2018-2019年中考数学遵义版总复习教材第5章图形的相似第2节锐角三角函数及解直角三角形的应用(精练)试题
- 格式:doc
- 大小:130.00 KB
- 文档页数:6
第二节锐角三角函数及解直角三角形的应用次.命题预测预计2021年中考,锐角三角函数及解直角三角形的应用仍是重点考察内容,特别是解直角三角形的应用,应强化训练.,五年中考真题及模拟)锐角三角函数(2次)1.(20216题3分)在Rt△ABC中,∠C=90°,AC=12,BC=5,那么sinA的值是( )A.512B.125C.1213D.5132.(20217题3分)如图,P是∠α的边OA上一点,点P的坐标为(12,5),那么tanα等于( )A.513B.1213C.512D.125解直角三角形的应用(5次)3.(202120题10分)小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.斜坡的坡角为15°.m)(1)求小华此时与地面的垂直间隔 CD的值;m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.4.(202120题10分)如图,为了知道空中一静止的广告气球A的高度,小宇在B处测得气球A的仰角为18°,他向前走了20m到达C处后,再次测得气球A的仰角为45°,小宇的眼睛距地面m,求此时气球A距地面的高度.(结果准确到m)5.(202118题10分)在一次综合理论活动中,小明要测某地一座古塔AE的高度,如图,塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(参考数据:tan50°≈,tan40°≈)(1)求AC的间隔;(结果保存根号)(2)求塔高AE.(结果保存整数)6.(202119题10分)小亮想知道亚洲最大的瀑布黄果树瀑布夏季洪峰汇成巨瀑时的落差.如图,他利用测角仪站在C处测得∠ACB=68°,再沿BC方向走80m到达D处,测得∠ADC=34°,求落差AB.(测角仪高度忽略不计,结果准确到1m)(参考数据:tan68°≈,tan34°≈)7.(202120题10分)某过街天桥的设计图是梯形ABCD(如下图),桥面DC与地面AB平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的间隔 (准确到0.1米)(参考数据:tan23°≈).8.(2021考试说明)如图,在△ABC 中,∠C =90°,点D ,E 分别在AC ,AB 上,BD 平分∠ABC,DE ⊥AB ,AE =6,cos A =35.求:(1)DE ,CD 的长; (2)tan ∠DBC 的值.,中考考点清单)锐角三角函数的概念1.在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b ,那么∠A 的正弦sin A =∠A 的对边斜边=①____余弦cos A =∠A 的邻边斜边=②____正切tan A =∠A 的对边∠A的邻边=③____特殊角的三角函数值2.三角函数30° 45° 60° sin α12 ④________32 cos α 32 22 ⑤________tan α⑥________13解直角三角形3.解直角三角形常用的关系:在Rt △ABC 中,∠C =90°,那么三边关系 ⑦________ 两锐角关系⑧________边角关系sin A=cos B=ac cos A=sin B=bc tan A=ab解直角三角形的应用(高频考点)4.仰角、俯角在视线与程度线所成的锐角中,视线在程度线上方的角叫⑨________,视线在程度线下方的角叫⑩________.如图①坡度(坡比)、坡角坡面的铅直高度h和⑪________l的比叫坡度(坡比),用字母i表示;坡面与程度线的夹角α叫坡角.i=tanα=⑫________.如图②方位角指北或者指南方向线与目的方向线所成的小于90°的程度角,叫做⑬________,如图③,A点位于O点的北偏东30°方向,B点位于O 点的南偏东60°方向,C点位于O点的北偏西45°方向(或者西北方向)【规律总结】解直角三角形的方法:(1)解直角三角形,当所求元素不在直角三角形中时,应作辅助线构造直角三角形,或者寻找直角三角形中的边角替代所要求的元素;(2)解实际问题的关键是构造几何模型,大多数问题都需要添加适当的辅助线,将问题转化为直角三角形中的边角计算问题.,中考重难点打破)锐角三角函数及特殊角三角函数值【例1】(2021中考)如图,△ABC的三个顶点均在格点上,那么cos A的值是( )A.33B.55C.233D.255【学生解答】1.(2021中考)如图,△ABC中,∠B=90°,BC=2AB,那么cos A=( )A.52B.12C.255D.552.(2021中考)计算6tan45°-2cos60°的结果是( )A.4 3 B.4C.5 3 D.53.(2021中考)式子2cos30°-tan45°-〔1-tan60°〕2的值是( )A.23-2 B.0C.2 3 D.2解直角三角形的实际应用【例2】(2021中考)“马航事件〞的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进展搜寻.如图,在一次空中搜寻中,程度飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保存整数,参考数值:3≈)【解析】在Rt△ACF中,利用tan30°=CFCF+AB即可.【学生解答】【规律总结】所求边CF 是两个直角三角形的公一共边,充分抓住两个直角三角形的联络,运用三角函数和列方程求解.4.(2021中考)观光塔是区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.楼房高AB 约是45m ,根据以上观测数据可求观光塔的高CD 是________m .5.(2021中考)小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的程度间隔 为42m ,这栋楼有多高?6.(2021中考)数学活动课上,教师和学生一起去测量升旗台上旗杆AB 的高度,如图,教师测得升旗台前斜坡FC 的坡比为i FC =1∶10(即EF∶CE=1∶10),学生小明站在离升旗台程度间隔 为35m (即CE =35m )处的C 点,测得旗杆顶端B 的仰角为α,tan α=37,升旗台高AF =1m ,m ,请帮小明计算出旗杆AB 的高度.单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明。
锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-〔1-tan60°〕2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,假设|cos A-12|+(1-tan B)2=0,那么∠C的度数是( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所表达的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在以下网格中,小正方形的边长均为1,点A,B,O都在格点上,那么∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,假设BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图 2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.假设∠BPC = ∠BAC ,那么tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角函数1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切2、30°、45°、60°特殊角的三角函数值3、各锐角三角函数间的函数关系式⑴、互余关系;⑵、平方关系;⑶、相除关系四、【教后反思】。
第四章图形的初步认识与三角形、四边形第一节线段、角、相交线和平行线1.(2017常德中考)若一个角为75°,则它的余角的度数为( D)A.285°B.105°C.75°D.15°2.(2017自贡中考)如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=( C)A.45°B.50°C.55°D.60°(第2题图)(第3题图)3.(2017百色中考)如图,直线a,b被直线c所截,下列条件能使a∥b的是( B)A.∠1=∠6 B.∠2=∠6C.∠1=∠3 D.∠5=∠74.(东营中考)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( C)A.30°B.35°C.40°D.50°(第4题图)(第5题图)5.(襄阳中考)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( C)A.50°B.40°C.30°D.20°6.(2017福州中考)下列图形中,由∠1=∠2能得到AB∥CD的是( B),A),B),C),D)7.(湘西中考)如图,直线CD∥EF,直线AB与CD,EF分别相交于点M,N,若∠1=30°,则∠2=__30°__.8.(2017荆州中考)一把直尺和一块三角板ABC(含30°,60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=40°,那么∠BAF的大小为( D)A.40°B.45°C.50°D.10°(第8题图)(第9题图)9.(2017宁波中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( D)A.20°B.30°C.45°D.50°10.(枣庄中考)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( B)A.75°36′B.75°12′C.74°36′D.74°12′(第10题图)(第11题图)11.(昆明中考)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__40°__.12.(宜宾中考)如图,直线a∥b,∠1=45°,∠2=30°,则∠P=__75°__.(第12题图)13.(2017德州中考)如图,利用直尺和三角板过已知直线l外一点P作直线l平行线的方法,其理由是__同位角相等,两直线平行__.。
第五章 图形的相似与解直角三角形第一节 图形的相似与位似,遵义五年中考命题规律),遵义五年中考真题及模拟)相似三角形1.(2014遵义中考)如图,边长为2的正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点F ,作△CPF 的外接圆⊙O,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( D )A .32B .53C .35 5D .455,(第1题图)),(第2题图))2.(2017遵义十二中一模)如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO 扩大到原来的2倍,得到△A′B′O.若点A 的坐标是(1,2),则点A′的坐标是( C )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)3.(2014遵义中考)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E ,南门点F 分别是AB ,AD的中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过点A ,则FH =__1.05__ 里.4.(2017遵义中考)边长为22的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A ,C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°到BQ ,连接QP ,QP 与BC 交于点E ,QP 的延长线与AD(或AD 延长线)交于点F.(1)连接CQ ,证明:CQ =AP ;(2)设AP =x ,CE =y ,试写出y 关于x 的函数关系式,并求当x 为何值时,CE =38BC ;(3)猜想PF 与EQ 的数量关系,并证明你的结论.解:(1)如图①,连接CQ.∵线段BP 绕点B 顺时针旋转90°得到线段BQ , ∴BP =BQ ,∠PBQ =90°. ∵四边形ABCD 是正方形, ∴BA =BC ,∠ABC =90°, ∴∠ABC - ∠PBC=∠PBQ-∠PBC, 即∠ABP=∠CBQ.在△BAP 和△BCQ 中,⎩⎪⎨⎪⎧BA =BC ,∠ABP =∠CBQ,BP =BQ ,∴△BAP ≌△BCQ (SAS ), ∴CQ =AP ; (2)如图①,∵四边形ABCD 是正方形, ∴∠BAC =12∠BAD=45°,∠BCA =12∠BCD=45°,∴∠APB +∠ABP=180°-45°=135°. ∵DC =AD =22,由勾股定理得:AC =(22)2+(22)2=4. ∵AP =x ,∴PC =4-x.∵△PBQ 是等腰直角三角形, ∴∠BPQ =45°,∴∠APB +∠CPQ=180°-45°=135°, ∴∠CPQ =∠ABP. ∵∠BAC =∠ACB=45°, ∴△APB ∽△CEP , ∴AP CE =AB CP, ∴x y =224-x, ∴y =122x(4-x)=-24x 2+2x(0<x <4).∵CE =38BC =38×22=324,∴y =-24x 2+2x =324,解得x =3或1, ∴当x =3或1时,CE =38BC ;(3)PF =EQ.理由如下:如图②,当F 在边AD 上时,过P 作PG⊥FQ,交AB 于G ,则∠GPF=90 °. ∵∠BPQ =45°, ∴∠GPB =45°. ∴∠GPB =∠PQB=45°. ∵PB =BQ ,∠ABP =∠CBQ , ∴△PGB ≌△QEB , ∴EQ =PG. ∵∠BAD =90°, ∴F ,A ,G ,P 四点共圆. 连接FG ,∴∠FGP =∠FAP=45°, ∴△FPG 是等腰直角三角形, ∴PF =PG , ∴PF =EQ.当F 在AD 的延长线上时,如图③,同理可得: PF =PG =EQ.5.(2016遵义中考)如图,矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE =DF ,连接EF ,与BC ,AD 分别相交于P ,Q 两点.(1)求证:CP =AQ ;(2)若BP =1,PQ =22,∠AEF =45°,求矩形ABCD 的面积. 解:(1)∵四边形ABCD 是矩形, ∴∠A =∠ABC=∠C=∠ADC=90°, AB =CD ,AD =BC ,AB ∥BC , ∴ ∠E =∠F.∵BE=DF ,∴AE =CF. 在△CFP 和△AEQ 中,⎩⎪⎨⎪⎧∠C=∠A,CF =AE ,∠F =∠E,∴△CFP ≌△AEQ(ASA ),∴CP =AQ ; (2)∵∠EBP=∠FDQ=90°, ∠F =∠AEF=45°,∴△BEP ,△AEQ 是等腰直角三角形, ∴BE =BP =1,AQ =AE ,∴PE =2BP =2, ∴EQ =PE +PQ =2+22=32, ∴AQ =AE =3,∴AB =AE -BE =2. 由(1)知CP =AQ , ∴CP =3,∴CB =CP +BP =1+3=4,∴矩形ABCD 的面积=AB·BC=2×4=8.6.(2013遵义中考)如图,在Rt △ABC 中,∠C =90°,AC =4 cm ,BC =3 cm .动点M ,N 从点C 同时出发,均以每秒1 cm 的速度分别沿CA ,CB 向终点A ,B 移动,同时动点P 从点B 出发,以每秒2 cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t.(单位:s ,0<t<2.5)(1)当t 为何值时,以A ,P ,M 为顶点的三角形与△ABC 相似?(2)是否存在某一时刻t ,使四边形APNC 的面积S 有最小值?若存在,求S 的最小值;若不存在,请说明理由.解:(1)在Rt △ABC 中,∵∠C =90°,AC =4 cm ,BC =3 cm , ∴根据勾股定理,得AB =AC 2+BC 2=5 cm . 设AM =4-t ,则AP =5-2t ,BN =3-t.以A ,P ,M 为顶点的三角形与△ABC 相似,分两种情况: ①当△AMP∽△ABC 时,AP AC =AMAB ,即5-2t 4=4-t 5,解得t =32; ②当△APM∽△ABC 时,AM AC =AP AB ,即4-t 4=5-2t5,解得t =0(不合题意,舍去). 综上所述,当t =32时,以A ,P ,M 为顶点的三角形与△ABC 相似;(2)存在.理由如下:过点P 作PH⊥BC 于点H ,则PH∥AC, ∴PH AC =BP BA ,即PH 4=2t 5,∴PH =85t , ∴S =S △ABC -S △BPN =12×3×4-12×(3-t)·85t=45⎝ ⎛⎭⎪⎫t -322+215(0<t<2.5).∵45>0,∴S 有最小值, 当t =32时,S 最小值=215.故当t =32时,四边形APNC 的面积S 有最小值,其最小值是215.,中考考点清单)比例的相关概念及性质1.线段的比:两条线段的比是两条线段的__长度__之比.2.比例中项:如果a b =b c ,即b 2=__ac__,我们就把b 叫做a ,c 的比例中项.3.比例的性质:4.黄金分割:如图,如果点C 把线段AB 分成两条线段,使AC AB =__BCAC __,那么点C 叫做线段AC 的__黄金分割点__,AC 是BC 与AB 的比例中项,AC 与AB 的比叫做__黄金比__.相似三角形的判定及性质5.定义:对应角__相等__,对应边__成比例__的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.6.性质(1)相似三角形的__对应角__相等;(2)相似三角形的对应线段(边、高、中线、角平分线)的比等于相似比; (3)相似三角形的周长比等于__相似比__,面积比等于__相似比的平方__. 7.判定(1)__两角__对应相等,两三角形相似;(2)两边对应成比例且__夹角__相等,两三角形相似; (3)三边__对应成比例__,两三角形相似;(4)两直角三角形的斜边和一条直角边__对应成比例__,两直角三角形相似. 【方法点拨】判定三角形相似的几条思路:(1)条件中若有平行线,可采用相似三角形的判定(1).(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)]. (3)条件中若有两边对应成比例,可找夹角相等.(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例. (5)条件中若有等腰条件,可找顶角相等,可找一个底角相等,也可找底和腰对应成比例.【温馨提示】应注意相似三角形的对应边成比例,若已知△ABC∽△DEF,列比例关系式时,对应字母的位置一定要写正确,才能得到正确的答案.如:AB BC =DEEF,此式正确.那么想一想,哪种情况是错误的呢?请举例说明.相似多边形8.定义:对应角__相等__,对应边__成比例__的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.9.性质(1)相似多边形的对应边__成比例__; (2)相似多边形的对应角__相等__;(3)相似多边形周长的比__等于__相似比,相似多边形面积的比等于__相似比的平方__.位似图形10.定义:如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做__位似图形__,这个点叫做__位似中心__,相似比叫做位似比.11.性质(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点坐标的比等于__k 或-k__;(2)位似图形上任意一对对应点到位似中心的距离之比等于__位似比或相似比__.12.找位似中心的方法:将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是__位似中心__.13.画位似图形的步骤 (1)确定__位似中心__; (2)确定原图形的关键点;(3)确定__位似比__,即要将图形放大或缩小的倍数; (4)作出原图形中各关键点的对应点;(5)按原图形的连接顺序连接所作的各个对应点.,中考重难点突破)比例的性质【例1】已知a 5=b 4=c3,且3a -2b +c =20,则2a -4b +c 的值为________.【解析】设a 5=b 4=c3=k(k≠0),用含k 的式子表示a ,b ,c ,则a =5k ,b =4k ,c =3k ,代入等式3a -2b +c=20求出k 值,再求出a ,b ,c 值代入可求.【答案】-61.(2016遵义六中一模)若y x =34,则x +yx 的值为( D )A .1B .47C .54D .74相似三角形的判定与性质【例2】如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A=∠B=α,且DM 交AC 于F ,ME 交BC 于G.(1)写出图中两对相似三角形并证明其中的一对;(2)请连接FG ,如果α=45°,AB =42,AF =3,求FG 的长. 【解析】(1)两角对应相等的两个三角形是相似三角形;(2)由相似三角形性质求BG 长,由AB 长可求AC ,BC 长,在Rt △FCG 中由勾股定理求FG 长. 【答案】解:(1)△A MF∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM(写出两对即可). 证明△AMF∽△BGM 如下: ∵∠DME =∠A=∠B=α, ∴∠AMF +∠BMG=180°-α. ∵∠A +∠AMF+∠AFM=180°, ∴∠AMF +∠AFM=180°-α, ∴∠AFM =∠BMG,∴△AMF ∽△BGM ; (2)当α=45°时,可得AC⊥BC,且AC =BC. ∵M 为AB 的中点,∴AM =BM =2 2. 又∵△AMF∽△BGM,∴AF AM =BMBG ,∴BG =AM·BM AF =22×223=83.又AC =BC =42·cos 45°=4, ∴CG =4-83=43,CF =4-3=1.在Rt △FCG 中,FG =CF 2+CG 2=12+⎝ ⎛⎭⎪⎫432=53.2.(2017庆阳二模)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,下列说法中不正确的是( D )A .DE =12BC B .AD AB =AE ACC .△ADE ∽△ABCD .S △ADE ∶S △ABC =1∶23.(2017武威中考模拟)如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E.求证:(1)AG =CG ; (2)AG 2=GE·GF.证明:(1)∵四边形ABCD 是菱形, ∴AD =CD ,∠ADB =∠CDB, 在△ADG 与△CDG 中,⎩⎪⎨⎪⎧AD =CD ,∠ADG =∠CDG,DG =DG ,∴△ADG ≌△CDG , ∴AG =CG ;(2)∵△ADG≌△CDG, ∴∠DAG =∠DCF. 又∵四边形ABCD 是菱形, ∴AB ∥CD ,∴∠F =∠DCF, ∴∠EAG =∠F.∵∠AGE =∠FGA,∴△AEG ∽△FAG , ∴AG FG =EG AG,∴AG 2=GE·GF.位似图形【例3】(2017遵义六中模拟)如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 的面积的14,那么点B′的坐标是( ) A .(-2,3) B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)【解析】根据面积比等于相似比的平方得到位似比为12,由图形得到点B 的坐标,根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于tk ,即可得出答案.【答案】D4.(威海中考)如图,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B′的坐标为__(-8,-3)或(4,3)__.(第4题图)(第5题图)5.(2017云南中考)如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B.如果△ABD 的面积为15,那么△ACD 的面积为( D )A .15B .10C .152D .5。
《锐角三角函数》全章复习与巩固--知识讲解(提高)【学习目标】1.了解锐角三角函数的概念,能够正确使用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如图:在Rt△ABC中,∠C=90°,如果锐角A确定:锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A是个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2.(4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切统称为∠A的锐角三角函数.要点诠释:1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA 130°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,除直角外的5个元素(3条边和2个锐角),只要知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素,这叫作解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)仰角与俯角:(2)坡度:;坡角:.(3)方位角:要点诠释:1.解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
第20课时锐角三角函数与解直角三角形题号,30三角形一般与圆综合考查毕节中考真题试做30°,45°,60°角的三角函数值1.(2018·毕节中考)计算:⎝⎛⎭⎪⎫-13-1-12+3 tan 30°-(π-3)0+||1-3.解:原式=(-3)-23+3×33-1+(3-1)=-3-23+3-1+3-1=-5.解直角三角形2.(2017·毕节中考)如图,在▱ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin D=45,求AF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB ∥CD,AD ∥BC,AD =BC. ∴∠D +∠C =180°,∠ABF =∠BEC. ∵∠AFB +∠AFE =180°,∠AFE =∠D, ∴∠C =∠AFB. ∴△ABF ∽△BEC ; (2)解:∵AE ⊥DC,AB ∥DC, ∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD·sin D =5×45=4.在Rt △ABE 中,根据勾股定理,得 BE =AE2+AB2=42+82=4 5. ∵△ABF ∽△BEC, ∴AF BC =AB BE , 即AF 5=845,∴AF =2 5.毕节中考考点梳理锐角三角函数的概念特殊角的三角函数值\ 锐角α α解直角三角形1.(2018·柳州中考)如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,则sin B =ACAB =( A )A .35B .45C .37D .34(第1题图)(第3题图)2.若∠A+∠B =90°,则下列各式成立的是( D )A .sin A =cos AB .tan A +tan B =1C .sin A =sin BD .sin A =cos B3.(2018·广州中考)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C =__12__.4.(2018·滨州中考)在△ABC 中,∠C =90°,若tan A =12,则sin B =55.(2018·贵阳中考)如图①,在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法:∵sin A =a c ,sin B =bc,∴c =a sin A ,c =bsin B ,∴a sin A =b sin B. 根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究a sin A ,b sin B ,c sin C之间的关系,并写出探究过程.解:a sin A =b sin B =c sin C .证明如下:过A 作AD ⊥BC 于点D,过B 作BE ⊥AC 于点E.在Rt △ABD 中,sin B =ADc ,即AD =c si n B.在Rt △ADC 中,sin C =ADb ,即AD =b sin C.∴c sin B =b sin C,即b sin B =csin C .同理可得a sin A =csin C ,则a sin A =b sin B =csin C.6.(2018·遵义中考)如图,吊车在水平地面上吊起货物时,吊绳BC 与地面保持垂直,吊臂AB 与水平线的夹角为64°,吊臂底部A 距地面1.5 m .(计算结果精确到0.1 m ,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A 与货物的水平距离AC 为5 m 时,吊臂AB 的长为______m ; (2)如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)解:(1)在Rt △ABC 中,∠BAC =64°,AC =5, ∴AB =ACcos 64°≈5÷0.44≈11.4.∴吊臂AB 的长为11.4 m .故应填:11.4; (2)过点D 作DH ⊥地面于点H,交水平线于点E.在Rt △ADE 中,AD =20,∠DAE =64°,EH =1.5,∴DE =sin 64°×AD ≈20×0.90=18.0,即DH =DE +EH ≈18.0+1.5=19.5.答:从地面上吊起货物的最大高度是19.5 m .中考典题精讲精练30°,45°,60°角的三角函数值例1 (2018·广安中考)计算:⎝ ⎛⎭⎪⎫13-2+|3-2|-12+6 cos 30°+(π-3.14)0.【解析】对照30°,45°,60°角的三角函数值表,然后按照实数的运算方法计算出结果.【答案】解:原式=9+2-3-23+6×32+1=12.解直角三角形例2 (2018·潍坊中考)如图,点M 是正方形ABCD 边CD 上一点,连接AM,作DE ⊥AM 于点E,BF ⊥AM 于点F,连接BE.(1)求证:AE =BF ;(2)已知AF =2,四边形ABED 的面积为24,求∠EBF 的正弦值.【解析】(1)由正方形的性质,可得BA =AD,∠BAD =90°.由DE ⊥AM,BF ⊥AM,可得∠ABF =∠DAE.对于△ABF 和△DAE,可由AAS 得到△ABF ≌△DAE,结论可证;(2)设AE =x,由(1)中结论可得BF =x,DE =AF =2.利用S 四边形ABED=S △ABE +S △ADE 可列方程求出x 得到EF 的长.在Rt △BFE 中利用勾股定理可求出BE 的长.最后利用正弦的定义可求结果.【答案】(1)证明:∵四边形ABCD 为正方形, ∴BA =AD,∠BAD =90°. ∵DE ⊥AM 于点E,BF ⊥AM 于点F, ∴∠AFB =∠DEA =90°,∴∠ABF +∠BAF =90°,∠DAE +∠BAF =90°, ∴∠ABF =∠DAE. 在△ABF 和△DAE 中, ⎩⎪⎨⎪⎧∠AFB=∠DEA,∠ABF=∠DAE,AB =DA ,∴△ABF ≌△DAE(AAS ),∴BF =AE ; (2)解:设AE =x,则BF =x,DE =AF =2. ∵四边形ABED 的面积为24, ∴12·x·x +12·x·2=24, 解得x 1=6,x 2=-8(舍去),∴EF =x -2=4. 在Rt △BEF 中,BE =42+62=213, ∴sin ∠EBF =EF BE =4213=21313.解直角三角形的应用例3 (2018·烟台中考)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 km /h .数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB 路段进行区间测速.在l 外取一点P,作PC ⊥l,垂足为点C.测得PC =30 m ,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6 s ,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)【解析】先根据角的正切分别得出AC =PC tan ∠APC,BC =PC tan ∠BPC,再根据线段的和与差得出AB 的长,继而根据速度=路程时间,求得该车通过AB 路段的车速.若该车通过AB 路段的车速超过40 km /h ,则该车超速;否则,该车没有超速.【答案】解:在Rt △APC 中,AC =PC tan ∠APC =30 tan 71°≈30×2.90=87. 在Rt △BPC 中,BC =PC tan ∠BPC =30 tan 35°≈30×0.70=21, 则AB =AC -BC =87-21=66, ∴该汽车的实际速度为666=11(m /s ).又∵40 km /h ≈11.1 m /s ,11<11.1, ∴该车没有超速.1.计算:|-2|-(2 019+2)0+⎝ ⎛⎭⎪⎫12-1+2 cos 30°-27.解:原式=2-1+2+2×32-33=3+3-3 3 =3-2 3.2.如图,在△ABC 中,∠BAC =90°,AB =AC,点D 为边AC 的中点,DE ⊥BC 于点E,连接BD,则tan ∠DBC 的值为( A )A .13B .2-1C .2- 3D .143.(2018·扬州中考)如图,在平行四边形ABCD 中,DB =DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC =10,tan ∠DCB =3,求菱形AEBD 的面积. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥CE,∴∠DAF =∠EBF. ∵∠AFD =∠BFE,AF =FB, ∴△AFD ≌△BFE,∴AD =BE.∵AD ∥EB,∴四边形AEBD 是平行四边形. 又∵DB =DA,∴四边形AEBD 是菱形; (2)解:∵四边形ABCD 是平行四边形, ∴CD =AB =10,AB ∥CD, ∴∠ABE =∠DCB,∴tan ∠ABE =tan ∠DCB =3. ∵四边形AEBD 是菱形, ∴AB ⊥DE,AF =FB,EF =DF, ∴tan ∠ABE =EFBF =3.∵BF =102,∴EF =3102,∴DE =310. ∴S 菱形AEBD =12AB·D E =1210×310=15.4.如图,一块三角形空地上种植草皮绿化,已知AB =20 m ,AC =30 m ,∠A =150°,草皮的售价为a 元/m 2,则购买草皮至少需要( C )A .450a 元B .225a 元C .150a 元D .300a 元(第4题图)(第5题图)5.一个公共房门前的台阶高出地面 1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( B )A .斜坡AB 的坡度是10° B .斜坡AB 的坡度是tan 10°C .AC =1.2 tan 10° mD.AB=1.2cos 10°m6.(2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7 m,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2 m,若旗杆底部到坡面CD的水平距离BC=1 m,则旗杆AB的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( B )A.12.6 mB.13.1 mC.14.7 mD.16.3 m。
第五章 图形的相似与解直角三角形第一节 图形的相似与位似1.如图,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为( B )A .12B .2C .3D .4(第1题图)(第2题图)2.(2017泰安中考)如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E.若AB =12,BM =5,则DE 的长为( B )A .18B .1095 C .965 D .2533.(2017遵义十九中一模)如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB,添加一个条件,不正确的是( D )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB =ABACD .AB BP =AC CB(第3题图)(第4题图)4.(济南中考)如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的平分线分别交AB ,DB 于M ,N 两点.若AM =2,则线段ON 的长为( C )2365.(2017滨州中考)在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__(4,6)或(-4,-6)__.6.(2017随州中考)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =__125或53__时,以A ,D ,E 为顶点的三角形与△ABC 相似. 7.(汇川升学一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上.若△ABC 的边BC 长为40 cm ,高AH 为30 cm ,则正方形DEFG 的边长为__1207__cm .(第7题图)(第8题图)8.(2017包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =kx 的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为__-16__.9.(2017六盘水中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若CD =5,BC =8,AE =2,则AF =__169__.10.(泰安中考)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长. 解:(1)∵AB=AC , ∴∠B =∠C. ∵∠APD =∠B, ∴∠APD =∠B=∠C.∠APC =∠APD+∠DPC, ∴∠BAP =∠DPC, ∴△ABP ∽△PCD , ∴BP CD =AB CP, ∴AB ·CD =CP·BP. ∵AB =AC , ∴AC ·CD =CP·BP;(2)∵PD∥AB,∴∠APD =∠BAP. ∵∠APD =∠C ,∴∠BAP =∠C. ∵∠B =∠B,∴△BAP ∽△BCA , ∴BA BC =BP BA. ∵AB =10,BC =12, ∴1012=BP 10,∴BP =253.11.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B )A .1∶3B .1∶4C .1∶5D .1∶2512.(盘锦中考)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD =3,DC =4,DE =52,∠EDF =90°,则DF 长是( C )A .158B .113C .103D .165(第12题图)(第13题图)13.(2017杭州中考)如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥14.(2017长春中考)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G. (1)求证:BD∥EF;(2)若DG GC =23,BE =4,求EC 的长.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∵DF =BE ,∴四边形BEFD 是平行四边形, ∴BD ∥EF ;(2)∵四边形BEFD 是平行四边形, ∴DF =BE =4. ∵DF ∥EC , ∴△DFG ∽△CEG , ∴DG CG =DF CE, ∴CE=DF·CG DG =4×32=6.15.(2017杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC; (2)若AD =3,AB =5,求AFAG 的值.解:(1)∵AG⊥BC,AF ⊥DE , ∴∠AFE =∠AGC=90°.∵∠EAF =∠GAC,∴∠AED =∠ACB, ∵∠EAD =∠BAC,∴△ADE ∽△ABC ; (2)由(1)可知:△ADE∽△ABC, ∴AD AB =AE AC =35. ∵∠AFE =∠AGC=90°,∠EAF =∠GAC, ∴△EAF ∽△CAG , AF AE∴AF AG =35. 16 .(2017枣庄中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求, 由图形可知,∠A 2C 2B 2=∠ACB, 过点A 作AD⊥BC 交BC 的延长线于点D ,由A(2,2),C(4,-4),B(4,0),易得D(4,2), ∴AD =2,CD =6,AC =22+62=210, ∴sin ∠ACB =AD AC =2210=1010,即sin ∠A 2C 2B 2=1010.17.(2017连云港中考)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH∥AB,交BC 的延长线于点H. (1)求BD·cos ∠HBD 的值; (2)若∠CBD=∠A,求AB 的长. 解:(1)∵DH∥AB,∴∠BHD =∠ABC=90°,∠A =∠HDC,∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4, 在Rt △BHD 中,cos ∠HBD =BHBD ,∴BD ·cos ∠HBD =BH =4; (2)∵∠CBD=∠A,∠ABC =∠BHD, ∴△ABC ∽△BHD , ∴BC HD =AB BH. ∵△ABC ∽△DHC , ∴AB DH =ACCD=3, ∴AB =3DH , ∴3DH =3DH4,解得DH =2, ∴AB =3DH =3×2=6.18.(2017眉山中考)如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB =∠BEC=90°,AC =42,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD,线段BE 与CD 相交于点F.(1)求证:PC CD =CECB;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式. 解:(1)∵△BCE 和△CDP 均为等腰直角三角形, ∴∠ECB =∠PCD=45°, ∠CEB =∠CPD=90°, ∴△BCE ∽△DCP , ∴PC DC =EC CB; (2)AC∥BD.理由如下:∵∠PCE +∠ECD=∠BCD+∠ECD=45°, ∴∠PCE =∠BCD. 又∵PC DC =EC CB ,∴△PCE ∽△DCB , ∴∠CBD =∠CEP=90°,∴AC ∥BD ;(3)作PM ⊥BD ,交BD 的延长线于点M. ∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4. ∵△PCE ∽△DCB , ∴EC CB =PE BD ,即442=x BD, ∴BD =2x.∵∠PBM =∠CBD-∠CBP=45°, BP =BE +PE =4+x , ∴PM =4+x 2,∴S △PBD =12BD ·PM=12×2x×4+x 2 , =12x 2+2x.。
锐角三角函数知识点总结与复习1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方;2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为∠A 可换成∠B :3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值;4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值;5、0°、30°、45°、60°、90°特殊角的三角函数值重要A 90B 90∠-︒=∠︒=∠+∠得由B A邻边A90B 90∠-︒=∠︒=∠+∠得由B A直角三角形中 的边角关系解直角三角形当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小; 7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小;一、知识性专题专题1:锐角三角函数的定义例 1 在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 A .sin A B .tan A =12C .cos BD .tan B 分析 sin A =BC AB =12,tan A =BC AC ,cos B =BCAB =12.故选D.例2 在△ABC 中,∠C =90°,cos A =35,则tan A 等于 ; 分析 在Rt △ABC 中,设AC =3k ,AB =5k ,则BC =4k ,由定义可知tan A =4433BC k AC k ==. 分析 在Rt △ABC 中,BC =3,∴sin A =35BC AB =.故填35.例312·哈尔滨在Rt △ABC 中,∠C=900,AC=4,AB=5,则sinB 的值是 ; 解析本题考查了锐角三角函数的意义.解题思路:在直角三角形中,锐角的正弦等于对边比邻边,故sinB=54. 例42012内江如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为 ;解析欲求sinA,需先寻找∠A 所在的直角三角形,而图形中∠A 所在的△ABC 并不是直角三角形,所以需要作高.观察格点图形发现连接CD 如下图所示,恰好可证得CD ⊥AB,于是有图4图4sinA =CD AC =210=55.例5 2012宁波,Rt △ABC,∠C=900,AB=6,cosB=错误!,则BC 的长为 ;解析cosB=错误!=错误!,又∵AB=6∴BC=4例62012贵州铜仁如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctan α, 即ctan α=BCAC=的对边角的邻边角αα,根据上述角的余切定义,解下列问题:1ctan30◦= ;2如图,已知tanA=43,其中∠A 为锐角,试求ctanA 的值.分析1可先设最小边长为一个特殊数这样做是为了计算方便,然后在计算出其它边长,根据余切定义进而求出ctan30◦;2由tanA=43,为了计算方便,可以设BC=3 AC=4根据余切定义就可以求出ctanA 的值.解析1设BC=1, ∵α=30◦∴AB=2∴由勾股定理得:AC=3ctan30◦=BCAC=32 ∵tanA=43∴设BC=3 AC=4∴ctanA =BC AC =34例72012山东滨州把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值 A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 解析因为△ABC 三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A 的大小没改变,所以锐角A 的正弦函数值也不变.答案选A .例82012湖南观察下列等式 ①sin30°= cos60°=②sin45°=cos=45°=③sin60°= cos30°=根据上述规律,计算sin 2a+sin 290°﹣a= .解析:根据①②③可得出规律,即sin 2a+sin 290°﹣a=1,继而可得出答案. 答案:解:由题意得,sin 230°+sin 290°﹣30°=1;sin 245°+sin 290°﹣45°=1; sin 260°+sin 290°﹣60°=1;故可得sin 2a+sin 290°﹣a=1.故答案为:1.点评:此题考查了互余两角的三角函数的关系,属于规律型题目,注意根据题意总结,另外sin 2a+sin 290°﹣a=1是个恒等式,同学们可以记住并直接运用.例9 2012山东德州为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:22题图①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有哪 组解析对于①,可由公式AB=BC ×tan ∠ACB 求出A 、B 两点间的距离;对于②,可设AB 的长为x,则BC=x tan ACB ∠,BD=xtan ADB ∠,BD-BC=CD,可解出AB .对于③,易知△DEF ∽△DBA,则DE BDEF AB=,可求出AB 的长;对于④无法求得,故有①、②、③三组点评此题考查解直角三角形和三角形相似的性质与判定.在直角三角形中至少要有已知一边和一角才能求出其他未知元素;判定两三角形相似的方法有:AA,SAS,SSS,两直角三角形相似的判定还有HL . 例102012江苏泰州18如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P,则tan ∠APD 的值是 .解析 要求tan ∠APD 的值,只要将∠APD 放在直角三角形中,故过B 作CD 的垂线,然后利用勾股定理计算出线段的长度,最后利用正切的定义计算出结果即可. 答案作BM ⊥CD,DN ⊥AB 垂足分别为M 、N,则2,易得:10,设PM=x,则PD=22-x,由△DNP ∽△BMP,得:PN DN PM BM =,即10102PN x =,∴PN=55x,由DN 2+PN 2=PD 2,得:110+15x 2=22-x 2,解得:x 1=24,x 2=2舍去,∴tan ∠APD=2224BM PM ==2.例11. 2011江苏苏州如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等ABCDEFF于 .分析:根据三角形的中位线定理即可求得BD 的长,然后根据勾股定理的逆定理即可证得△BCD 是直角三角形,然后根据正切函数的定义即可求解.解答:解:连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC= 43例122011山东日照在Rt△ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1解答:解:根据锐角三角函数的定义,得 A 、tanA•c otA=a b b a ⋅=1,关系式成立;B 、sinA=c a ,tanA•cosA=cac b b a =⋅,关系式成立; C 、cosA=,cotA•sinA=c b a b c a =⋅,关系式成立;D 、tan 2A+cot 2A=b a 2+ab 2≠1,关系式不成立.故选D .点评:本题考查了同角三角函数的关系.1平方关系:sin 2A+cos 2A=1 2正余弦与正切之间的关系积的关系:一个角的正切值等于这个角的正弦与余弦的比,即tanA=BAcos sin 或sinA=tanA•cosA.3正切之间的关系:tanA•tanB=1. 例132011•贵港如图所示,在△ABC 中,∠C=90°,AD 是BC 边上的中线,BD=4,AD=2,则tan∠CAD 的值是 .解答:解:∵AD 是BC边上的中线,BD=4,∴CD=BD=4,在Rt△ACD中,AC===2,∴tan∠CAD===2.故选A .例142011烟台如果△ABC 中,sin A =cos B 2,则下列最确切的结论是 A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形 解:∵sinA=cosB=22,∴∠A =∠B =45°,∴△ABC 是等腰直角三角形.故选C . 例152011四川如图所示,在数轴上点A 所表示的数x 的范围是A 、330sin 602sin x ︒︒<< B 、3cos302x ︒︒<<cos45C 、3tan 302x ︒︒<<tan45D 、3cot 4502x ︒︒<<cot3 解答:故选D .同步练习12011甘肃如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ’B ’,则tanB ’的值为 .解答:解:过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt△BCD 中,tanB= CD :BD =13,∴tan B′=tan B = 13. 2 2011甘肃兰州点M -sin60°,cos60°关于x 轴对称的点的坐标是 . 解:∵sin60°=32,cos60°= 12,∴点M -32,12.∵点P m ,n 关于x 轴对称点的坐标P′m ,-n ,∴M 关于x 轴的对称点的坐标是-32,-12.故选B . 32011广东已知:45°<A <90°,则下列各式成立的是A 、sinA =cosAB 、sinA >cosAC 、sinA >tanAD 、sinA <cosA解答:解:∵45°<A <90°,∴根据sin 45°=cos 45°,sinA 随角度的增大而增大,cosA 随角度的增大而减小,当∠A >45°时,sinA >cosA ,故选:B .4、2011•宜昌教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=33,则边BC 的长为 .cm解:在直角三角形ABC 中,根据三角函数定义可知:tan ∠BAC=BCAC,又AC=30cm,tan ∠3则BC=ACtan 33cm .故选C . 5、 2011福建莆田如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC=5,则tan ∠AFE 的值为 .ABCC ’ B ’解答:解:∵四边形ABCD 是矩形,∴∠A =∠B =∠D =90°,CD =AB =4,AD =BC =5,由题意得:∠EFC =∠B =90°,CF =BC =5,∴∠AFE +∠DFC =90°,∠DFC +∠FCD =90°, ∴∠DCF =∠AFE ,∵在Rt △DCF 中,CF =5,CD =4,∴DF =3,∴tan ∠AFE =tan ∠DCF =DFDC =34 .6、2012连云港小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出°的角的正切值是 .EC DA BF答案设AB=x,则BE=x,在直角三角形ABE 中,用勾股定理求出AE=EF=2x,于是2在直角三角形ABF 中,tan ∠FAB=21)BF xAB x=2°.选B; 7、2012福州如图15,已知△ABC,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D,则AD 的长是 ,cosA 的值是 .结果保留根号解析:由已知条件,可知△BDC 、△ADB 是等腰三角形,且DA=DB=BC,可证△BDC ∽△ABC,则有BC DC AC BC =,设BC=x,则DC=1-x,因此21,101x xx x x -=+-=即,解方程得, 125151x x ---==,舍去,即AD=512;又cosA=512451512AB AD===--⨯答案:5151,24 8、2012南京如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合.OB 与尺上沿的交点B 在尺上的读书恰为2厘米,若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为 厘米.结果精确到厘米,参考数据sin370≈,cos370≈,tan370≈C B AO4321解析:由于∠AOB=45°,B 点读书为2厘米,则直尺的宽为2厘米,解直角三角形得点C 的读数为2÷tan370≈2÷≈厘米.答案:9、2012·湖南张家界黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=23千米,请据此解答如下问题:1 求该岛的周长和面积结果保留整数,参考数据2≈ 73.13≈45.26≈ 2 求∠ACD 的余弦值.解答1结AC,∵AB=BC=15千米,∠B=90°,∴∠BAC=∠ACB=45°,AC=152千米. 又∵∠D=90°, ∴AD=2222)23()215(-=-CD AC =123千米∴周长=AB+BC+CD+DA=30+32+123=30++≈55千米. 面积=S △ABC +S △ADC =21×15×15+21×123×32=2225+186≈157平方千米. 2cos ∠ACD=5121523==AC CD . 10、2012甘肃兰州在建筑楼梯时,设计者要考虑楼梯的安全程度;如图1,虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图2,设计者为了提高楼梯的安全程度,要把楼梯的倾角1θ减至2θ,这样楼梯占用地板的长度由d 1增加到d 2 ,已知d 1=4米,140θ∠=,236θ∠=,楼梯占用地板的长度增加了多少米 计算结果精确到米;参考数据:tan40°=,tan36°=AC解析:根据在Rt△ACB中,AB=d1tanθ1=4tan40°,在Rt△ADB中,AB=d2tanθ2=d2tan36°,即可得出d2的值,进而求出楼梯占用地板增加的长度.解:由题意可知可得,∠ACB=∠θ1,∠ADB=∠θ2在Rt△ACB中,AB=d1tanθ1=4tan40°,在Rt△ADB中,AB=d2tanθ2=d2tan36°,得4tan40°=d2tan36°,∴d2=4tan40tan36≈,∴d2-d1==≈,答:楼梯占用地板的长度增加了米.11、2012贵州为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.参考数据:sin54°≈,cos54°≈,tan54°≈,≈,精确到个位解析:首先过点C作CD⊥AB于D,然后在Rt△BCD中,利用三角函数的知识,求得BD,CD的长,继而在Rt△ACD 利用∠CAB的正切求得AD的长,继而求得答案.答案:解:过点C作CD⊥AB于D∵BC=200m,∠CBA=30°,∴在Rt△BCD中,CD=BC=100m,BD=BC•cos30°=200×=100≈173m,∵∠CAB=54°,在Rt△ACD中,AD=≈≈74m,∴AB=AD+BD=173+74=247m.答:隧道AB的长为247m.12、2011新疆建设兵团如图,在△ABC中,∠A=90°.1用尺规作图的方法,作出△ABC绕点A逆时针旋转45°后的图形△AB1C1保留作图痕迹;2若AB=3,BC=5,求tan∠AB1C1.第22题图d2解答:解:1作∠CAB 的平分线,在平分线上截取AB 1=AB ,作C 1A ⊥AB 1,在AC 1上截取AC 1=AC ,如图所示即是所求.2∵AB =3,BC =5,∴AC =4,∴AB 1=3,AC 1=4,tan∠AB 1C 1=错误!=错误!. 专题2 特殊角的三角函数值例12012,湖北孝感计算:cos 245°+tan30°·sin60°=________.答案1例22012陕西计算:(02cos 45-38+1-2=︒ .解析原式2=2-322+1=-52+12⨯⨯答案-52+1 例32012广安计算:---)32(218cos45o +13- ; 解析:1182()cos 4533---︒+=322212323+-+21 例4 计算|-3|+2cos 45310. 解:原式=3+22-122. 例5 计算-12⎛⎫- ⎪⎝⎭9+-12007-cos 60°.解:原式=12+3+-1-12=3-1=2. 例6 计算|2+cos 60°-tan 30°08 21十+221. 例7 计算312-⎛⎫ ⎪⎝⎭-π-0-|1-tan 60°|32-.解:原式=8-13132=10. 例82012呼和浩特计算:11|122sin 45--+︒解析三角函数、绝对值、乘方答案11|12sin 45--+︒11)2211232=-+=+=例92011天水计算:si n 230°+tan 44°tan 46°+si n 260°= . 分析:根据特殊角的三角函数值计算.tanA •tan 90°﹣A =1. 解答:解:原式=14+1+34=2.故答案为2. 例102011•莱芜若a=3﹣tan60°,则196)121(2-+-÷--a a a a = ;33-解答:解:a=3﹣tan60°=3﹣3,∴原式=23-a 1-a 121)(⨯---a a =31-a =33313331-=-=--故答案为:33-. 练习1、2011浙江计算:|-1|5-π0+4cos45°. 解原式=1-122练习2、2011浙江衢州1计算:|﹣2|﹣3﹣π0+2c os45°;解答:解:1原式=2122-+⨯,=1 练习3、计算:20110+8-2sin45°;原式=1+22-2=1+2;练习3、观察下列各式:①sin 59°>sin 28°;②0<cos α<1α是锐角;③tan 30°+tan 60°=tan 90°;④tan 44°<1.其中成立的有A .1个B .2个C .3个D .4个 练习3、C 提示:sin 59°>sin 28°成立,0<cos α<1α是锐角成立,tan 30°+tan 60tan 90°,tan 44°<tan 45°,即tan 44°<1.练习4、计算2sin 30°-tan 60°+tan 45°= .练习5、如图28-146所示,在△ABC 中,∠A =30°,tan B =13,BC 10则AB 的长为 . 练习6、当x =sin 60°时,代数式2242x x x -+·22244x x x x +-++42xx-的值是 .练习7、已知cos 59°24′≈,则sin 30°36′≈ .练习8、若∠A ,∠B 互余,且tan A -tan B =2,则tan 2A +tan 2B = .练习9、如图28-147所示,在菱形ABCD 中,AE ⊥BC 于E ,EC =1,cos B=513,则这个菱形的面积是 . 10.已知正方形ABCD 的边长为1,若将线段BD 绕着点B 旋转后,点D落在DC 延长线上的点D ′处,则∠BAD ′的正弦值为 . 11.如图28-148所示,若将四根木条钉成的矩形木框变为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角等于 .12.在△ABC 中,∠B =30°,tan C =2,AB =2,则BC = .13.设θ为锐角,且x 2+3x +2sin θ=05.则θ= . 14.如图28-149所示,在△ABC 中,∠C =90°,点D 在BC 边上,BD =4,AD =BC ,cos ∠ADC =35. 1求DC 的长;2求sin B 的值.练习4、23 提示:2sin 30°-tan 60°+tan 45°=2×1231=23 练习5、33提示:过点C 作CD ⊥AB ,垂足为D ,在Rt △BDC 中,tan B =13.∴13CD BD =,∴BD =3CD ,∵BC 10∴CD 2+3CD 210,∴CD =1,BD =3.在Rt △ADC 中,tan A =CDAD,∴AD 3∴AB =AD +BD =33 练习632242x x x -+·22244x x x x +-++42xx-=2x ,∴原式=2sin 603练习7、提示:sin 30°36′=cos 59°24′.练习8、6提示:∵∠A ,∠B 互余,∴tan A ·tan B =1,tan 2A +tan 2B =tan A -tan B 2+2tan A ·tan B =22+2=6. 练习9、3916提示:∵cos B =513,设BE =5x ,则AB =13x ,∴AE 22AB BE -12x .∵AB =BC =BE +CE ,∴13x =5x +1,∴x =18,则AE =12x =12×18=32,BC =5x +1=5×18+1=138,∴S =32×138=3916.10.5提示:如图28-155所示,根据题意得DD ′=2DC ,设正方形的边长为x ,则AD =x ,DD ′=2x .∵∠ADD ′=90°,根据勾股定理得AD 22AD DD '+5x .∵AD =x ,∴sin ∠AD ′D =ADAD '=555x x=.∵AB ∥DD ′,∴∠BAD ′=∠AD ′D ,∴sin ∠BAD ′=55.11.30°提示:如图28=156所示,∵S ABCD=12S 矩形BEFC ,且BC =BC 底相同, ∴GC =12FC .∵CF =DC ,∴GC =12DC ,12CG DC =.∵∠DGC =90°,sin 30°=12,∴∠CDG =30°,即这个平行四边形的一个最小内角为30°. 12.12+3 13.30°提示:x 1·x 2=2sin θ,x 1+x 2=-3,则x 1-x 22=x 1+x 22-4x 1x 2=9-8sin θ=52,∴sin θ=12,∴θ=30°. 14.解:1∵cos ∠ADC =35,∴设CD =3x ,则AD =5x ,AC =4x ,∴BC =AD =5x .∵BD =BC-CD ,∴5x -3x =4,∴x =2,∴CD =3x =6. 2∵AC =4x =8,BC =5x =10,∴AB =2222810241AC BC +=+=,∴sin B =844141241AC AB ==. ★ 专题三:题型一俯角与仰角仰角:视线在水平线上方的角;★ 俯角:视线在水平线下方的角;仰角铅垂线水平线视线视线俯角例1、2012湖北襄阳在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图5,已知李明距假山的水平距离BD 为12m,他的眼睛距地面的高度为,李明的视线经过量角器零刻度线OA 和假山的最高点C,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为 m .解析如下图,过点A 作AF⊥CD 于F,则AF =BD =12m,FD =AB =.再由OE∥CF 可知∠C=∠AOE=60°.所以,在Rt△ACF 中,CF =tan 60AF=43,那么CD =CF +FD =43+m .例2、2012珠海如图,水渠边有一棵大木瓜树,树干DO 不计粗细上有两个木瓜A 、B 不计大A O BE D CF图5 CDA BO E小,树干垂直于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO.结果精确到1米参考数据:41.12,73.13≈≈第16题图D BA OC解析如图,根据题意,得∠COD =90°, ∠ACO =45°, ∠BCO =30°, AB =2,求CO.设CO 为x 米, 根据AO =CO,列方程,解得即可.答案解:设CO 为x 米在Rt △BCO 中,tan30°=BO CO ,则BO =33x 在Rt △ACO 中,AO =CO,得方程33x +2=x 解得x ≈5.答: CO 长大约是5米. 例3、2012江苏盐城如图所示,当小华站立在镜子EF 前A 处时,他看自己的脚在镜中的像的俯角为450 :如果小华向后退米到B 处,这时他看自己的脚在镜中的像的俯角为300.求小华的眼睛到地面的距离;结果精确到米,参考数据:3≈.答案设AC=BD=x,在Rt △ACA 1中,∠AA 1C=450,∴AA 1=x,在Rt △DBB 1中,BB 1=tan30x=3x ,又∵12BB 1-12AA 1=12,即12×3x -12x=12,解得:x=312+≈米. 例4、2012山西如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端A .B 的距离,飞机在距海平面垂直高度为100米的点C 处测得端点A 的俯角为60°,然后沿着平行于AB 的方向水平飞行了500米,在点D 测得端点B 的俯角为45°,求岛屿两端A .B 的距离结果精确到米,参考数据:解析解:过点A 作AE⊥CD 于点E,过点B 作BF⊥CD 于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE 为矩形.第24题图∴AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=500米.…2分 在Rt△AEC 中,∠C=60°,AE=100米.∴CE===米. …4分在Rt△BFD中,∠BDF=45°,BF=100. ∴DF===100米.…6分∴AB=EF=CD+DF﹣CE=500+100﹣≈600﹣×≈600﹣≈米. …8分答:岛屿两端A .B 的距离为米.例5、2012呼和浩特22如图,线段AB 、DC 分别表示甲、乙两建筑物的高;某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B 处测得D 点的仰角为α,在A 处测得D 点的仰角为β;已知甲、乙两建筑物之间的距离BC 为m ;请你通过计算用含α、β、m 的式子分别表示出甲、乙两建筑物的高度;答案解:过点A 作AM ⊥CD 于M在Rt △BCD 中,tan α=CD BC ∴CD =BC ·tan α=m tan α在Rt △AMD 中,tan β=DMAM∴DM =AM ·tan β=m tan β∴AB =CD –DM =mtan α–tan β例6、2012湖北随州,20在一次暑假旅游中,小亮在仙岛湖的游船上A 处,测得湖西岸的山峰太婆尖C 处和湖东岸的山峰老君岭D 处的仰角都是45°,游船向东航行100米后B 处,测得太婆尖、老君岭的高度为多少米3 1.732 ,结果精确到米;解析:设太婆尖高h 1米,老君岭高h 2米;可分别在直角三角形中利用正切值表示出水平线段的长度,再利用移动距离为AB=100米,可建立关于h 1、h 2的方程组,解这个方程组求得两山峰高度;答案:设太婆尖高h 1米,老君岭高h 2米,依题意,有FE第20题图60304545D (老君岭)C (太婆尖)BAβα乙甲ADB M C⇒⎪⎪⎩⎪⎪⎨⎧=-=-10060tan 45tan 10045tan 30tan 2211h h h h 1376.136)1732.1(50)13(5045tan 60tan 1001≈=+=+=-=h 米33110030tan 45tan 1002-=-=h 2376.236)732.13(50)33(50)13(350≈=+=+=+=米答:太婆尖高度为137米,老君岭高度为237米;题型二方位角问题1、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;2、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角;如图4:OA 、OB 、OC 、OD 的方向角分别是:北偏东30°东北方向,南偏东45°东南方向,南偏西60°西南方向,北偏西60°西北方向;例1、2011山东省潍坊轮船从B 处以每小时海里的速度沿男偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在观测灯塔A 北偏东60°方向上,则C 处与灯塔A 的距离是 .海里解答: BC=50×=25海里;根据方位角知识得,∠BCD=30°,=75°-30°;CB=∠BCD+∠ACD=30°+60°=90°;∠A=∠CBD=45°所以CA=CB 所以CB=25海里例2、2012年四川德阳某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行32小时到达B 处,那么tan ∠ABP=A.21 C.55 D.552解析如图6所示,根据题意可知∠APB=90°.且AP=20, PB=60×23=40. 所以tan ∠ABP=201402PA PB ==例3、2012连云港已知B 港口位于A 观测点北偏东°方向,且其到A 观测点正北方向的距离BD 的长为16km;一艘货轮从B 港口以40km/h 的速度沿如图所示的BC 方向航行,15min 后到达C 处;现测得C 处位于A观测点北偏东°方向;求此时货轮与A 观测点之间的距离AC 的长精确到.25东北CBDCBH解析过点B 作AC 的垂线,把所求线段AC 换为两线段的差;利用Rt △ABH 和Rt △BCH 求线段AH 、CH 的长,利用AH -CH 确定AC 的长; 答案BC=40×1560=10.在Rt△ADB 中,sin ∠DAB=DB AB , °≈;所以AB=DAB DB ∠sin ≈1.60.8=20.如图,过点B 作BH⊥AC,交AC 的延长线于H;在Rt△AHB 中,∠BAH=∠DAC -∠DAB=°―37°=°,tan∠BAH=BH AH ,=BH AH,AH =+CH 2=AB 2,BH 2+2BH 2=2025所以AH=85,在Rt△AHB 中, BH 2+CH 2=BC 2,CH=2108025-=所以第22题图APCB °°AC=AH―CH=85―25=65≈.例4、2012四川攀枝花如图6,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B 处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.答案作CD⊥AB于D,设BD=x,∵∠BCD=30°,∴CD=3x,因为∠CAD=45°,∴AD=CD3,AB3–x,依据题意3x–x=,x 31+,31+小时,离渔船C的距离最近;例5、2012山东东营如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西°方向,求此时轮船所处位置B 与城市P的距离参考数据:°≈35,°≈34,°≈1213,°≈125解析过点P作PC⊥AB,构造直角三角形,设PC=x海里,用含有x的式子表示AC,BC的值,从而求出x的值,再根据三角函数值求出BP的值即可解答.答案过点P作PC⊥AB,垂足为C,设PC=x海里.在Rt△APC中,∵tan∠A=PCAC,∴AC=5tan67.512PC x=︒.在Rt△PCB中,∵tan∠B=PCBC,∴BC=4tan36.93x x=︒.∵AC+BC=AB=21×5,∴54215123x x+=⨯,解得60x=.∵sinPCBPB∠=,∴60560100sin sin36.93PCPBB===⨯=∠︒海里.∴向阳号轮船所处位置B与城市P的距离为100海里.例6、2012山东省青岛如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离B 、F 、C 在一条直线上 ⑴求教学楼AB 的高度;⑵学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离结果保留整数.参考数据:sin22°≈错误!,cos22°≈错误!,tan22°≈错误! 答案解:⑴过点E 作EM ⊥AB,垂足为M.设AB 为x.Rt △ABF 中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13在Rt △AEM 中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,∴tan22°= 错误!, 错误!=错误!,x=12.即教学楼的高12m.⑵由1可得ME=BC=x+13=12+13=25.在Rt △AME 中,cos22°= 错误!, ∴AE= 错误!≈ 错误!≈27.即AE之间的距离约为27m.题型三、坡比是垂直高度与水平距离的比值,即是坡角的正切值应用举例: 坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等;把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==;例1、2012广安如图2,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m,则迎水坡面AB 的长度是 .m解:tan∠BAC=13,∠BAC=30°,sin∠BAC=12, sin∠BAC=BC AB ,AB=2BC=100m例2、小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A 的仰角为45°,测得办公大楼底部点B 的俯角为60°,已知办公大楼高46米,CD =10米.求点P 到AD 的距离用含根号的式子表示.图2:i h l=hlαABCDPN M解析连结PA 、PB ,过点P 作PM ⊥AD 于点M ;延长BC ,交PM 于点N则∠APM =45°,∠BPM =60°,NM =10米………1分设PM =x 米 在Rt △PMA 中,AM =PM ×tan ∠APM =x tan 45°=x 米…3分在Rt △PNB 中,BN =PN ×tan ∠BPM =x -10tan 60°=x -103米…5分 由AM +BN =46米,得x +x -103 =46……6分解得,4610313x +=+ ,∴点P 到AD 的距离为4610313++米.结果分母有理化为()1838-米也可……8分答案4610313++结果分母有理化为()1838-米也可例3、2012湖北如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度1:5i =,则AC 的长度是 cm .解析如图,过点B 作BD ⊥AC 于D,依题意可求得AD =60cm,BD =54cm ;由斜坡 BC 的坡度i =1:5,求得CD =270cm,故AC =CD -AD =270-60=210cm .例4、2012浙江省绍兴,19如图1,某超市从一楼到二楼的电梯AB 的长为米,按坡角∠BAC 为32°.1求一楼与二楼之间的高度BC 精确到米;2电梯每级的水平级宽均是米,如图2.小明跨上电梯时,该电梯以每少上升2级的高度运行,10秒后他上升了多少米精确到米 备用数据:sin 32°=,cos 32°=,tan 32°=.解析1在Rt△ABC 中,已知∠B AC=32°,斜边AB 的长为米,根据锐角三角函数的定义即可求得第20题图MPDCBA第12题A BC3018一楼与二楼之间的高度BC .2先计算1级电梯的高,再根据10秒钟电梯上升了20级可计算10秒后他上升的高度.答案解:1∵sin ∠BAC =ABBC ,∴BC =AB ×sin32°=×≈米. 2∵tan32°= 级高级宽,∴级高=级宽×tan32°=×=,∵10秒钟电梯上升了20级,∴小明上升的高度为:20×米. 例5、2012浙江丽水,19学校校园内有一小山坡,经测量,坡角∠ABC=30°,斜坡AB 长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD 的坡比是1:3即为CD 与BC 的长度之比,A,D 两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.解析:∴AD=AC-CD=6-23.答:开挖后小山坡下降的高度AD 为6-23米.例6、2012深圳小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图3,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为 .米解答:如图3—1,根据坡角易求树的下半部分的高为2米,树的上半部分所在直角三角形的水平距离为(+823米,由两个直接三角形相似易求树的上半部分高度为(43米,知树的高度为()63米,选择A例72012江苏泰州24如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡上走到C 处,这时,PC=30m,点C 与点A 在同一水平线上,A 、B 、P 、C 在同一平面内.1求居民楼AB 的高度;2求C 、A 之间的距离.精确到,参考数据:2≈,3≈,6≈60° CA B 45°图330°21图3-1第24题图解析过C作BP的垂线,垂足为G,利用特殊Rt△PCG和Rt△ABP中的边角关系,我们容易计算出CG即AB的长,最后用AC=BP+PG,就是C、A之间的距离.答案1过C作BP的垂线,垂足为G,在Rt△PCG中,CG=PCsin450=30×2所以=m2PG= PCcos450=30×2=所以C、A之间的距离例82012四川水务部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图9所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为,加固后大坝的横截面为梯形ABED,CE的长为8米.1已知需加固的大坝长为150米,求需要填土石方多少立方米2求加固后大坝背水坡面DE的坡度.解析1求出横截面△DCE的面积,然后乘以坝堤长度即可得出体积.可以分别过点A,D 作BC边上的高将问题转化为解直角三角形问题.2求大坝背水坡面DE的坡度就是求坡面DE上一点到BE的铅直高度与它到点E的水平宽度的比,这一点通常取梯形的顶点.答案解:1过点A作AG⊥BC于G,过点D作DH⊥BC于H,∴AG=DH.在Rt△ABG中,AG=sin60°·AB×16=∴DH=S△DCE=12·DH·CE=12×8=∴需要填土石方150=3.2在Rt△DHC中,HC24,∴HE=HC+CE=24+8=32.∴加固后大坝背水坡面DE的坡度=DHHE.AB CD图9E例9 2012江苏苏州如图,已知斜坡AB 长60米,坡角即∠BAC 为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体用阴影表示修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .请讲下面2小题的结果都精确到米,参考数据:≈.1若修建的斜坡BE 的坡角即∠BEF 不大于45°,则平台DE 的长最多为 米;2一座建筑物GH 距离坡角A 点27米远即AG=27米,小明在D 点测得建筑物顶部H 的仰角即∠HDM 为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米解答: 解:1∵修建的斜坡BE 的坡角即∠BEF 不大于45°,∴∠BEF 最大为45°当∠BEF=45°时,EF 最短,此时ED 最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF ﹣EF=15﹣1≈;2过点D 作DP⊥AC,垂足为P .在Rt△DPA中,DP=AD=×30=15,PA=AD•cos30°=×30=15. 在矩形DPGM 中,MG=DP=15,DM=PG=15+27,在Rt△DMH 中,HM=DM•tan30°=×15+27=15+9. GH=HM+MG=15+15+9≈.答:建筑物GH 高为米.A B C DE GH。
第二节锐角三角函数及解直角三角形的应用
1.(2017天水中考)在正方形网格中,△ABC的位置如图所示,则cos B的值为( B)
A.1
2
B.
2
2
C.
3
2
D.
3
3
(第1题图)
(第2题图)
2.(2017重庆中考B卷)如图,已知点C与某建筑物底端B相距306 m(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195 m至坡顶D处,斜坡CD的坡度(或坡比)i=1∶2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1 m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( A)
A.29.1 m B.31.9 m C.45.9 m D.95.9 m
3.(2017苏州中考)如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为( B)
A.4 km B.(2+2)km
C.2 2 km D.(4-2)km
(第3题图)
(第4题图)
4.(2017泰安中考)如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40 min 到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( D )
A .20海里
B .40海里
C .2033海里
D .4033
海里
5.(2017武威中考)已知α,β均为锐角,且满足|sin α-1
2|+(tan β-1)2=0,则α+
β=__75°__.
6.如图,在河两岸分别有A ,B 两村,现测得三点A ,B ,D 在一条直线上,A ,C ,E 在一条直线上,若BC∥DE,DE =90 m ,BC =70 m ,BD =20 m ,那么A ,B 两村间的距离为__70__m .
(第6题图)
(第7题图)
7.(2017山西中考)如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10 m 的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5 m ,则这棵树的高度为__15.3__m .(结果保留一位小数.参考数据:sin 54°≈0.809 0,cos 54°≈0.587 8,tan 54°≈
1.376 4)
8.(包头中考)如图,已知四边形ABCD 中,∠ABC =90°,∠ADC =90°,
AB =6,CD =4,BC 的延长线与AD 的延长线交于点E. (1)若∠A=60°,求BC 的长; (2)若sin A =4
5
,求AD 的长.
(注意:本题中的计算过程和结果均保留根号) 解:(1)∵∠A=60°,∠ABE =90°, AB =6,tan A =
BE AB
, ∴∠E =30°,BE =tan 60°·6=6 3. 又∵∠CDE=90°,CD =4,sin E =CD
CE ,
∴CE =8,
∴BC =BE -CE =63-8;
(2)∵∠ABE=90°,AB =6,sin A =45=BE
AE ,
∴设BE =4x ,则AE =5x ,得AB =3x , ∴3x =6,得x =2, ∴BE =8,AE =10,
∴tan E =AB BE =68=CD DE =4DE ,解得DE =16
3,
∴AD =AE -DE =10-
163=143,即AD 的长是14
3
.
9.(2017淄博中考)如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( D )
A .1
2
B .1
C . 3
D .2
(第9题图)
(第10题图)
10.(2017遵义六中二模)如图,要在宽为22 m 的九州大道两边安装路灯,路灯的灯臂CD 长2
m ,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时路灯的灯柱BC 高度应该设计为( D )
A .(11-22)m
B .(113-22)m
C .(11-23)m
D .(113-4)m
11.(2017苏州中考)如图,在一笔直的沿湖道路l 上有A ,B 两个游船码头,观光岛屿C 在码头A 北偏东60°的方向,在码头B 北偏西45°的方向,AC =4 km .游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B ,设开往码头A ,B 的游船速度分别为v 1,v 2,若回到A ,B 所
用时间相等,则v 1
v 2
=.(结果保留根号)
12.小华为了测量楼房AB 的高度,他从楼底的B 处沿着斜坡向上行走20 m ,到达坡顶D
处.已知斜坡的坡角为15°.(以下计算结果精确到0.1 m)
(1)求小华此时与地面的垂直距离CD的值;
(2)小华的身高ED是1.6 m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(参考数据:sin15°≈0.259,cos15°≈0.966)
解:(1)在Rt△BCD中,∠CBD=15°,BD=20,
∴CD=BD·sin15°≈5.2 m.
答:小华与地面的垂直距离CD的值是5.2 m;
(2)在Rt△AFE中,∵∠AEF=45°,
∴AF=EF=BC,
由(1)知,BC=BD·cos15°≈19.3(m),
∴AB=AF+DE+CD
=19.3+1.6+5.2
=26.1(m).
答:楼房AB的高度是26.1 m.
13.(2017黔东南中考)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12 m,坡角α为60°,根据有关部门的规定,α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数,参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,2≈1.41,3≈1.73,5≈2.24)
解:如图,假设点D移到D′的位置时,恰好α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′.
∵CD=12 m,∠DCE=60°,
∴DE=CD·sin60°=12×
3
2
=6 3 m,
CE=CD·cos60°=12×1
2
=6 m.
∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,
∴DE=D′E′=6 3 m.
∵∠D′CE′=39°,
∴CE′=D′E′
tan39°≈
63
0.81
≈12.8,
∴EE′=CE′-CE=12.8-6=6.8 m≈7 m.
答:学校至少要把坡顶D向后水平移动7 m才能保证教学楼的安全.。