图遍历的演示实习报告
- 格式:doc
- 大小:106.00 KB
- 文档页数:17
图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。
图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。
图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。
本实验旨在通过实际操作,掌握图的遍历算法。
在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。
二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。
三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。
实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。
四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。
具体实现时,我们可以使用递归或栈来实现深度优先搜索。
算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。
2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。
具体实现时,我们可以使用队列来实现广度优先搜索。
算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。
3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。
-实验三、图的遍历操作一、目的掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储构造;掌握DFS及BFS对图的遍历操作;了解图构造在人工智能、工程等领域的广泛应用。
二、要求采用邻接矩阵和邻接链表作为图的存储构造,完成有向图和无向图的DFS 和BFS操作。
三、DFS和BFS 的根本思想深度优先搜索法DFS的根本思想:从图G中*个顶点Vo出发,首先访问Vo,然后选择一个与Vo相邻且没被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且没被访问过的顶点Vj访问,……依次继续。
如果当前被访问过的顶点的所有邻接顶点都已被访问,则回退到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样方法向前遍历。
直到图中所有的顶点都被访问。
广度优先算法BFS的根本思想:从图G中*个顶点Vo出发,首先访问Vo,然后访问与Vo相邻的所有未被访问过的顶点V1,V2,……,Vt;再依次访问与V1,V2,……,Vt相邻的起且未被访问过的的所有顶点。
如此继续,直到访问完图中的所有顶点。
四、例如程序1.邻接矩阵作为存储构造的程序例如#include"stdio.h"#include"stdlib.h"#define Ma*Verte*Num 100 //定义最大顶点数typedef struct{char ve*s[Ma*Verte*Num]; //顶点表int edges[Ma*Verte*Num][Ma*Verte*Num]; //邻接矩阵,可看作边表int n,e; //图中的顶点数n和边数e}MGraph; //用邻接矩阵表示的图的类型//=========建立邻接矩阵=======void CreatMGraph(MGraph *G){int i,j,k;char a;printf("Input Verte*Num(n) and EdgesNum(e): ");scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数scanf("%c",&a);printf("Input Verte* string:");for(i=0;i<G->n;i++){scanf("%c",&a);G->ve*s[i]=a; //读入顶点信息,建立顶点表}for(i=0;i<G->n;i++)for(j=0;j<G->n;j++)G->edges[i][j]=0; //初始化邻接矩阵printf("Input edges,Creat Adjacency Matri*\n");for(k=0;k<G->e;k++) { //读入e条边,建立邻接矩阵 scanf("%d%d",&i,&j); //输入边〔Vi,Vj〕的顶点序号G->edges[i][j]=1;G->edges[j][i]=1; //假设为无向图,矩阵为对称矩阵;假设建立有向图,去掉该条语句}}//=========定义标志向量,为全局变量=======typedef enum{FALSE,TRUE} Boolean;Boolean visited[Ma*Verte*Num];//========DFS:深度优先遍历的递归算法======void DFSM(MGraph *G,int i){ //以Vi为出发点对邻接矩阵表示的图G进展DFS搜索,邻接矩阵是0,1矩阵 int j;printf("%c",G->ve*s[i]); //访问顶点Vivisited[i]=TRUE; //置已访问标志for(j=0;j<G->n;j++) //依次搜索Vi的邻接点if(G->edges[i][j]==1 && ! visited[j])DFSM(G,j); //〔Vi,Vj〕∈E,且Vj未访问过,故Vj为新出发点}void DFS(MGraph *G){int i;for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)if(!visited[i]) //Vi未访问过DFSM(G,i); //以Vi为源点开场DFS搜索}//===========BFS:广度优先遍历=======void BFS(MGraph *G,int k){ //以Vk为源点对用邻接矩阵表示的图G进展广度优先搜索 int i,j,f=0,r=0;int cq[Ma*Verte*Num]; //定义队列for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)cq[i]=-1; //队列初始化printf("%c",G->ve*s[k]); //访问源点Vkvisited[k]=TRUE;cq[r]=k; //Vk已访问,将其入队。
数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。
2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。
四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。
图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
1.问题描述:不少涉及图上操作的算法都是以图的遍历操作为基础的。
试写一个程序,演示在连通的无向图上访问全部结点的操作。
2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。
3.测试数据:教科书图7.33。
暂时忽略里程,起点为北京。
4.实现提示:设图的结点不超过30个,每一个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。
通过输入图的全部边输入一个图,每一个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。
5.选作内容:(1) .借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。
(2) .以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或者树形打印生成树。
1.为实现上述功能,需要有一个图的抽象数据类型。
该抽象数据类型的定义为:ADT Graph{V 是具有相同特性的数据元素的集合,称为顶点集。
R={VR}VR={<v,w> | v ,w v 且P(v,w),<v,w>表示从v 到w 得弧,谓词P(v,w)定义了弧<v,w>的意义或者信息}} ADT Graph2.此抽象数据类型中的一些常量如下:#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};3.树的结构体类型如下所示:typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。
图--0,1;网--权值int *Info; //与弧相关的信息的指针,可省略}ArcCell, AdjMatrix[max_n][max_n];typedef struct{VertexType vexs[max_n]; //顶点AdjMatrix arcs; //邻接矩阵int vexnum, arcnum; //顶点数,边数}MGraph;//队列的类型定义typedef int QElemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode, *QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}LinkQueue;4.本程序包含三个模块1).主程序模块void main( ){创建树;深度优先搜索遍历;广度优先搜索遍历;}2).树模块——实现树的抽象数据类型3).遍历模块——实现树的深度优先遍历和广度优先遍历各模块之间的调用关系如下:主程序模块树模块遍历模块#include "stdafx.h"#include<iostream>using namespace std;#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。
图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。
在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。
本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。
二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。
三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。
四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。
通过邻接矩阵表示图的关系。
```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。
3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。
4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。
经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。
可以看出,DFS算法相对于BFS算法具有更高的效率。
五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。
2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。
DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。
3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。
这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
数据结构图的遍历实验报告篇一:【数据结构】图的存储和遍历实验报告《数据结构B》实验报告系计算机与电子专业级班姓名学号XX年1 0 月9日1. 上机题目:图的存储和遍历2. 详细设计#include#define GRAPHMAX 10#define FALSE 0#define TRUE 1#define error printf#define QueueSize 30typedef struct{char vexs[GRAPHMAX];int edges[GRAPHMAX][GRAPHMAX];int n,e;}MGraph;int visited[10];typedef struct{int front,rear,count;int data[QueueSize];}CirQueue;void InitQueue(CirQueue *Q) {Q->front=Q->rear=0;Q->count=0;}int QueueEmpty(CirQueue *Q){return Q->count=QueueSize;}int QueueFull(CirQueue *Q){return Q->count==QueueSize;}void EnQueue(CirQueue *Q,int x) { if(QueueFull(Q)) error("Queue overflow");文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持else{ Q->count++;Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}int DeQueue(CirQueue *Q){int temp;if(QueueEmpty(Q)){ error("Queue underflow");return NULL;}else{ temp=Q->data[Q->front]; Q->count--;Q->front=(Q->front+1)%QueueSize;return temp;}}void CreateMGraph(MGraph *G){int i,j,k;char ch1,ch2;printf("\n\t\t 请输入定点数,边数并按回车 (格式如:3,4):");scanf("%d,%d", &(G->n),&(G->e));for(i=0;in;i++){ getchar();printf("\n\t\t 请输入第%d个定点数并按回车:",i+1);scanf("%c",&(G->vexs[i]));}for(i=0;in;i++)for(j=0;jn;j++)G->edges[i][j]=0;for(k=0;ke;k++){ getchar();printf("\n\t\t 请输入第%d条边的顶点序号 (格式如:i,j ):",k+1);scanf("%c,%c",&ch1,&ch2);for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;}}void DFSM(MGraph *G,int i){int j;printf("\n\t\t 深 度 优 列: %c\n",G->vexs[i]);visited[i]=TRUE;for(j=0;jn;j++)if(G->edges[i][j]==1 &&////////////////DFSM(G,j);} void BFSM(MGraph *G,int k){ int i,j;CirQueue Q;InitQueue(&Q);printf("\n\t\t 广 度 优列: %c\n",G->vexs[k]);visited[k]=TRUE;EnQueue(&Q,k); while(!QueueEmpty(&Q)){ i=DeQueue(&Q);先遍历序 visited[j]!=1)先遍历序for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) { visited[j]=TRUE;EnQueue(&Q,j);}}}void DFSTraverseM(MGraph *G) {int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) DFSM(G,i);}void BFSTraverseM(MGraph *G) {int i;for(i=0;in;i++) visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) BFSM(G,i);}void main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t 建立一个有向图的邻接矩阵表示\n"); CreateMGraph(G);printf("\n\t\t 已建立一个有向图的邻接矩阵存储\n"); for(i=0;in;i++){ printf("\n\t\t");for(j=0;jn;j++)printf("%5d",G->edges[i][j]);}getchar();ch1='y';while(ch1=='y'||ch1=='Y'){ printf("\n");printf("\n\t\t 图的存储与遍历");("\n\t\t** ******************************");printf("\n\t\t*1 ---- 更新邻接矩阵*"); printf("\n\t\t*2 ---- 深度优先遍历*"); printf("\n\t\t*3 ---- 广度优先遍历*"); printf("\n\t\t*0 ---- 退出*");printf("\n\t\t** ******************************");}} printf("\n\t\t 请选择菜单号 ( 0 ---------------- 3) "); scanf("%d",&ch2); getchar(); switch(ch2) { case1:CreateMGraph(G); printf("\n\t\t 图的邻接矩阵存储建立完成\n");break; case 2:DFSTraverseM(G);break; case3:BFSTraverseM(G);break; case 0:ch1='n';break;default:printf("\n\t\t 输出错误!清重新输入!"); }3. 调试分析(1)调试过程中主要遇到哪些问题?是如何解决的?由于实习之初对邻接表的存储结构了解不是很清楚,所以在运行出了一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。
图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。
图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。
在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。
首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。
通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。
这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。
接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。
通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。
这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。
通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。
DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。
因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。
总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。
通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。
希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。
图的遍历实验报告实验4:图的遍历主题:图及其应用——图的遍历类;姓名:学生编号:完成日期:一、需求分析1。
问题描述:许多涉及图操作的算法都是基于图遍历操作的。
试着写一个程序来演示访问连通无向图上所有节点的操作。
2.基本要求:邻接表作为存储结构,实现了连通无向图的深度优先和广度优先遍历。
从用户指定的节点开始,分别输出每次遍历下的节点访问顺序和相应生成树的边集。
3.测试数据:教科书中的图7.33。
暂时忽略里程,从北京开始。
4.实施提示: 假设一个图不超过30个节点,每个节点用一个数字表示(如果一个图有n个节点,它们的数字是1,2,分别为n)。
通过将一个图的所有边输入到一个图中,每个边是一对,边的输入顺序可以被限制。
请注意,生成树的边是有向边,端点的顺序不能颠倒。
5.选定内容:(1)。
借助堆栈类型(自行定义和实现),使用非递归算法实现深度优先遍历。
(2)以邻接表为存储结构,建立深度优先生成树和广度优先生成树,然后根据凹表或树打印生成树。
为了实现上述功能,需要图形的抽象数据类型。
抽象数据类型定义为:ADT图{数据对象v:v是一组具有相同特征的数据元素,称为顶点集。
数据关系r:R={VR} VR={ | v,wv和P(v,w),表示从v到w的弧,谓词P(v,w)定义弧的含义或信息}} ADT图2。
该抽象数据类型中的一些常量如下:#定义true1 #定义false 0 #定义ok 1 #定义max _ n 20//最大顶点数typedef char顶点类型[20];typedef枚举{DG,DN,AG,AN}图形种类;枚举BOOL {假,真};3.树的结构类型如下:Typedef结构{//圆弧节点和矩阵的int类型调整;//VRType是弧的类型。
图的遍历主题——图;图及其应用——图的遍历类;姓名:学生编号:完成日期:一、需求分析1。
问题描述:许多涉及图操作的算法都是基于图遍历操作的。
试着写一个程序来演示访问连通无向图上所有节点的操作。
图遍历的演示题目:试设计一个程序,演示在连通和非连通的无向图上访问全部结点的操作班级:07级计科院网络工程姓名:刘振帮学号:07066017完成日期:一、需求分析1、以邻接多重表为存储结构;2、实现连通和非连通的无向图的深度优先和广度优先遍历;3、要求利用栈实现无向图的广度和深度优先遍历;4、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和生成树的边集;5、用凹入表打印生成树;6、求出从一个结点到另外一个结点,但不经过另外一个指定结点的所有简单路径;6、本程序用C++语言编写,在TURBO C++ 3.0环境下通过。
二、概要设计1、设定图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为点集.数据关系R:R={VR}VR={(v,w)|v,w属于V,(v,w)表示v和w之间存在的路径} 基本操作P:CreatGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合.操作结果:按V和VR是定义构造图G.DestroyGraph(&G)初始条件:图G存在操作结果:销毁图GLocateVex(G,u)初始条件: 图G存在,u和G中顶点有相同的特征操作结果:若图G中存在顶点u,则返回该顶点在图中的位置;否则返回其他信息GetVex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的值FirstAjvex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的第一个邻接顶点,若顶在图中没有邻接顶点,则返回为空NextAjvex(G,v,w)初始条件: 图G存在,v是G中顶点,w是v的邻接顶点操作结果:返回v的下一个邻接顶点,若w是v的最后一个邻接顶点,则返回空DeleteVexx(&G,v)初始条件: 图G存在,v是G中顶点操作结果:删除顶点v已经其相关的弧DFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果: 对图进行深度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败BFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果:对图进行广度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败}ADT Graph2、设定栈的抽象数据类型:ADT Stack{数据对象:D={ai | ai∈CharSet,i=1,2,……,n,n≥0}数据关系:R1={<ai-1,ai> | ai-1,ai∈D,i=2,……,n}基本操作:InitStack(&S)操作结果:构造一个空栈S。
DestroyStack(&S)初始条件:栈S已存在。
操作结果:栈S被销毁。
Push(&S,e);初始条件:栈S已存在。
操作结果:在栈S的栈顶插入新的栈顶元素e。
Pop(&S,e);初始条件:栈S已存在。
操作结果:删除S的栈顶元素,并以e返回其值。
StackEmpty(S)初始条件:栈S已存在。
操作结果:若S为空栈,则返回TRUE,否则返回FALSE。
}ADT Stack3、设定队列的抽象数据类型:ADT Queue{数据对象:D={ai|ai属于Elemset,i=1,2….,n,n>=0}数据关系:R1={<ai-1,ai>|ai-1,ai属于D,i=1,2,…,n}约定ai为端为队列头,an为队列尾基本操作:InitQueue(&Q)操作结果:构造一个空队列QDestryoQueue(&Q)初始条件:队列Q已存在。
操作结果:队列Q被销毁,不再存在。
EnQueue(&Q,e)初始条件:队列Q已经存在操作结果:插入元素e为Q的新的队尾元素DeQueue(&Q,&E)初始条件:Q为非空队列操作结果:删除Q的队尾元素,并用e返回其值QueueEmpty(Q)初始条件:队列已经存在操作结果:若队列为空,则返回TRUE,否则返回FLASE}ADT Queue4、本程序包含九个模块:1)主程序模块void main (){手动构造一个图;从文件导入一个图;显示图的信息;进行深度优先遍历图;进行广度优先遍历图;保存图到一个文件;寻找路径;销毁一个图;};2)手动构造一个图-自己输入图的顶点和边生成一个图;3)从文件导入一个图;4)显示图的信息-打印图的所有顶点和边;5)进行深度优先遍历图-打出遍历的结点序列和边集;6)进行广度优先遍历图-打出遍历的结点序列和边集;7)保存图到一个文件;8)寻找从起点到终点,但中间不经过某点的所有简单路径;9)销毁图。
三、详细设计1、顶点,边和图类型#define MAX_INFO 10 /* 相关信息字符串的最大长度+1 */#define MAX_VERTEX_NUM 20 /* 图中顶点数的最大值*/typedef char InfoType; /*相关信息类型*/typedef char VertexType; /* 字符类型 */typedef enum{unvisited,visited}VisitIf;typedef struct EBox{VisitIf mark; /* 访问标记 */int ivex,jvex; /* 该边依附的两个顶点的位置 */struct EBox *ilink,*jlink; /* 分别指向依附这两个顶点的下一条边 */ InfoType *info; /* 该边信息指针 */}EBox;typedef struct{VertexType data;EBox *firstedge; /* 指向第一条依附该顶点的边 */}VexBox;typedef struct{VexBox adjmulist[MAX_VERTEX_NUM];int vexnum,edgenum; /* 无向图的当前顶点数和边数 */}AMLGraph;图的基本操作如下:int LocateVex(AMLGraph G,VertexType u);//查G和u有相同特征的顶点,若存在则返回该顶点在无向图中位置;否则返回-1。
VertexType& GetVex(AMLGraph G,int v);//以v返回邻接多重表中序号为i的顶点。
int FirstAdjVex(AMLGraph G,VertexType v);//返回v的第一个邻接顶点的序号。
若顶点在G中没有邻接顶点,则返回-1。
int NextAdjVex(AMLGraph G,VertexType v,VertexType w);//返回v的(相对于w的)下一个邻接顶点的序号若w是v的最后一个邻接点,则返回-1。
void CreateGraph(AMLGraph &G);//采用邻接多重表存储结构,构造无向图G。
Status DeleteArc(AMLGraph &G,VertexType v,VertexType w);//在G中删除边<v,w>。
Status DeleteVex(AMLGraph &G,VertexType v);//在G中删除顶点v及其相关的边。
void DestroyGraph(AMLGraph &G);//销毁一个图void Display(AMLGraph G);//输出无向图的邻接多重表G。
void DFSTraverse(AMLGraph G,VertexType start,int(*visit)(VertexType));//从start顶点起,(利用栈非递归)深度优先遍历图G。
void BFSTraverse(AMLGraph G,VertexType start,int(*Visit)(VertexType));//从start顶点起,广度优先遍历图G。
void MarkUnvizited(AMLGraph G);//置边的访问标记为未被访问。
其中部分操作的伪码算法如下:void CreateGraph(AMLGraph &G){ /* 采用邻接多重表存储结构,构造无向图G */DestroyGraph(G); /*如果图不空,先销毁它*/输入无向图的顶点数G.vexnum;输入无向图的边数G.edgenum;输入顶点的信息IncInfo;依次输入无向图的所有顶点;for(k=0;k<G.edgenum;++k) /* 构造表结点链表 */{读入两个顶点va、vb;i=LocateVex(G,va); /* 一端 */j=LocateVex(G,vb); /* 另一端 */p=(EBox*)malloc(sizeof(EBox));p->mark=unvisited; /* 设初值 */p->ivex=i;p->jvex=j;p->info=NULL;p->ilink=G.adjmulist[i].firstedge; /* 插在表头 */G.adjmulist[i].firstedge=p;p->jlink=G.adjmulist[j].firstedge; /* 插在表头 */G.adjmulist[j].firstedge=p;}}void Display(AMLGraph G){ /* 输出无向图的邻接多重表G */MarkUnvizited(G);输出无向图的所有顶点;for(i=0;i<G.vexnum;i++){p=G.adjmulist[i].firstedge;while(p)if(p->ivex==i) /* 边的i端与该顶点有关 */{if(!p->mark) /* 只输出一次 */{cout<<G.adjmulist[i].data<<'-'<<G.adjmulist[p->jvex].data<<ends;p->mark=visited;}p=p->ilink;}else /* 边的j端与该顶点有关 */{if(!p->mark) /* 只输出一次 */{cout<<G.adjmulist[p->ivex].data<<'-'<<G.adjmulist[i].data<<ends;p->mark=visited;}p=p->jlink;}cout<<endl;}}void DFSTraverse(AMLGraph G,VertexType start,int(*visit)(VertexType)){ /*从start顶点起,深度优先遍历图G(非递归算法)*/InitStack(S);w=LocateVex(G,start); /*先确定起点start在无向图中的位置*/for(v=0;v<G.vexnum;v++)Visited[v]=0; /*置初值 */for(v=0;v<G.vexnum;v++)if(!Visited[(v+w)%G.vexnum]){Push(S,(v+w)%G.vexnum); /*未访问,就进栈*/while(!StackEmpty(S)){Pop(S,u);if(!Visited[u]){Visited[u]=1; /*未访问的标志设为访问状态,并输出它的值*/ visit(G.adjmulist[u].data);for(w=FirstAdjVex(G,G.adjmulist[u].data);w>=0;w=NextAdjVex(G,G.adjmulist[u].data,G.adjmulist[w].data)) if(!Visited[w])Push(S,w);}}}DestroyStack(S); /*销毁栈,释放其空间*/}void BFSTraverse(AMLGraph G,VertexType start,int(*Visit)(VertexType)) { /*从start顶点起,广度优先遍历图G*/for(v=0;v<G.vexnum;v++)Visited[v]=0; /* 置初值 */InitQueue(Q);z=LocateVex(G,start); /*先确定起点start在无向图中的位置*/for(v=0;v<G.vexnum;v++)if(!Visited[(v+z)%G.vexnum]) /* v尚未访问 */{Visited[(v+z)%G.vexnum]=1; /* 设置访问标志为TRUE(已访问) */ Visit(G.adjmulist[(v+z)%G.vexnum].data);EnQueue(Q,(v+z)%G.vexnum);while(!QueueEmpty(Q)) /* 队列不空 */{DeQueue(Q,u);for(w=FirstAdjVex(G,G.adjmulist[u].data);w>=0;w=NextAdjVex(G,G.adjmulist[u].data,G.adjmulist[w].data)) if(!Visited[w]){Visited[w]=1;Visit(G.adjmulist[w].data);EnQueue(Q,w);}}}DestroyQueue(Q); /*销毁队列,释放其占用空间*/}2、栈类型#define STACK_INIT_SIZE 100 /* 存储空间初始分量*/ #define STACKINCREMENT 10 /* 存储空间分配增量*/ typedef int SElemType;typedef struct{SElemType *base;SElemType *top; /*栈顶指针*/int stacksize;}SqStack;栈的基本操作如下:Status InitStack(SqStack &S);//构造一个空栈S。