点,∴BM=CM=BC=1,由(2)得,AN•BM=AM2,∵AM2=32+12=10,∴AN=5,∴DN=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴=,即=,解得,x=,即DE=,∴CE=,∴ME==.【点评】本题考查的是相似三角形的判定和性质、勾股定理的应用以及等腰三角形的性质和矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键,注意方程思想的正确运用.。
2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](word版可编辑修改)2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](word版可编辑修改编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容望(2018-2019年人教版九年级上册数学第一次月考试卷及答案[1](word版可编辑修改))的内容能够给您议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为201 [1](word版可编辑修改)的全部内容。
--环县虎洞镇初级中学九年级上第二次月考数学试卷一、选择题(每题3 分,共 24 分)1.已知关于x的一元二次方程x22x a有两个相等的实数根,则 a 的值是()A. 4B .- 4 C . 1 D .- 12.如果x2x 10 ,那么代数式 x3 2 x27 的值是()A 、 6B 、8C、 -6D、—83.如图, 抛物线y ax 2bx c(a0)的对称轴是直线x=1,且经过点 P( 3,0),则abc的值为()--A. 4B. 3C. 2D. 17.在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是--支球队参赛,根据题意列出的方程是________________________________ .10.如图,二次函数yax2bx c 的图象开口向上,图象经过点(-1, 2)和( 1, 0),且与 y 轴相交于负半轴.给出四个结论:①abc 0 ;② 2a b 0 ;③ a c 1;④ a 1 ,其中正确结论的序号是 ___________----15.若二次函数 y 2x 2的图象向左平移 2 个单位长度后, 得到函数 y 2(xh)2 的图象, 则 h=三、解答题(共 55 分)x 1 3x ( )3 12x11( )16.当满足条件x( x 4) (x 时,求出方程4) 22317.关于 x 的方程 x 2- 2x + k - 1= 0 有两个不等的实数根.(1)求 k 的取值范围; ( 2)若 k + 1 是方程 x 2-2x + k -1= 418.解下列方程( 1)( 2x - 1) 2— 25 = 0 ; ( 2) y 2=2 x 4 0的根21.为落实国务院房地产调控政策,使“居者有其屋".某市加快了廉租房的建设力度,2013年市政府共投资 3 亿元人民币建设了廉租房12 万平租( 3) x( x +3 ) = 2— x .房,若在这两年--( 1)求( 2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.19.先化简,再求值:(+2﹣x)÷,其中 x 满足 x2﹣4x+3=0.20.已知关于 x 的一元二次方程x22k 1 x k2k0 .( 1)求证:方程有两个不相等的实数根;----参考答案1. D【解析】试题分析:根据题意得: 4- 4×1×(- a ) =0,解得: a=- 1. 考点:根的判别式. 2. C【解析】此题考查代数式的化简和求值、考查整体代换思想的应用;由已知 得 到 x 2x 1 , 所 以7. C .【解析】试题分析:函数值y=所以,两个同一点,故由 A 、C 选向向上,所以, a > 所以,一次 限,所以, A3232 222x 2 x7 xxx7( x x ) 故选 C .x 7 x,所以选 C ;此题不易把方程解出后代入求值, 因为次方程的根是无理数,且出现 3 次方的计算,比较麻烦;3. A. 【解析】试 题 分 析 : 因 为 抛 物 线y ax 2bx c (a 0) 的对称轴是 直线 x=1,且经过点 P ( 3, 0),所以 根据对称性得抛物线与 x 轴的另一个 交 点 是 ( —1,0 ) , 代入y ax 2bx c(a 0)得a b c =0,故选: A.考点:抛物线对称性 . 4. B【解析】试题分析:由图象的位置可设解析式为 y=a [x —(—1)](x —3) ,将( 0,—3 )代 入得,—3=a [0-(-1)](0—3) ,解得 a=1,所以解析式为 y=( x+1)(x-3)=x 2﹣2x﹣故考 5. 【 试边完合方配=5故考法6.【试点由--x||y |=6入,得 x ( —x+5 ) =± 6,22,则 x -5x+6=0 或 x —5x —6=0 ∴每个方程有两个不相等的实数根 故选 A .考点:一次函数综合题.考点: 1。
2018-2019学年福建省莆田市秀屿区秀山中学九年级(上)月考数学试卷(B卷)(12月份)一、选择题(共10小题,每小题4分,满分40分)1.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm 和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm2.(4分)已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断3.(4分)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC 的度数是()A.60°B.45°C.35°D.30°4.(4分)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm5.(4分)如图,四边形ABCD内接于⊙O,若∠BOD=130°,则∠BCD的大小是()度.A.50B.130C.115D.1256.(4分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.(4分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.8.(4分)在下列语句中,叙述正确的个数为()①相等的圆周角所对弧相等;②同圆等圆中,同弦或等弦所对圆周角相等;③平分弦的直径垂直于弦;④等弧所对圆周角相等;⑤圆的内接平行四边形是矩形;A.1个B.2个C.3个D.4个9.(4分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺10.(4分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)一个正多边形的边长和其外接圆的半径都是2,则它的面积是.12.(4分)已知圆锥的母线长为6cm,侧面积为12πcm2,那么它的底面圆半径为cm.13.(4分)如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是.14.(4分)如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC:OA=1:2,量得CD=10mm,则零件的厚度x=mm.15.(4分)如图,△ABC中,∠C=90°,BC=8m,AB=10m,点P从B点出发,沿BC 方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动.若P、Q同时分别从B、C出发,经过秒,△CPQ∽△CBA.16.(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒1度的速度旋转,CP 与量角器的半圆弧交于点E,第30秒时,点E在量角器上对应的读数是度.三、本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)解方程:2x2﹣7x+5=0.18.(8分)制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.如图是一段管道,其中直管道部分AB的长为3000mm,弯形管道部分BC,CD弧的半径都是1000mm,∠O=∠O′=90°,计算图中中心虚线的长度.19.(8分)如图,在Rt△ABC中,∠C=90°,BC=1,AC=2,以点B为圆心,BC长为半径画弧交AB于点D;以点A为圆心AD长为半径画弧,交AC于点E,保留作图痕迹,并求的值.20.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.65m,求路灯杆AB的高度.21.(9分)如图:已知在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE,直线CD与AE相交于点F.(1)求证:DC=AE;(2)求证:AD2=DC•DF.22.(9分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过1300台?23.(10分)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)当PQ的值为多少时,这个矩形面积最大,最大面积是多少?24.(12分)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.25.(14分)如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN =∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM•AN的最大值;(3)当M为BC中点时,求ME的长.2018-2019学年福建省莆田市秀屿区秀山中学九年级(上)月考数学试卷(B卷)(12月份)参考答案一、选择题(共10小题,每小题4分,满分40分)1.C;2.C;3.D;4.A;5.C;6.C;7.B;8.B;9.B;10.C;二、填空题(共6小题,每小题4分,满分24分)11.6;12.2;13.3;14.2.5;15.2.4;16.60;三、本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.;18.;19.;20.;21.;22.;23.;24.;25.;。
2018年莆田XX中学九年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每小题4分,共32分)1.在:-1,0,2,2四个数中,最大的数是()A.-1B.0C.2D.22.如图是由5个完全相同的小正方体组合成一个立体图形,,它的左视图是3.大量事实证明,环境污染治理刻不容缓,全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万吨用科学记数法表示为()A.142×103B.14.2×104C.1.42×105D.0.142×1044.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE5.下列计算正确的是()A.a3÷a2=aB.( - 2a2 )3=8a6C.2a2 +a2 =3a4D.( a - b )2=a2 - b26.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率7.抛物线y=(x﹣1)2+2的顶点坐标是()A.(-1,2)B.(-1,- 2)C.(1,-2)D.(1,2)8.如图,矩形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点F的运动时间为t秒,当t的值为()秒时,△ABP和△DCE全等。
A.1 B.1或3 C.1或7 D.3或7二、填空题(本大题共8小题,每小题4分,共32分)9.方程(x﹣5)2=0的根是.10.抛物线y=﹣x2+15有最点,其坐标是.11.关于x的方程是(m2﹣1)x2+(m﹣1)x﹣2=0,那么当m时,方程为一元二次方程;当m时,方程为一元一次方程.12.已知x=1是关于x的一元二次方程2x2+kx﹣1=0的一个根,则实数k的值是.13.方程(x﹣1)(2x+1)=2化成一般形式是,它的二次项系数是.一次项是.14.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.15.把y=2x2﹣6x+4配方成y=a(x﹣h)2+k的形式是.16.已知二次函数y=(x﹣2a)2+(a﹣1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=﹣1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y=.三、解答题(共9小题,满分0分)17.方程x2﹣4=0的解是.18.解方程:x(x+1)=2x.19.解方程:x2+10x+9=0.20.(x+3)2=(1﹣2x)2.21.已知抛物线的顶点(﹣1,﹣2)且图象经过(1,10),求此抛物线解析式.22.二次函数y=ax2+bx+c的对称轴为x=3,最小值为﹣2,且过(0,1),求此函数的解析式.23.如图,点P是抛物线y=x2上位于第一象限内一点,点A(3,0),设点P的坐标为(x,y).(1)求△AOP的面积S与y的关系式;(2)S是y的什么函数?S是x的什么函数?24.已知一次函数y=ax+b的图象上有两点A、B,它们的横坐标分别是3,﹣1,若二次函数y=x2的图象经过A、B两点.(1)请求出一次函数的表达式;(2)设二次函数的顶点为C,求△ABC的面积.25.已知二次函数y=ax2+bx+c的图象过点(2,0)且与直线相交于B、C两点,点B在x轴上,点C在y轴上.(1)求二次函数的解析式.(2)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量的取值范围.(3)是否存在这样的点P,使PO=AO?若存在,求出点P的坐标;若不存在,请说明理由.2018年福建省莆田XX中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分)1.在:-1,0,2,2四个数中,最大的数是()A.-1B.0C.2D.2【考点】实数大小比较【试题解析】正数比0和负数大,所以在C和D中选,≈1.414<2,所以选C【答案】C2.如图是由5个完全相同的小正方体组合成一个立体图形,,它的左视图是【考点】几何体的三视图【试题解析】左视图就是从立体图形左边看到的平面图形,所以选B【答案】B3.大量事实证明,环境污染治理刻不容缓,全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万吨用科学记数法表示为()A.142×103B.14.2×104C.1.42×105D.0.142×104【考点】科学记数法和近似数、有效数字【试题解析】14.2万=142000=【答案】C4.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【考点】平行线的判定及性质【试题解析】根据平行线判定条件,内错角相等,两直线平行,选D【答案】D5.下列计算正确的是()A.a3÷a2=aB.( - 2a2 )3=8a6C.2a2 +a2 =3a4D.( a - b )2=a2 - b2【考点】幂的运算【试题解析】同底数幂乘或者除,底数不变,指数相加减,所以选A【答案】A6.在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率【考点】数据的收集与整理【试题解析】采用普查方式,一般是调查对象比较少,而且不是像灯泡一样是损耗的,所以选B【答案】B8.抛物线y=(x﹣1)2+2的顶点坐标是()A.(-1,2)B.(-1,- 2)C.(1,-2)D.(1,2)【考点】二次函数的图像及其性质【试题解析】根据二次函数的顶点式,二次函数的顶点坐标是(1,2),选D【答案】D8.如图,矩形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点F的运动时间为t秒,当t的值为()秒时,△ABP和△DCE全等。
福建省莆田市九年级上册第一次月考数学试题一、选择题(共10题,每小题4分) 1、下列关系式中,属于二次函数的是( )A.281x y = B.12+=x y C.21xy = D.x x y -=32、若关于x 的方程2320ax x --=是一元二次方程,则( )A .1a >B .0a ≠C .1a =D .0a =3、对于函数2(2)9y x =+-,下列结论错误的是( ) A .图象顶点是(2,9)--B .图象开口向上C .图象关于直线2x =-对称D .函数最大值为9-4、一元二次方程x 2+2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5、 用配方法解一元二次方程2680x x -+=时,则方程变形正确的是( ) A .2(3)17x -=B .2(3)17x +=C .2(3)1x -=D .2(3)1x +=6、将抛物线y =x 2﹣1向左平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ) A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-1D .y =(x +2)2﹣17、若A ()、,15y -B ()、,23y -C ()35y ,为二次函数()922+--=x y 的图象上的三点,则321y y y 、、的大小关系是( )A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y <<8、若方程()200ax bx c a ++=≠中,,,a b c 满足0a b c ++=和0a b c -+=,则方程的根是() A .1,0B .1-,0C .1,1-D .无法确定9、抛物线2y ax bx c =++的部分图像如图,则下列说法:①0abc >; ②20b a +=;③24b ac >;④3a b c ++<-,正确的是( ) A .①② B .①②③ C .①②④ D .①②③④10、定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a ﹣b +c =0,那么我们称这个方程为“蝴蝶”方程.已知关于x 的方程ax 2+bx +c =0(a ≠0)是“蝴蝶”(第9题方程,且有两个相等的实数根,则下列结论中正确的是( ) A .b =cB .a =bC .a =cD .a =b =c二、填空题(共6题,每小题4分)11、抛物线1322-+=x x y 的对称轴是 。
莆田市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·盘龙模拟) 某商品房原价12000元/m2 ,经过连续兩次降价后,现价10800元/m2 ,求平均每次降价的百分率.若设平均每次降价的百分率为x,依题意可列方程为()A .B .C .D .2. (2分)(2013·钦州) 关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A . m<3B . m≤3C . m>3D . m≥33. (2分)校门口一文具店把一个足球按进价提高80%为标价,然后再按7折也售,这样每卖出一个足可盈利6.5元。
设一个足球进价为元,根据题可以列一元一次方程,正确的是()A .B .C .D .4. (2分)方程有增根,则增根是()A . 1B . -1C . ±1D . 05. (2分)方程2x-1=0的解是()A .B .C . 2D . -26. (2分) (2017七下·金山期中) 已知:a>b,则下列不等式一定成立的是()A . a+4<b+4B . 2a<2bC . ﹣2a<﹣2bD . a﹣b<07. (2分) (2017八上·林甸期末) 如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .8. (2分)设一元二次方程(x﹣1)(x﹣2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()A . 1<α<β<2B . 1<α<2<βC . α<1<β<2D . α<1且β>29. (2分)(2019·长沙模拟) 二次函数y=x2﹣6x+8的图象与一次函数y=2x+b的图象有公共点,则实数b 的取值范围是()A . b>8B . b>﹣8C . b≥8D . b≥﹣810. (2分) (2018九上·黄冈月考) 如图,在同一直角坐标系中,一次函数和二次函数的图象大致为()A .B .C .D .二、填空题 (共10题;共10分)11. (1分)(2017·南山模拟) 某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为________元.12. (1分) (2018七上·松滋期末) 设 =x,由 =0.777…可知,10x=7.777…,所以10x-x=7.解方程x= .于是,得 = .则无限循环小数化成分数等于________.13. (1分)(2017·诸城模拟) 已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为________.14. (1分) (2016七上·乳山期末) 已知点P的坐标为(1+a,2a﹣2),且点P到两坐标轴的距离相等,则a 的值是________.15. (1分)二次函数的图象如图,若一元二次方程ax2+bx+m=0有实数根,则的最大值为________.16. (1分)(2018·江苏模拟) 已知一元二次方程有两个实数根、,直线l经过点、,则直线l不经过第________象限.17. (1分)已知P(1﹣3a,a﹣2)在第三象限,则a的取值范围是________.18. (1分)如图,点A的坐标为(﹣4,0),直线y= x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为________.19. (1分) (2019九上·邯郸开学考) 二次函数的图像开口向下,则m的值为________.20. (1分)(2020·防城港模拟) 有七张正面分别标有数字-3,-2,-1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于的一元二次方程有两个不相等的实数根,且以x为自变量的二次函数的图象不经过点(1,0)的概率是________.三、解答题 (共6题;共51分)21. (10分)(2018·济南)(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.22. (10分)(2020·松滋模拟)(1)已知反比例函数y=,当x=1时,y=3;试先求k值;(2)解关于t的方程. .23. (10分) (2018九上·黄冈月考) 已知关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根x1、x2.(1)求实数k的取值范围.(2)若方程的两实数根,满足,求的值.24. (6分) (2018九上·黄冈月考) 某汽车销售公司月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出部汽车,则该部汽车的进价为万元,每多售出部,所有售出的汽车的进价均降低万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在部以内(含部),每部返利万元;销售量在部以上,每部返利万元.(1)若该公司当月售出部汽车,则每部汽车的进价为________万元;(2)如果汽车的售价为万元/部,该公司计划当月盈利万元,那么需要售出多少部汽车?(盈利销售利润+返利)25. (5分) (2018九上·黄冈月考) 已知抛物线经过点,另有一点,若点在抛物线的对称轴上,且的值最小,求点的坐标.26. (10分) (2018九上·黄冈月考) 如图,抛物线与直线在第一象限内有一交点.(1)你能求出点的坐标吗?(2)在轴上是否存在一点,使为等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共51分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、26-1、26-2、。
福建省莆田市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·贵港模拟) 若一元二次方程的两个根分别为,则的值为()A . -4B . -2C . 0D . 12. (2分) (2019九上·柳江月考) 方程x(x+2)=0的解是()A . x=0B . x=2C . x=0或x=2D . x=0或x=-23. (2分) (2019九上·鱼台期末) 如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40。
,则∠C的度数是()A . 100°B . 80°C . 50°D . 40°4. (2分)(2017·贺州) 如图,在⊙O中,AB是⊙O的直径,AB=10, = = ,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A . 1B . 2C . 3D . 45. (2分) (2018九上·天台月考) 如图,AB是⊙O的直径,弦CD⊥AB于点E , OC=5cm,CD=8cm,则AE 的长为()A . 8cmB . 5cmC . 3cmD . 2cm6. (2分)(2016·重庆B) 如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A . 18 ﹣9πB . 18﹣3πC . 9 ﹣D . 18 ﹣3π7. (2分) (2017·道外模拟) 某种商品零售价经过两次降价后,价格为降价前的64%,则平均每次降价()A . 10%B . 19%C . 9.5%D . 20%8. (2分) (2019九上·川汇期中) 获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为()A . 8(1+x)2=97B . 97(1﹣x)2=8C . 8(1+2x)=97D . 8(1+x2)=979. (2分)已知圆锥侧面积为10πcm2 ,侧面展开图的圆心角为36º,圆锥的母线长为()A . 100cmB . 10cmC . cmD . cm10. (2分)过A(﹣5,﹣4)和B(﹣5,4)两点的直线一定()A . 垂直于x轴B . 与x轴相交但不平行于x轴C . 平行于x轴D . 与x轴、y轴都不平行二、填空题 (共8题;共12分)11. (1分) (2016九上·黑龙江月考) 方程x2﹣3x+2=0的根是________.12. (1分)若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是________ .13. (1分)关于x的一元二次方程x2+(m2+4m)x+m2﹣m﹣1=0的两根互为相反数,则m=________ .14. (2分)(2020·营口模拟) 如图,△ABC内接于⊙O,∠C=45°,AB=6,则⊙O的半径为________ .15. (2分) (2018九上·通州期末) 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,已知 .求作:的角平分线 .小霞的作法如下:①如图,在平面内任取一点;②以点为圆心,为半径作圆,交射线于点,交射线于点;③连接,过点作射线垂直线段,交⊙ 于点;④连接 .所以射线为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是________.16. (2分)(2018·滨湖模拟) 若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2 .17. (1分)(2016·遵义) 已知x1 , x2是一元二次方程x2﹣2x﹣1=0的两根,则 =________18. (2分)如图,在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同的速度在直线DC、CB 上移动,连接AE和DF交于P,若AD=6,则线段CP的最小值为________.三、解答题 (共10题;共44分)19. (10分) (2020九上·台州月考) 解方程(1) 2x2-4x=-1(2)(x2+1)2-2x2-5=020. (2分) (2020八下·长沙期末) 解方程:.21. (10分) (2019九上·江都期末) 已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.22. (2分) (2020九下·云南月考) 如图,AB是半圆的直径,O为圆心,点C是弧BE的中点,过点C作PC⊥AE 于点D,交AB的延长线于点P(1)求证:直线PC是⊙O的切线;(2)若∠P=30°,AD=3,求阴影部分的面积.23. (2分)(2020八下·铁东期中) 如图,在四边形中,交于点分别为垂足, .(1)求证:试判断四边形形状,并说明理由;(2)如果,求BC.24. (2分) (2018八上·兰州期末) 如图,,,点在轴上,且 .(1)求点的坐标,并画出 ;(2)求的面积;(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.25. (10分) (2015八下·萧山期中) 如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)铺设地面所用瓷砖的总块数为________(用含n的代数式表示,n表示第n个图形);(2)按上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.26. (2分)如图,在正方形ABCD中,AB=4,E为BC上一点,F为CD上一点,且AE=AF.设△AEF的面积为y,CE=x.(1)求y关于x的函数表达式.(2)当△AEF为正三角形时,求△AEF的面积.27. (2分) (2019八下·孝义期中) 综合与实践数学活动课上,小红画了如图1所示的两个共用直角顶点的等腰直角三角形与等腰直角三角形,其中,,连接,、、分别为边、、的中点,连接、 .(1)操作发现:小红发现了:、有一定的关系,数量关系为________;位置关系为________.(2)类比思考:如图2,在图1的基础上,将等腰直角三角形绕点旋转一定的角度,其它条件都不变,小红发现的结论还成立吗?请说明理由.(提示:连接、并延长交于一点)深入探究:在上述类比思考的基础上,小红做了进一步的探究.如图3,作任意一个三角形,其中,在三角形外侧以为腰作等腰直角三角形,以为腰作等腰直角三角形,分别取斜边、与边的中点、、,连接、、,试判断三角形的形状,并说明理由.28. (2分) (2018九上·桐梓月考) 如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)若CD ﹦6, AC ﹦8,求⊙O的半径(2)求证:CF﹦BF;参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共12分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共44分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、。
2018-2019学年福建省莆田市秀屿区湖东学校九年级(上)第一
次月考数学试卷
一、选择题(每小题4分,共40分)
1.(4分)一元二次方程x2﹣x﹣2=0的解是()
A.x1=1,x2=2B.x1=1,x2=﹣2
C.x1=﹣1,x2=﹣2D.x1=﹣1,x2=2
2.(4分)一元二次方程x2﹣6x﹣5=0配方后可变形为()
A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4 3.(4分)在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()
A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣2 4.(4分)已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定
5.(4分)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A.B.
C.D.
6.(4分)下列方程有两个相等的实数根的是()
A.x2+x+1=0B.4x2+2x+1=0
C.x2+12x+36=0D.x2+x﹣2=0
7.(4分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()
A.B.﹣C.4D.﹣1
8.(4分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一
边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()
A.7m B.8m C.9m D.10m
9.(4分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE =BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()
A.B.
C.D.
10.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()
A.abc>0B.a+b=0C.2b+c>0D.4a十c<2b 二.填空题(每题4分,共24分)
11.(4分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.
12.(4分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).
13.(4分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.
14.(4分)若函数y=a(x﹣h)2+k的图象经过原点,最小值为﹣8且形状与抛物线y=﹣2x2﹣2x+3相同,则此函数关系式.
15.(4分)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n =.
16.(4分)设A、B、C三点依次分别是抛物线y=x2﹣2x﹣5与y轴的交点以及与x轴的两个交点,则△ABC的面积是.
三、解答题(共9小题,满分86分)
17.(10分)解方程.
(1)解方程:2y2+4y=y+2.
(2)解方程:2(x﹣3)2=x2﹣9.
18.(10分)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).
19.(8分)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.
20.(10分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600cm,炮弹运行的最大高度为1200m.
(l)求此抛物线的解析式;
(2)若在A、B之间距离A点500m处有一高350m的障碍物,计算炮弹能否越过障碍物.21.(8分)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等(1)求二次函数的解析式,并作图象;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值.
22.(10分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
23.(8分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?
并求出最大利润.
24.(10分)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
25.(12分)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.
(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD 的形状;
(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
2018-2019学年福建省莆田市秀屿区湖东学校九年级
(上)第一次月考数学试卷
参考答案
一、选择题(每小题4分,共40分)
1.D;2.A;3.B;4.A;5.C;6.C;7.A;8.A;9.B;10.D;二.填空题(每题4分,共24分)
11.3;﹣4;12.>;13.4;3;14.y=2x2+8x或y=2x2﹣8x;15.2016;16.5;
三、解答题(共9小题,满分86分)
17.;18.;19.;20.;21.;22.;23.;
24.;25.;。