第2章 模糊集及其运算
- 格式:ppt
- 大小:1.15 MB
- 文档页数:22
2 模糊集合与模糊关系2.1 经典集合的特征函数定义:经典集合的特征函数记为f A (x ),定义为1()0()A x A f x x A x A ∈⎧⎨∉∉⎩当当或 2.2模糊集合与隶属函数定义:论域U 上的模糊集合A 是用一个从U 到实区间[0,1]上的函数Αμ 来刻画的,Αμ 叫做模糊集合A 的隶属函数,函数值Αμ (x )代表元素x 对集合A 的隶属度。
定义(严格的):论域U 到实区间[0,1]的任一映射 Αμ:U →[0,1] ∀x ∈U ,x →Αμ (x ) 都确定U 上的一个模糊集合A ,Αμ 叫做A 的隶属函数,Αμ (x )叫做x 对A 的隶属度。
2.3模糊关系:普通关系讨论的是每对元素是否存在关系R ,模糊关系讨论的是每对元素具有关系R 的程度。
定义:所谓从集合U 到集合V 的模糊关系R ,系指直积U*V 上的一个模糊集合R ,由隶属函数R μ 来刻画,函数值R μ (x ,y )代表有序偶(x ,y )具有关系R 的程度。
例 设V={v 1,v 2,v 3,v 4 } U={u 1,u 2,u 3 }Vμ v 1 v 2 v 3 v 4Uu 1 0.86 0.84 0 0u 20 0 0.95 0u 3 0.78 0 0 0.66则可用模糊矩阵表示如下:0.860.8400000.9500.78000.66R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2.4 模糊矩阵与布尔矩阵一般关系的关系矩阵是布尔矩阵只取1,0两个值,例如110000111001R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦定义:一个矩阵是模糊矩阵,当且仅当矩阵的所有元素r ij 都满足条件:0 ≤ r ij ≤ 1,i=1,2,……n ;j= 1,2,……m 。
特别的,当r ij 只取0和1两种数值时称为布尔矩阵。
2.5 模糊矩阵的运算2.5.1 相等:当且仅当两个模糊矩阵的一切元素两两相等时称两个模糊矩阵相等。
A =B 〈=〉 a ij =b ij i=1,2,……n ;j= 1,2,……m 。
§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。
如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。
由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。
若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。
定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。
定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。
在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。
其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。
第1章 模糊集合及其运算(教材第2章)1.1 模糊集合创立背景1. 不兼容原理:一个系统的复杂性增大时,我们使它精确化的能力将减小,在达到一定阀值时复杂性与精确性相排斥,即高复杂性与高精度不兼容。
2. Zadeh 研究大系统遇到的问题他经常徘徊于人脑思维-大系统-计算机三者之间,人脑对复杂大系统中许多模糊概念与模糊信息不是用是、非二值逻辑,而是用模糊逻辑。
线性的计算机是以二值逻辑{0,1}为基础,不能处理模糊信息,怎么办?为使大脑能像人脑那样处理模糊信息,必须将{0,1}扩展到[0, 1]闭区间,于是他在1965年发表了开创性论文“Fuzzy sets ”。
0 复杂性 精 确 性图1.1不兼容原理示意图图1.2人脑、电脑与大系统举例解释模糊性与随机性两个概念的差异。
1.2 经典集合及其运算 1. 复习经典集合理论定义: 基于某种属性的、确定的、彼此可区别的事物全体。
论域: 研究对象的全体称为论域(全域、全集、空间、话题) 元素与集合之间的关系: 属于与不属于 集合之间关系: 包含与相等集合的基本运算: 并、交、补运算 集合的三种基本形式如下:定义式:A B {x |x A x B }∈∈U @或(只用符合字母)描述式:(只用文字)由属于一个集合或另一个集合的元素构成的集合称为这两个集合的并文氏图:(只用图)集合的直积(叉积,笛卡尔积):两个集合A,B 的直积:A B {(x,)|x A y B }y ∆⨯=∈∈且注意几点:(1) 序偶不能颠倒顺序(x, y )≠ (y, x), 因此A ×B ≠ B ×A ; (2) 直积可推广到n 个集合; (3) 当R 为实数集,即R={x|-∞<x < +∞},R×R={(x, y)| -∞<x<+∞,-∞<y<+∞}称R×R=R 2为二维欧氏空间。
2. 映射与关系(1) 映射f :x→y ; (2) 关系:集合X×Y 直积的一个子集R 称为X 到Y 的二元关系,简称关系; (3) 映射是关系的特例,因为f :x→y 显然{(x, y)|y=f(x)}⊂X×Y 。
模糊集合的运算以及合成标题:模糊集合的运算与合成概述:模糊集合是一种用于处理不确定性和模糊性问题的数学工具。
它能够更好地描述现实世界中的不确定性和模糊性情况。
本文将讨论模糊集合的运算及其合成方法,并通过人类视角的叙述,使读者更好地理解和感受这一概念。
引言:在现实生活中,我们常常遇到一些模糊的问题,比如说“这个人高吗?”、“这个饭菜辣吗?”等等。
这些问题往往没有一个确定的答案,而是具有一定的不确定性。
为了更好地处理这种不确定性,人们提出了模糊集合的概念。
1. 模糊集合的运算模糊集合的运算包括交集、并集和补集。
通过这些运算,我们可以对模糊集合进行综合和分析。
1.1 交集运算交集运算是指将两个模糊集合的元素逐个比较,取其中相对较小的隶属度作为交集结果的隶属度。
例如,对于模糊集合A和B,其交集记为A∩B,其隶属度的计算公式为:μ(A∩B) = min{μA(x), μB(x)}1.2 并集运算并集运算是指将两个模糊集合的元素逐个比较,取其中相对较大的隶属度作为并集结果的隶属度。
例如,对于模糊集合A和B,其并集记为A∪B,其隶属度的计算公式为:μ(A∪B) = max{μA(x), μB(x)}1.3 补集运算补集运算是指将一个模糊集合的元素的隶属度取反,得到其补集。
例如,对于模糊集合A,其补集记为A',其隶属度的计算公式为:μ(A') = 1 - μA(x)2. 模糊集合的合成模糊集合的合成是指将多个模糊集合综合起来,得到一个新的模糊集合。
合成方法包括合取、析取和修正。
2.1 合取合成合取合成是指将多个模糊集合的隶属度进行逐个相乘,得到新的模糊集合。
例如,对于模糊集合A和B,其合取合成记为A⊗B,其隶属度的计算公式为:μ(A⊗B) = μA(x)* μB(x)2.2 析取合成析取合成是指将多个模糊集合的隶属度进行逐个相加,得到新的模糊集合。
例如,对于模糊集合A和B,其析取合成记为A⊕B,其隶属度的计算公式为:μ(A⊕B) = μA(x) + μB(x) - μA(x) * μB(x)2.3 修正合成修正合成是指将一个模糊集合的隶属度与另一个模糊集合的隶属度进行修正,得到新的模糊集合。
2.3 模糊集合及其运算2.3.1 模糊子集的定义及表示模糊子集的定义:设给定论域U ,U 到[0,1]闭区间的任一映射A μ→U A :μ[0,1])(u u A μ→ (2-3-1)都确定U 的一个模糊子集A ,A μ称为模糊子集的隶属函数,)(u A μ称为u 对于A 的隶属度。
隶属度也可记为)(u A 。
在不混淆的情况下,模糊子集也称模糊集合。
上述定义表明,论域U 上的模糊子集A 由隶属函数A μ来表征。
)(u A μ取值范围为闭区间[0,1],)(u A μ的大小反映了u 对于模糊子集的从属程度。
)(u A μ的值接近于l ,表示u 从属于A 的程度很高; )(u A μ的值接近于O ,表示u 从属A 的程度很低。
可见,模糊子集完全由隶属函数所描述。
当)(u A μ的值域={0,1}时,)(u A μ蜕化成一个经典子集的特征函数,模糊子集A 便蜕化成一个经典子集。
由此不难看出,经典集合是模糊集合的特殊形态,模糊集合是经典集合概念的推广。
模糊集合的表达方式有以下几种:1.当U 为有限集{}n u u u ,,21 时,通常有如下三种方式。
(1)Zadeh 表示法nn A A A u u u u u u A )()()(2211μμμ+++=其中ii A u u )(μ并不表示“分数”,而是表示论域中的元素i u 与其隶属度)(i A u μ之间的对应关系。
“+”也不表示“求和”,而是表示模糊集合在论域U 上的整体。
在论域U 中,)(u A μ的元素集称为A 的台,又称为模糊集合A 的支集。
实际上若某元素的隶属函数值为零。
即它不属于这个集合,则用台来表示一个模糊集合,可使表达式简单明了。
以下采用台的方式给出模糊集合,例如模糊集合“几个”可表示为83.077.0615147.033.0+++++=A 若对于模糊集合A 有一个有限的台,{}n u u u ,,21,则可表示为如下一般形式 nn A A A u u u u u u A )()()(2211μμμ+++=∑==ni ii A u u 1)(μ (2-3-3)(2)序偶表示法将论域中的元素i u 与其隶属度)(i A u μ构成序偶来表示A ,则))}(,(,)),(,()),(,{(2211n A n A A u u u u u u A μμμ⋅⋅⋅= (2-3-4)采用序偶表示法,例1中的A 可写为(){})3.0,8(),7.0,7)(1,6(),1,5(),7.0,4(,3.0,3=A此种方法隶属度为0的项可不写入。
模糊集合的运算以及合成
模糊集合是指其元素的隶属度不是二元的,而是在0到1之间的一个连续的实数。
模糊集合的运算包括交集、并集、补集和差集等。
交集运算是指对应元素的隶属度取较小值,即取最小规则。
并集运算是指对应元素的隶属度取较大值,即取最大规则。
补集运算是指对应元素的隶属度取1减去原隶属度的值。
差集运算是指对应元素的隶属度取最大值减去最小值。
这些运算可以帮助我们对模糊集合进行逻辑运算和推理。
另外,模糊集合的合成是指将两个或多个模糊集合通过某种规则进行合并得到一个新的模糊集合。
常见的合成方法包括最小-最大合成法、最大-最大合成法、乘积合成法等。
最小-最大合成法是指首先对两个模糊集合进行最小化合成,然后再对结果进行最大化合成。
最大-最大合成法是指对两个模糊集合进行最大化合成。
乘积合成法是指对应元素的隶属度进行乘积运算。
这些合成方法可以根据具体的应用场景选择合适的方法进行合成,以得到符合实际情况的模糊集合。
总之,模糊集合的运算和合成是模糊逻辑理论中的重要内容,通过这些运算和合成方法,我们可以更好地处理模糊信息,进行模
糊推理和决策,应用于控制系统、人工智能等领域。
希望我对模糊集合的运算和合成能够给你提供一些帮助。