24定积分基本定理
- 格式:doc
- 大小:165.01 KB
- 文档页数:6
定积分、微积分基本定理
【定积分】
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积.即由y=0,x=a,x=b,y=f(X)所围成图形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个
面积,是一个数.
定积分的求法:
求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.
【微积分基本定理】
在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.
其中,微积分的核心(基本)定理是,其中F′(x)=f (x),而f(x)必须在区间(a,b)内连续.
例1:定积分=
解:
∫12|3﹣2x|dx
=+
=(3x﹣x2)|+(x2﹣3x)|
=
通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有dx;第二,每一段
对应的被积分函数的表达式要与定义域相对应;第三,求出原函数代入求解.
例2:用定积分的几何意义,则.
解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,
故==.
这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.
【考查】
定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.。
定积分基本定理定积分基本定理是微积分中的一条重要定理,它建立了定积分与不定积分之间的关系,为我们求解定积分提供了重要的方法和技巧。
本文将围绕定积分基本定理展开,介绍其基本概念、定理表述及应用。
一、定积分基本概念定积分是微积分中的一个概念,它可以用来计算曲线下面的面积。
给定一个函数f(x),在闭区间[a, b]上,我们可以将其曲线下方的面积进行划分,然后通过无限分割与极限的方法求得最终的结果。
这个最终结果就是定积分。
二、定积分基本定理的表述定积分基本定理是指:如果函数f(x)在[a, b]上连续,那么它的一个原函数F(x)在[a, b]上就是一个定积分。
即∫[a, b]f(x)dx = F(b) - F(a)。
这个定理表明,如果函数f(x)在闭区间[a, b]上连续,那么它的一个原函数F(x)在[a, b]上的定积分等于F(x)在区间端点处的值之差。
三、定积分基本定理的应用定积分基本定理在实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 几何意义:定积分可以用来计算曲线下方的面积。
例如,我们可以利用定积分来计算一个曲线所围成的封闭区域的面积。
2. 物理应用:定积分可以用来计算物理问题中的质量、体积、功等。
例如,我们可以利用定积分来计算一个物体的质量,或者计算一个力的作用所做的功。
3. 统计学应用:定积分可以用来计算统计学中的概率密度函数下的概率。
例如,我们可以利用定积分来计算某个随机变量在一定范围内取值的概率。
4. 经济学应用:定积分可以用来计算经济学中的总收益、总成本等。
例如,我们可以利用定积分来计算某个企业在一定时间内的总收益。
5. 工程应用:定积分可以用来计算工程问题中的功率、能量等。
例如,我们可以利用定积分来计算电路中的功率,或者计算流体中的能量损失。
定积分基本定理为我们求解定积分问题提供了一种简便的方法。
通过找到原函数,我们可以将定积分转化为不定积分,从而利用不定积分的方法求解。
定积分公式大全24个在微积分中,定积分是一个非常重要的概念,它在数学和物理学等领域有着广泛的应用。
定积分公式作为定积分的重要工具,可以帮助我们解决各种复杂的问题。
在本文中,我们将介绍24个常见的定积分公式,希望对大家的学习和工作有所帮助。
1. 基本积分公式。
定积分的基本公式是。
\[ \int_{a}^{b} f(x)dx=F(b)-F(a) \]其中,\(F(x)\)是\(f(x)\)的不定积分。
这个公式是定积分的基础,我们可以通过它来求解更复杂的积分问题。
2. 定积分的线性性质。
如果\(f(x)\)和\(g(x)\)在区间\([a,b]\)上可积,\(k\)是任意常数,那么有。
\[ \int_{a}^{b} [kf(x)+g(x)]dx=k\int_{a}^{b} f(x)dx+\int_{a}^{b} g(x)dx \]这个公式可以帮助我们简化定积分的计算过程,尤其是在处理复杂的函数时非常有用。
3. 定积分的换元积分法。
如果\(u=g(x)\)在\([a,b]\)上具有连续导数,\(f(u)\)在对应区间上可积,那么有。
\[ \int_{a}^{b} f(g(x))g'(x)dx=\int_{g(a)}^{g(b)} f(u)du \]这个公式可以帮助我们将原来的积分转化为更容易处理的形式,从而简化计算。
4. 定积分的分部积分法。
如果\(u=f(x)\)和\(v=g(x)\)都在\([a,b]\)上具有连续导数,那么有。
\[ \int_{a}^{b} u dv=uv|_{a}^{b}-\int_{a}^{b} v du \]这个公式可以帮助我们将原来的积分转化为更容易处理的形式,从而简化计算。
5. 定积分的换限积分法。
如果\(f(x)\)在\([a,b]\)上可积,\(F(x)\)是\(f(x)\)的一个原函数,那么有。
\[ \int_{a}^{b} f(x)dx=-\int_{b}^{a} f(x)dx \]这个公式可以帮助我们简化定积分的计算过程,尤其是在处理对称函数时非常有用。
定积分的概念与微积分基本定理【要点梳理】要点一:定积分的引入 定积分的概念一般地,给定一个在区间[]a b ,上的函数=()y f x ,如图所示.将[]a b ,区间平分成n 份,分点为:0121i i n a x x x x x x b -=<<<<<<<=L L则每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n =L ξ,作和式:11()()n nn i i i i b aS f x f n==-=∆=∑∑ξξ. 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰,定积分的相关名称:⎰——叫做积分号, ()f x ——叫做被积函数, ()d f x x ——叫做被积表达式,x ——叫做积分变量, a ——叫做积分下限, b ——叫做积分上限, [a ,b]——叫做积分区间. 要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()b bbaaaf x dx f u du f t dt ===⎰⎰⎰L (称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如12(1)xdx +⎰与320(1)x dx +⎰的值就不同.用定义求定积分的一般方法: (1)分割:n 等分区间[],a b ; (2)近似代替:取点[]1,i i i x x -∈ξ; (3)求和:1()ni i b af n =-∑ξ; (4)取极限:()1()lim nbi an i b af x dx f n→∞=-=∑⎰ξ. 要点二:定积分的几何意义 定积分()baf x dx ⎰的几何意义:从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分()baf x dx ⎰的几何意义.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号. 要点诠释:(1)当()0f x ≥时,积分()d baf x x ⎰在几何上表示由()y f x =、x=a 、x=b 与x 轴所围成的曲边梯形的面积;特别地:当a=b 时,有()d 0baf x x =⎰,如图(a ).(2)当()0f x ≤时,由()y f x =、x=a 、x=b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x ⎰在几何上表示上述曲边梯形面积的相反数.所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(3)当()f x 在区间[a ,b]上有正有负时,积分()d baf x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如右图所示的图象中,定积分132()d baf x x S S S =+-⎰.要点三:微积分基本定理 微积分基本定理:一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()baf x x F b F a =-⎰.这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中,()F x 叫做()f x 的一个原函数.为了方便,我们常把()()F b F a -记作()ba F x ,即()d ()()()bba af x x F x F b F a ==-⎰.要点诠释:(1)根据定积分定义求定积分,往往比较困难,而利用上述定理求定积分比较方便.(2)设()f x 是定义在区间I 上的一个函数,如果存在函数()F x ,在区间I 上的任何一点x 处都有'()()F x f x =,那么()F x 叫做函数()f x 在区间I 上的一个原函数.根据定义,求函数()f x 的原函数,就是要求一个函数()F x ,使它的导数'()F x 等于()f x .由于[()]''()()F x c F x f x +==,所以()F x c +也是()f x 的原函数,其中c 为常数.(3)利用微积分基本定理求定积分()d baf x x ⎰的关键是找出使'()()F x f x =的函数()F x .通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向求出()F x .要点四:定积分的计算1. 求定积分的一般步骤是:(1)找出被积函数中的基本初等函数,将被积函数表示为基本初等函数的和或差的形式; (2)利用定积分的性质,将问题转化为求若干基本初等函数的定积分; (3)分别用求导公式找到各个基本初等函数的原函数; (4)利用牛顿―莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值. 2. 定积分的运算性质①有限个函数代数和(或差)的定积分等于各个函数定积分的代数和(或差),即1212[()()()d ]()d ()d ()d bb b bn n aaaaf x f x f x x f x x f x x f x x ±±±=±±±⎰⎰⎰⎰L L .②常数因子可提到积分符号前面,即()d ()d b baakf x x k f x x =⎰⎰.③当积分上限与下限交换时,积分值一定要反号.即()d ()d baabf x x f x x =-⎰⎰.④定积分的可加性,即对任意的c ,有()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.3. 定积分的计算技巧:(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. 要点诠释:① 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.因此,求导运算与求原函数运算互为逆运算.② 把积分上、下限代入原函数求差时,要按步骤进行,以免发生符号错误. ③ 由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数. 【典型例题】类型一:定积分的几何意义例1. 用定积分的几何意义求: (1)1(32)d x x +⎰;(2)322sin d x x ππ⎰;(3)2204x dx -⎰.【思路点拨】画出简图,结合图形确定积分区间. 【解析】(1)如下图:阴影部分面积为(25)1722+⨯=, 从而107(32)d 2x x +=⎰.(2)如下图:由于A 的面积等于B 的面积, 从而322sin d 0x x ππ=⎰.(3)设24y x =-,则224x y +=(0,02)y x ≥≤≤,表示半径为2的41个圆,由定积分的概念可知,204x dx -⎰表示如图所示的以2为半径的41圆的面积, 所以201444x dx ππ-=⨯=⎰【总结升华】(1)利用定积分的几何意义正确画出图形求定积分. (2)()d [()0]baf x x f x >⎰表示曲边梯形的面积,而上半圆可看做特殊曲边梯形(有两边缩为点),这里面积易求,从而得出定积分的值. 举一反三:【变式1】试用定积分的几何意义求31(21)d x x --⎰.【答案】如图所示:计算可得A 的面积为5525224⨯=,B 的面积为339224⨯=, 从而31259(21)d 444x x --=-=⎰.【变式2】利用定积分的几何定义求定积分:(1)⎰-adx x a 022; (2)2016x dx -⎰.【答案】(1)设22x a y -=,则222a y x =+)0,0(a x y ≤≤≥表示41个圆,由定积分的概念可知,所求积分就是41圆的面积,所以⎰-adx x a 02242a π=(2)设216y x -2216x y +=(0,02)y x ≥≤≤表示如图的曲边形, 其面积2233S S S π∆=+=+扇形, 故20216233x dx π-=+⎰类型二:利用微积分基本定理求定积分【高清课堂:微积分基本定理385549 典型例题1】 例2.计算下列定积分: (1)211dx x⎰; (2)312xdx ⎰.【思路点拨】根据求导函数与求原函数互为逆运算,找到被积函数的一个原函数,利用微积分基本定理求解.【解析】(1)因为'1(ln )x x=,所以22111ln |ln 2ln1ln 2dx x x ==-=⎰.(2)323112|817xdx x ==-=⎰.【总结升华】为使解题步骤清晰,通常都是把求原函数和计算原函数值的差用一串等式表示出来.解题格式如下:()d ()()()bba af x x F x F b F a ==-⎰举一反三:【变式】计算下列定积分(1)11dx ⎰; (2)1xdx ⎰;(3)130x dx ⎰; (4)131x dx -⎰.【答案】(1)11001d 101x x ==-=⎰;(2)11222001111d 102222x x x ==⋅-⋅=⎰; (3)130x dx⎰144401*********x ==⋅-⋅=; (4)131x dx -⎰144411111(1)0444x -==⋅-⋅-=. 【高清课堂:微积分基本定理385549 典型例题2】例3.求下列定积分: (1)221(1)d x x x ++⎰; (2)0(sin cos )d x x x π+⎰;(3)2211()d x x x x-+⎰; (4)(cos e )d x x x π--+⎰.【解析】(1)223222222221111111129(1)d d d 1d 326x x x x x x x x x x x ++=++=++=⎰⎰⎰⎰.(2)0000(sin cos )d sin d cos d (cos )sin 2x x x x x x x x x πππππ+=+=-+=⎰⎰⎰.(3)22232222222111111111375()d d d d ln ln 2ln 223236x x x x x x x x x x x x x -+=-+=-+=-+=-⎰⎰⎰⎰.(4)00001(cos e )d cos d e d sin e1e xxx x x x x x x ππππππ------=+=+=-⎰⎰⎰. 【总结升华】(1)求函数()f x 在某个区间上的定积分,关键是求出函数()f x 的一个原函数,要正确运用求导运算与求原函数运算互为逆运算的关系.(2)求复杂函数定积分要依据定积分的性质. 举一反三:【变式1】计算下列定积分的值:(1)22(31)x x dx -+⎰, (2)dx x x ⎰+20)sin (π, (3)180(8)x x dx -⎰【答案】(1)2223200(31)()82x x x dx x x -+=-+=⎰.(2)222201(sin )(cos )128x x dx x x +=-=+⎰πππ.(3)91801871(8)()0ln893ln 29x xx x dx -=-=-⎰.【高清课堂:微积分基本定理385549 典型例题2】 【变式2】计算: (1)120⎰; (2)121x e dx --⎰.【答案】(1)1201==⎰; (2)11222211111222xx e dx ee e -----=-=-⎰. 【变式3】计算下列定积分:(1)20(1)x x dx +⎰; (2)2211()xe dx x+⎰; (3)20sin xdx ⎰π.【答案】 (1)2(1)x x x x +=+Q 且32211(),()32x x x x ''==,∴22222232220003211(1)()||321114(20)(20).323x x dx x x dx x dx xdx x x +=+=+=+=⨯-+⨯-=⎰⎰⎰⎰(2)1(ln )x x '=,又222()(2)2x x xe e x e ''=⋅=,得221()2x x e e '= 所以2222222211111111()|ln |2x x x e dx e dx dx e x x x +=+=+⎰⎰⎰ 42421111ln 2ln1ln 2.2222e e e e =-+-=-+ (3)由(sin 2)cos 2(2)2cos 2x x x x ''=⋅=,得1cos 2(sin 2)2x x '=所以200001111sin (cos 2)cos 22222xdx x dx dx xdx ππππ=-=-⎰⎰⎰⎰00111111|(sin 2)|(0)(sin 2sin 0).22222222x x x ππππ=-=---= 类型三:几类特殊被积函数求定积分问题 例4.求值:(1)若2, 0()cos 1, 0x x f x x x ⎧≤=⎨->⎩,求11()d f x x -⎰;(2)计算x 的值.【思路点拨】对于图形由两部分组成的函数在求积分时,应注意用性质()baf x dx ⎰=()c af x dx ⎰+()bcf x dx ⎰进行化简. 【解析】(1)0111230110112()d d (cos 1)d (sin )sin133f x x x x x x xx x ---=+-=+-=-+⎰⎰⎰. (2)xx =20|sin -cos |d x x x π=⎰4204|sin cos |d |sin cos |d x x x x x x πππ=-+-⎰⎰4204cos sin d (sin cos )d x x x x x x πππ=-+-⎰⎰2404(sin cos )(cos sin )1)x x x x πππ=+-+=. 【总结升华】(1)对于分段函数的定积分,通常是依据定积分“对区间的可加性”,先分段积分再求和,要注意各段定积分的上、下限. (2)计算|()|d baf x x ⎰时,需要去掉绝对值符号,这时要讨论()f x 的正负,转化为分段函数求定积分问题.举一反三:【高清课堂:微积分基本定理385549 典型例题3】 【变式1】求定积分: (1)20()f x dx ⎰, 其中2,01()5,12x x f x x ≤<⎧=⎨≤≤⎩(2)31x dx -⎰.【答案】(1)212122101()d 2d 5d 56f x x x x x x x =+=+=⎰⎰⎰(2)31x dx -⎰=11x dx -⎰+311x dx -⎰=10(1)x dx -⎰+31(1)x dx -⎰=21230111()|()|22x x x x -+- =15222+=. 【变式2】计算下列定积分: (1)20|sin |x dx π⎰;(2)dx x |1|22⎰-.【答案】(1)(cos )sin x x '-=Q ,∴220|sin ||sin ||sin |x dx x dx x dx=+⎰⎰⎰ππππ2020sin sin cos |cos |(cos cos 0)(cos 2cos )4.xdx xdxx x =-=-+=--+-=⎰⎰πππππππππ(2)∵0≤x ≤2,于是 ⎪⎩⎪⎨⎧≤≤-≤<-=-)10(1)21(1|1|222x x x x x∴⎰⎰⎰-+-=-2121222)1()1(|1|dxx dx x dx x2131033131⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x x x⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=131********2=.类型四:函数性质在定积分计算中的应用 例5.求定积分:11(cos x x dx -⎰.【思路点拨】考虑利用被积式函数的奇偶性求积分. 【解析】∵cos y x x =是奇函数,∴11cos 0x xdx -=⎰,∵y∴211302x dx -=⎰⎰,∴25113310136(cos 022055x x dx x dx x -=+=⨯=⎰⎰.【总结升华】函数的奇偶性又是解决定积分有关问题的重要工具,利用这两点能简捷地解决定积分的有关问题,结论如下:(1)若()f x 是偶函数,则()2()aaa f x dx f x dx -=⎰⎰;(2)若()f x 是奇函数,则()0aaf x dx -=⎰.举一反三: 【变式1】求333(sin )x x dx -+⎰的值.【答案】∵()f x 是奇函数,∴333(sin )0x x dx -+=⎰.【变式2】设()f x 是偶函数,若2()2f x dx =⎰,则22()f x dx -=⎰ ;【答案】∵()f x 是偶函数,∴222()2()224f x dx f x dx -==⨯=⎰⎰.【变式3】求定积分:2222cos 2x dx ππ-⎰.【答案】∵22cos cos 12xy x ==+是偶函数, ∴222222cos (cos 1)2xdx x dx--=+⎰⎰ππππ2022(cos 1)2(sin )2.x dxx x =+=+=+⎰πππ。
定积分是积分学中的一个重要概念,它涉及到曲线、面积、速度等多个领域。
在定积分中,有几个重要的定理,它们对于理解和应用定积分具有关键的作用。
1.微积分基本定理(也称为牛顿-莱布尼兹公式):这是定积分中的核心定理。
它建立了定积分与不定积分(原函数)之间的联系,即一个函数在区间上的定积分等于其原函数在该区间的端点值的差。
这个定理使得定积分的计算变得更为简单,因为它允许我们通过找到被积函数的原函数来求解定积分。
2.中值定理:定积分的中值定理表明,在闭区间[a,b]上连续的函数f(x)在[a,b]
上的定积分等于f(x)在[a,b]上的某一个值c乘以区间[a,b]的长度,即∫abf(x)dx=f(c)(b−a)。
这个定理在理论上很重要,因为它揭示了定积分与函数值之间的关系。
3.可积性定理:如果一个函数在闭区间[a,b]上只有有限个第一类间断点,那么
这个函数在[a,b]上是可积的。
这个定理给出了函数可积的充分条件,是定积分存在性的基础。
以上三个定理在定积分中占据重要地位。
它们不仅提供了定积分的计算方法,还揭示了定积分与被积函数之间的关系,以及定积分存在的条件。
在理解和应用定积分时,这些定理都是不可或缺的。
教学重点:了解定积分的概念,能用定义法求简单的定积分,用微积分基本定理求简单的定积分. 教学过程:
一.导读
1.定积分的定义
如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分
成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),当n →∞时,和式∑i =1n
b -a n
f (ξi )无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a
b f(x)d x ,即⎠⎛a b f(x)d x =lim n→∞∑i =1n
b -a n f(ξi ),a 与b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)d x 叫做被积式.
2.定积分的几何意义
如果函数f(x)在区间[a ,b]上连续且恒有f(x)≥0,那么定积分⎠⎛a
b f(x)d x 表示由直线x =a ,x =b ,y =0和曲线y =f(x)所围成的曲边梯形的面积(如图阴影部分),这就是定积分⎠⎛a
b f(x)d x 的几何意义.
3.定积分的性质
(1)⎠⎛a
b kf(x)d x =k ⎠⎛a b f(x)d x(k 为常数); (2)⎠⎛a
b [f 1(x)±f 2(x)]d x =⎠⎛a b f 1(x)d x±⎠⎛a b f 2(x)d x ; (3)⎠⎛a b f(x)d x =⎠⎛a
c f(x)
d x +⎠⎛c
b f(x)d x(其中a <
c <b). 质疑探究:你能用定积分的几何意义解释性质(3)吗?
提示:如图所示,设在区间[a ,b]上恒有f(x)≥0,c 是区间(a ,b)内的一点,那么从几何图形上
看,直线x =c 把大的曲边梯形分成了两个小曲边梯形,因此,大曲边梯形的面积S 是两个小曲边梯形的面积S 1,S 2之和,即S =S 1+S 2,用定积分表示就是性质(3).
4.微积分基本定理
一般地,如果f(x)是区间[a ,b]上的连续函数,并且F′(x)=f(x),那么⎠⎛a
b f(x)d x =F(b)-F(a). 这个结论叫做微积分基本定理,又叫做牛顿莱布尼茨公式.
(2)几种典型的曲边梯形面积的计算方法:
①由三条直线x =a 、x =b(a <b)、y =0,一条曲线y =f(x)(f(x)≥0)围成的曲
边梯形(如图)的面积:
S =⎠⎛a
b f (x )d x . ②由三条直线x =a 、x =b (a <b )、y =0,一条曲线y =f (x )(f (x )≤0)围成的曲
边梯形(如图)的面积:
S =|⎠⎛a b f (x )d x |=-⎠⎛a
b f (x )d x . ③由两条直线x =a 、x =b (a <b )、两条曲线y =f (x )、y =g (x )(f (x )≥g (x ))围成的曲边梯形(如 图)的面积:
S =⎠⎛a
b [f (x )-g (x )]d x . 二.导思、导研
【探究一】利用微积分基本定理求定积分
【例1】利用微积分基本定理求下列定积分: (1) dx x x )2(21413-+⎰ (2)dx x x )2cos (sin 02-⎰π (3)dx x ⎰-2024
【探究二】利用定积分求平面图形的面积
【例2】 (2010年山东潍坊模拟)由抛物线y =x 2-1,直线x =2,y =0所围成的图形的面积是________.
【探究三】定积分在物理方面的应用
【例3】 一物体做变速直线运动,其vt 曲线如图所示,则该物体在12
s ~6 s 间的运动路程为________.
变式探究3:一物体以v =3t 2+10t +3的速度沿直线运动,则该物体开始运动后5秒内所经过的路
程s 为________米.(速度单位:米/秒,路程单位:米)
三.提升总结
1.利用微积分基本定理求定积分
(1)对被积函数,要先化简,再求积分.
(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和.
(3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分.
2. 利用定积分求曲边梯形面积的步骤:
(1)画出曲线的草图.
(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限.
(3)将“曲边梯形”的面积表示成若干个定积分的和或差.
(4)计算定积分,写出答案.
3. 定积分在物理方面的应用主要包括:
①求变速直线运动的路程;
②求变力所做的功.
导练
1.下列积分的值等于1的是
( )
A .1
B .e -1
C .e
D .e +1
4.(人教A 版教材习题改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的路程是________.
5.给出如下命题:
①⎠⎛b a d x =⎠⎛a
b d x =b -a (a ,b 为常数且a <b ); ②⎠⎛0-11-x 2d x =⎠⎛0
11-x 2d x =π4; ③曲线y =sin x ,x ∈[0,2π]与直线y =0围成的两个封闭区域的面积之和为2.
其中正确命题的个数为( ) (A)0 (B)1 (C)2 (D)3
A.⎠⎜⎜⎛01x d x
B.⎠⎜⎜⎛01(x +1)d x
C.⎠⎜⎜⎛011 d x
D.⎠⎜⎜⎛0112d x 2.(2011·福建)⎠⎜⎜⎛0
1(e x +2x )d x 等于 ( ). 3.(2011·湖南)由直线x =-π3,x =π3
,y =0与曲线y =cos x 所围成的封闭图形的面积为 ( ). A.12 B .1 C.32
D. 3
答案:
例1.
例2.
例3.
(2)⎠⎜⎛0π(sin x -cos x)d x =⎠⎜⎛0πsin x d x -⎠⎜⎛0πcos x d x =(-cos x)|0π-sin x|0π=2. 思路点拨:画出图象,求出抛物线与x 轴的交点,然后用定积分求面积. 解析:抛物线y =x 2-1与x 轴的交点为(-1,0)和(1,0),如图, 所求面积S =⎠⎜⎛12(x 2-1)d x +⎠⎛1-1(1-x 2)d x =(13x 3-x)|12+(x -13x 3)|-11=83. 答案:83
思路点拨:正确求出被积函数的原函数,再用微积分基本定理求解. 解:(1)⎠⎜⎛12(x 2+2x +1)d x =⎠⎜⎛12x 2d x +⎠⎜⎛122x d x +⎠⎜⎛121d x =x 33|12+x 2|12+x|12=193.
变式
导练
5.
解析:s =⎠⎜⎛05(3t 2+10t +3)d t =(t 3+5t 2+3t )|50=265(米). 即该物体开始运动后5秒内所经过的路程是265米. 答案:265
解析:①错;对于②,两个积分都表示14个单位圆的面积,即⎠⎜⎛011-x 2d x =⎠⎛-11-x 2d x =π4,故②正确;对于③,面积和为⎠⎜⎛0πsin x d x +∫π2π(-sin x)d x =-cos x|0π+cos x|π2π=2+2=4,③错.故应选B .。