高考数学复习回归课本基础训练(文科)1
- 格式:doc
- 大小:313.50 KB
- 文档页数:4
文科高考基础训练(1)1.已知全集U=R,则正确表示集合M={—1,0,1}和N= { x |x+x=0}关系的韦恩(Venn)图是()2.已知平面向量a =(x,1),b =(—x,x2),则向量a+b()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线3.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号)。
若第5组抽出的号码为22,则第8组抽出的号码应是。
若用分层抽样方法,则40岁以下年龄段应抽取人。
4.已知向量与互相垂直,其中.(1)求和的值;(2)若5cos(),02πθϕϕϕ-=<<,求的值。
文科高考基础训练(2)1.若函数是函数的反函数,且,则()A.B.C.D.2.已知等比数列的公比为正数,且,,则()A.BC.D.3.以点(2,-1)为圆心且与直线相切的圆的方程是_______________________。
4.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7。
(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
文科高考基础训练(3)1.给定下列四个命题:()①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。
其中,为真命题的是A.①和②B.②和③C.③和④D.②和④2.已知中,的对边分别为。
若,则()A.2 B.C.D3.某高速公路收费站入口处的安全标识墩如图4所示。
2019年高考数学5月回归基础材料一注意:蓝色标题部分为理科高考范围内容,文科不作要求! 一、基本知识(一)集合(必修1 第一章)1、集合及其表示(A )2、子集(B )3、交集、并集、补集(B )(1)含n 个元素的集合的子集个数为2n,真子集(非空子集)个数为21n-; (2);B B A A B A B A =⇔=⇔⊆Y I 注意:讨论的时候不要遗忘了A =∅的情况; (3)(),()I I I I I I C A B C A C B C A B C A C B ==U I I U .注:①理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变 量的取值?还是曲线上的点?…;如:{}x y x lg |=与{}x y y lg |=及{}x y y x lg |),(=.②数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具, 将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决,特别是在集合的交、并、补的运算之中.注意∅是任何集合的子集,是任何非空集合的真子集.注意补集思想的应用(反证法,对立事件,排除法等).(二)函数概念与基本初等函数(必修1 第二章)1、函数的概念(B ):注意 ①第一个集合中的元素必须有象;②一对一,或多对一.判断对应是否为映射时,抓住两点:(1)A 中元素必须都有象且唯一;(2)B 中元素不一定都有 原象,并且A 中不同元素在B 中可以有相同的象.2、函数的基本性质(B )函数定义域的求法:函数解析式有意义;符合实际意义;定义域优先原则!复合函数的定义域:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式()a g x b ≤≤解出即可;若已知[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于当[,]x a b ∈时,求()g x 的值域(即()f x 的定义域).函数解析式的求法:代入法,凑配法,换元法,待定系数法,函数方程法. 函数值域的求法:(1)配方法――二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题.求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系).如:求223y x x =-+,[,2]x a a ∈+的最大值与最小值(最大值分两类;最小值分三类).(2)换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型.如:求()sin cos sin cos f x x x x x =⋅++的值域.(3)函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性.(4)单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性. 如:函数()2x af x x +=+在上(2,)-+∞单调递减,求a 的取值范围. (5)数形结合法――函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、绝对值的意义等,注意:求两点距离之和时,要将函数式变形,使两定点在x 轴的两侧,而求两点距离之差时,则要使两定点在x 轴的同侧.如:求函数()f x (距离之和或向量法).(6)判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式.常见题型:①2b y k x =+型,可直接用不等式性质,如:214y x =+;②2bxy x mx n=++型,先化简,再用均值不等式,如:22425x y x x =-+(0)x >;③22x m x n y x mx n ''++=++型,通常用判别式法(或分离常数化为②型);④2x m x n y mx n ''++=+型,可县化简为b y ax c x=++(0,0)a b >>用均值不等式法或函数的单调性解决.(7)不等式法――利用基本不等式,)a b a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧.如:0,0x y >>,且x y +,求x y +的最大值.又如:求2214()110f x x x=+--,1x << (8)导数法――一般适用于高次多项式函数. 如:求()ln f x x x =,0x >的极小值.提醒:(1)求函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论.如:已知函数(37)2,1()log ,1aa x x f x x x -+<⎧=⎨≥⎩单调递减,求a 的取值范围.复合函数的有关问题:(1)复合函数定义域求法:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式()a g x b ≤≤解出即可;若已知[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于当[,]x a b ∈时,求()g x 的值域(即()f x 的定义域). (2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =;②分别研究内、外函数在各自定义域内的单调性;③根据“同增异减”来判断原函数在其定义域内的单调性.注意:外函数)(u f y =的定义域是内函数)(x g u =的值域.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....;⑵)(x f 是奇函数⇔1)()(0)()()()(-=-⇔=+-⇔-=-x f x f x f x f x f x f (()0)f x ≠; ⑶)(x f 是偶函数()()()(||)()()01()f x f x f x f x f x f x f x -⇔-==⇔--=⇔= (()0)f x ≠; ⑷奇函数)(x f 在原点有定义,则0)0(=f (可用于求参数);⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑹若所给函数的解析式较为复杂,应先化简,等价变形,再判断其奇偶性.如:())f x x =是 函数. 函数的单调性⑴单调性的定义:)(x f 在区间M 上是增(减)函数,,21M x x ∈∀⇔当21x x <时,)0(0)()(21><-x f x f )0(0)]()()[(2121<>--⇔x f x f x x )0(0)()(2121<>--⇔x x x f x f ;⑵单调性的判定:①定义法:注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法(同增异减);④图像法.注:证明单调性要用定义法或导数法;求单调区间,先求定义域;多个单调区间之间不能用“并集”、“或”;单调区间不能用集合或不等式表示.函数的周期性⑴周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期.所有正周期中最小的称为函数的最小正周 期.如没有特别说明,遇到的周期都指最小正周期.⑵函数周期的判定:①定义法(试值); ②图像法; ③公式法(利用⑶中的结论). ⑶与周期有关的结论:①)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2; ②()y f x =对x R ∈时,()()f x a f x +=-(或1()()f x a f x +=-),则()y f x =是周期为2a的周期函数;③若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 是周期为2a 的周期函数; ④若()y f x =是奇函数,其图像又关于直线x a =对称,则()f x 是周期为4a 的周期函数.3、指数与对数(B )(1)log (0,1,0)ba a Nb N a a N =⇔=>≠>; (2)log log (0,1,0)log b a b NN a b a b N a=>≠>、、. 4、指数函数的图象与性质(B )x y a =(要对01a <<以及1a >展开讨论.)5、对数函数的图象与性质(B )log a y x =(要对01a <<以及1a >展开讨论.)注:同底的对数函数和指数函数y x =关于对称.(如2xy =与2log yx =)如:方程230x x +-=与2log 30x x +-=的根之和为 .6、幂函数(A )在考查学生对幂函数性质的掌握和运用函数性质解决问题时,涉及的幂函数()f x x α=中的α常在集合111{2,1,,,,1,2,3}232---中取值. 7、函数与方程(A ) 8、函数模型及其应用(B )补充:1、基本初等函数的图像与性质 ⑴幂函数:αx y=()R ∈α ; ⑵指数函数:)1,0(≠>=a a a y x ; ⑶对数函数:)1,0(log ≠>=a a x ya ; ⑷正弦函数:x y sin =;⑸余弦函数:x y cos =; ⑹正切函数:x y tan =; ⑺一元二次函数:2(0)y ax bx c a =++≠;⑻其它常用函数:①正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k xky ; 特别的xy 1=;函数)0(>+=a x a x y ;函数1y x x=-(0)x ≠.掌握函数(0)ay x a x=+>的图象和性质:(如右图)⑼关注基本初等函数间图像的关系: 如:①y x =与xy a =(1)a >相切,则a = ;变:xy a =(1)a >的定义域、值域均为[,]m n (0)n m >>,则a ∈ . ②2yax =(0)a >与ln y x =相切,则a = .⑽研究函数①()ln f x x x =(0)x >;②ln ()x f x x=(0)x >2、二次函数: ⑴解析式:(0)a > ①一般式:c bx ax x f ++=2)(;②顶点式:k h x a x f +-=2)()(,),(k h 为顶点;③零点式:))(()(21x x x x a x f --=.⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号.⑶二次函数问题解决方法:①数形结合;②分类讨论.(二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.) 3、函数图象⑴图象作法 :①描点法(注意三角函数的五点作图)②图象变换法③导数法. ⑵图象变换:① 平移变换: ⅰ)()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ()()y f x y f x k =→=±,(0)k >———上“+”下“-”; ② 伸缩变换:ⅰ)()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标伸长为原来的ω1倍;ⅱ)()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标伸长为原来的A 倍;③ 对称变换:ⅰ)(x f y =−−→−)0,0()(x f y --=;ⅱ)(x f y =−→−=0y )(x f y -=; ④ 翻转变换:ⅰ|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象);⑶函数图象(曲线)对称性的证明:ⅰ证明函数)(x f y =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;ⅱ证明函数)(x f y =与)(x g y =图象的对称性,即证明)(x f y =图象上任意点关于对称中心(对称轴)的对称点在)(x g y =的图象上,反之亦然; 注:①曲线1:(,)0C f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=②曲线1:(,)0C f x y =关于直线x a =的对称曲线2C 方程为:(2,)0f a x y -=;③曲线1:(,)0C f x y =关于y x a =+(或y x a =-+)的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=);④()()f a x f b x +=-()x R ∈−→−()y f x =图像关于直线2a bx +=对称; 特别地:()()f a x f a x +=-()x R ∈−→−()y f x =图像关于直线x a =对称; ⑤函数()y f x a =-与()y f b x =-的图像关于直线2a bx +=对称; 4、函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法. 5、方程()k f x =有解⇔k D ∈(D 为()f x 的值域); 6、恒成立问题的处理方法:⑴分离参数法:()a f x ≥恒成立⇔max [()]a f x ≥;()a f x ≤恒成立⇔min [()]a f x ≤; 注意:“,()x R a f x ∀∈≥”与“,()x R a f x ∃∈≥”的区别! ⑵转化为一元二次方程的根的分布,列不等式(组)求解.7、实系数一元二次方程2()0(0)f x ax bx c a =++=>的两根21,x x 的分布问题:上实根分布的情况,得出结果,在令n x =和m x =检查端点的情况.二、思想方法(一)函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.1、函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2、应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3、函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想.三、易题重现1、ax 2 + 2x + 1 = 0至少有一个负实根的充要条件是 .2、设A =(){}6x 4y y ,x +-=,B =(){}3x 5y y ,x -=,则A ∩B = .3、不等式x 2-3x -132-x ≥1的解集是 .4、已知x + x – 1 = 3,则23x + 23-x的值为 .5、函数y = 1x 218-的定义域是___ ___;值域是 . 6、函数y =1-( 12)x 的定义域是___ ___;值域是 .7、已知集合A={x x 2+(p+2)x+1=0, p ∈R },若A ∩R +=φ。
回归课本专题一 集合与常用逻辑用语、函数、导数(必1、选1-1)第1讲:集合与常用逻辑用语①集合:必1.P 1~P 12,子集的个数(P 7 例3)、补集的求法(P 11,例8).②常用逻辑用语:选1-1,P 1~P 32,四种命题(P 8 图1.1-1)、全称命题及其否定(P 27)、特称命题及其否定(P 28).排查卷:P 2,第2题,P 11,第8题.第2讲:函数的图象与性质:资料P 8,例2及训练,平移与对称、特殊点法.第3讲:基本初等函数及其应用:必1.P 15~P 107.①一次函数、二次函数、函数的单调性、奇偶性(P 25 4)、指数函数(P 51,公式,P 56,表)、对数函数(P 62,概念,P 65,公式,例4,P 66 换底公式,P 71,表,例7,P 75 ,B ,2)、幂函数(P 77,概念,图2.3-1,P 82 ,10,P 83 ,B ,3),②函数与方程:必1,P 87 ,概念,P 88 ,函数零点定理.排查卷:P 13 第9题.第4讲:导数及其应用:选1-1,P 77~P 120,①P 82,导数的概念,P 84,切线的斜率(导数的几何意义),P 86,导数的定义, ②P 90,导数公式,P 91,导数运算法则,③P 99,例2,求函数的单调区间,P 103,求函数的极值,P 106,求函数的最小值, P 107,第4题,P 108,B 组,第1题,排查卷:P 34,第19题.专题二 三角、解三角形,平面向量(必4,必5)第1讲:三角函数的图象与性质,必4,P 1~P 69,①三角函数的定义:必4,P 11,P 13,表1.2-1,P 14,公式一,②三角函数线:P 15~P 17,③平方关系与商关系:P 19,例6,P 20,练习2,④诱导公式:P 24,公式二、三、四,P 25,例2,P 26,公式五、六,P 27,例4, ⑤函数sin ,cos y x y x ==的图象与性质:图象P 31,函数的周期P 34,例2,奇偶性,单调性,P 37,P 38,例3,P 39,例5,⑥函数tan y x =的图象与性质:P 43~P 44,图1.4-10,⑦函数sin()y A x ωϕ=+的图象:函数图象的平移与伸缩,P 49~P 52,P 53,例1, P 55,第2题;振幅、周期、频率、相位、初相的概念,P 54,例2;应用,P 60,例1.排查卷:P 9,第6题.第2讲:三角变换与解三角形,必4,P 123~P 146,必5,P 1~P 24.①三角变换:公式()C αβ-,P 126,P 127,例2,公式()C αβ+,P 128,公式()(),S S αβαβ+-, P 128,公式()(),T T αβαβ+-,P 129,例3,P 130,例4,②二倍角公式:P 132,P 133,例5,例6,③辅助角公式:P 140,例3.④解三角形(必5):正弦定理,P 2,余弦定理,P 6;应用,P 11,例1,P 13,例3,P 14,例5;三角形面积公式,P 16.排查卷:P 28,第16题.第3讲:平面向量:必4,P 73~P 118,①向量的概念,P 75,三角形法则与平行四边形法则,P 81,②向量的线性运算:P 88,例5,P 89,例7,③平面向量基本定理:P 94,④平面向量坐标运算:P 96,P 97,例4,例5,P 98,例6,⑤向量中点公式:P 99,例8,⑥数量积:P 103,P 104,例1,P 105,例3,例4,⑦向量的模,夹角:P 106,排查卷:P 6,第4题.专题三 数列,必5,P 27~P 67.第1讲:等差数列、等比数列:①数列的概念,P 28~P 31,例5,②等差数列,P 37,P 38,公式,例3,P 40,第1题,③等差数列前n 项和,P 43,公式,P 44,例2,例3,P 45,例4,④等比数列,P 49,概念,P 50,探究公式,P 51,例3,⑤等比数列前n 项和,P 55,公式,P 56,例1,排查卷:P 22,第13题,第2讲:数列列求和:P 61,第4题.排查卷:P 22,第13题,P 41,第21题.专题四 不等式(必5)、推理与证明(选1-2)第1讲:不等式:必5,P 71~P 103,①不等式的性质:P 73~P 74,②一元二次不等式及其解法:P 77,P 78,例1,例2,③二元一次不等式(组)与线性规划:P 83~P 84,例1,例2,④基本不等式:P 97,P 103,A 组,第、4题,排查卷:P 10,第7题.第2讲:推理与证明,选1-2,P 21~P 46,①归纳推理,P 23,例1,②类比推理,P 25,例3,③演练推理,P 31,例6,④直接证明之综合法:P 37,例3,⑤直接证明之分析法:P39,例4,⑥间接证明之反证法:P42,例7,,第10题.排查卷:P16专题五立体几何,必2,P1~P78.第1讲:空间几何体,P1~P35,①柱、锥、台、球的结构特征,P3~P9,②三视图与直观图,P12~P15,③表面积与体积,P24,例1,P26,思考、公式,P24,球的体积与表面积公式,,第5题.排查卷:P7第2讲:点、线、面之间的位置关系,P39~P78,①公理1~4,P41~P45,②直线与平面关系,P48,P49,例4,③平面与平面关系,P50,④直线与平面平行的证明与性质,P55(判定定理),P59(性质),⑤平面与平面平行的证明与性质,P57(判定定理),P60(性质),⑥直线与平面垂直的证明与性质,P65(判定定理),P70(性质),⑦平面与平面垂直的证明与性质,P69(判定定理),P71(性质),,第18题.排查卷:P32专题六解析几何,必2,P81~P144,选1-1,P31~P68,第1讲:直线与圆,必2,P81~P144,①直线的倾斜角、斜率,P82~P84,斜率公式,P85,例1,②直线与直线的平行与垂直,P87(平行),P88(垂直),③直线的方程的求法,P92(点斜式),P93,例1,P94(点截式),例2,P95(两点式),P96(截距式),P96,例3,P98(一般式),例5,④两直线的交点,P103,例1,⑤两点间的距离,P105,例3,⑥点到直线的距离公式,P107,例5,例6,⑦两条平行直线间的距离,P108,例7,公式(P110,B组,第3题),⑧圆的标准方程,P118,P119,例1,例2,⑨圆的一般方程,P121,P122,例4,⑩直线与圆的位置关系,P126,P127,例1,例2,○11圆与圆的位置关系,P129,例3,○12空间直角坐标(空间中两点距离公式),P134,P137,,第20题.排查卷:P38第2讲:圆锥曲线,选1-1,P31~P68,①椭圆的定义与标准方程,P32,P33,P34,例1,②椭圆的顶点(P38),离心率(P39),P40,例4,③双曲线的定义与标准方程,P45,P46,P47,例1,④双曲线的顶点(P49),渐近线(P50),离心率(P51),P51,例3,⑤抛物线的定义与标准方程(注意准线与焦点),P57,P58,⑥抛物线的顶点(P60),离心率(P60),P60,例3,排查卷:P5,第3题,P38,第20题.专题七概率(必3)、统计(必3)、统计案例(选1-2)、框图(必3)、流程图(选1-2)、复数(选1-2)第1讲:概率,必3,P107~P145,①概率与频率的关系,P112,②概率的性质,P120,③古典概型概率,P125,例1,④几何概型概率,P135,P136,例1,P137,例2,排查卷:P30,第17题.第2讲:统计,必3,P53~P100,统计案例,选1-2,P12~P19,①简单随机抽样(抽签法、随机数法),P56,②系统抽样,P58,③分层抽样,P60、P61,④频率分布直方图,P67,⑤茎叶图,P70,⑥众数、中位数、平均数,P72、P73,⑦标准差,P75,⑧两个变量的线性相关,P85(散点图),P86(正相关、负相关),⑨用最小二乘法求回归直线方程,P89,排查卷:P18,第11题.⑩残差(选1-2),P4,回归效果2R,P5,○1122列联表,P10、P11,P13,表1-11,第3讲:算法框图(必3,P1~P50),流程图(选1-2,P65~P83),复数(选1-2,P49~P63),①程序框图,必3,P6,循环结构中的“直到型”与“当型”,P12~P13,②算法案例:辗转相除法(P34),秦九韶算法(P37),P38,例2,进位制,P40,P41,例3,③流程图,选1-2,P66~P70,④结构图,选1-2,P74~P78,⑤复数的概念,选1-2,P50、P51,例,⑥复数的几何意义,P52、P53,⑦复数的加、减、乘、除运算,P57,例1,P58,例2,共轭复数,P59,P60,例4,排查卷:P1,第1题.。
高三文科数学基础训练组(总34页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除图1乙甲7518736247954368534321高三文科数学基础训练一一.选择题:1.复数i 1i,321-=+=z z ,则21z z z ⋅=在复平面内的对应点位于 A .第一象限 B .第二象限C .第三象限D .第四象限2.在等比数列{an }中,已知,11=a 84=a ,则=5a A .16B .16或-16C .32D .32或-323.已知向量a =(x ,1),b =(3,6),a ⊥b ,则实数x 的值为( )A .12B .2-C .2D .21-4.经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为( ) A .30x y -+= B .30x y --= C .10x y +-= D .30x y ++= 5.已知函数()f x 是定义在R 上的奇函数,当0>x 时,()2x f x =,则(2)f -=( )A .14B .4-C .41-D .46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是 A .62B .63C .64D .657.下列函数中最小正周期不为π的是A .x x x f cos sin )(⋅=B .g (x )=tan (2π+x ) C .x x x f 22cos sin )(-= D .x x x cos sin )(+=ϕ图2俯视图侧视图正视图4 8.命题“,11a b a b>->-若则”的否命题是A.,11a b a b>-≤-若则 B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则 D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A.6 B.24 C.123D.3210.已知抛物线C的方程为212x y=,过点A()1,0-和点()3,t B的直线与抛物线C没有公共点,则实数t的取值范围是A.()()+∞-∞-,11, B.⎪⎪⎭⎫⎝⎛+∞⎪⎪⎭⎫⎝⎛-∞-,2222,C.()()+∞-∞-,,2222 D.()()+∞-∞-,,22二.填空题:11.函数22()log(1)f x x=-的定义域为.12.如图所示的算法流程图中,输出S的值为.13.已知实数x y,满足2203x yx yy+⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y=-的最大值为_______.14.已知cxxxxf+--=221)(23,若]2,1[-∈x时,2)(cxf<恒成立,则实数c的取值范围______三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三文科文科数学基础训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( ) A .18 B .27 C .36 D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( ) A .4π B .2π C .π D .2π 3.已知命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
高考第一轮复习文科数学习题集(含答案)目录第一章集合 (1)第一节集合的含义、表示及基本关系 (1)第二节集合的基本运算 (3)第二章函数 (5)第一节对函数的进一步认识 (5)第二节函数的单调性 (9)第三节函数的性质 (13)第三章指数函数和对数函数 (16)第一节指数函数 (16)第二节对数函数 (20)第三节幂函数与二次函数的性质 (24)第四节函数的图象特征 (28)第四章函数的应用 (32)第五章三角函数 (33)第一节角的概念的推广及弧度制 (33)第二节正弦函数和余弦函数的定义及诱导公式 (39)第三节正弦函数与余弦函数的图象及性质 (42)第四节函数()sin()f x A xw j=+的图象 (45)第六章三角恒等变换 (50)第一节同角三角函数的基本关系 (50)第二节两角和与差及二倍角的三角函数 (53)第七章解三角形 (56)第一节正弦定理与余弦定理 (56)第二节正弦定理、余弦定理的应用 (59)第八章数列 (60)第九章平面向量 (62)第十章算法 (65)第一节程序框图 (65)第二节程序语句 (69)第十一章概率 (73)第一节古典概型 (73)第二节概率的应用 (75)第三节几何概型 (79)第十二章导数 (83)第十三章不等式 (85)第十四章立体几何 (88)第一节简单几何体 (88)第二节空间图形的基本关系与公理 (92)第三节平行关系 (96)第四节垂直关系 (100)第五节简单几何体的面积与体积 (104)第十五章解析几何 (108)第一节直线的倾斜角、斜率与方程 (108)第二节点与直线、直线与直线的位置关系 (111)第三节圆的标准方程与一般方程 (114)第四节直线与圆、圆与圆的位置关系 (117)第五节空间直角坐标系 (121)第十六章圆锥曲线 (123)第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={}|x x A Î,则集合A 与B 的关系为________.解析:由集合B ={}|x x A Î知,B ={1,2}.答案:A =B2.若{}2,|a a R x x NÆØ,则实数a 的取值范围是________.解析:由题意知,2x a £有解,故0a ³.答案:0a ³3.已知集合A ={}2|21,y y x x x R =--?,集合B ={}|28x x-#,则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y|y ≥-2},∴B A .答案:B A4.(2009年高考广东卷改编)已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________.解析:由N={}2|0x x x +=,得N ={-1,0},则N M .答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A ={}|5x x >,集合B ={}|x x a >,若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5.答案:a <56.(原创题)已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1. 答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x ,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2},而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={}|0x x >,B ={}|1x x >,则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:33.已知集合M ={0,1,2},N ={}|2,x x a a M =?,则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A ={x |x >1},集合B ={x |m ≤x ≤m +3}.(1)当m =-1时,求A ∩B ,A ∪B ;(2)若B ⊆A ,求m 的取值范围.解:(1)当1m =-时,B ={x |-1≤x ≤2},∴A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥-1}.(2)若B ⊆A ,则1m >,即m 的取值范围为(1,+∞)B 组1.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =________.解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.答案:{-1,0}2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}3.(2010年济南市高三模拟)若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x 2-3x ≤0},则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3,log 2a },B ={a ,b },若A ∩B ={2},则A ∪B =________.解析:由A ∩B ={2}得log 2a =2,∴a =4,从而b =2,∴A ∪B ={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A ={n ∈U |n是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7},得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +x y,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧ x =0,y =2.点(0,2)在y =3x +b 上,∴b =2. 9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}. (3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________. 解析:⎩⎪⎨⎪⎧ -x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1] .答案:[-4,0)∪(0,1] 2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:2 3.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 324.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3,令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3, 解得b 1=-1,b 2=0.答案:(-1,0,-1)6.已知函数f (x )=⎩⎪⎨⎪⎧ 1+1x(x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a . 解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3, 又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32. (2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x 3x -1; 若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎨⎧ 3x 3x -1 (x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1. 当a >1时,有1+1a =32,∴a =2; 当-1≤a ≤1时,a 2+1=32,∴a =±22. ∴a =2或±22.B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23} 2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧ -2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_. 解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3, ∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1),由2f (x )-f (-x )=lg(x +1),①由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1). 答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1) 4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧ 16-4b +c =c 4-2b +c =-2 ⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0). 由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0)3 6.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧ x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3,解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3.综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0, 则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧ 5a 1=205a 1+15(a 1-a 2)=35, 得⎩⎪⎨⎪⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95, 又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数()f x =.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)若()f x 的定义域为[-2,1],求实数a 的值.解:(1)①若1-a 2=0,即a =±1,(ⅰ)若a =1时,f (x )=6,定义域为R ,符合题意;(ⅱ)当a =-1时,f (x )=6x +6,定义域为[-1,+∞),不合题意.②若1-a 2≠0,则g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数.由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧ -1<a <1,(a -1)(11a +5)≤0, ∴-511≤a <1.由①②可得-511≤a ≤1. (2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根. ∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a 2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧ a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知()()()2f x f x x R +=?,并且当x ∈[-1,1]时,()21f x x =-+,求当[]()21,21x k k k Z ?+?时、()f x 的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式;(3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *). (2)f (x )=⎩⎨⎧20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当12x x <时,都有()()12f x f x >”的是________.①f (x )=1x②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1) 解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数.由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2. 答案:[1,2]4.已知函数f (x )=|e x +a ex |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__. 解析:当a <0,且e x +a e x ≥0时,只需满足e 0+a e0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x 符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -a ex ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min 成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数()2f x x =,()1g x x =-. (1)若存在x ∈R 使()()f x b g x <?,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--2,且()F x 在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (x x ∈R ,x 2-bx +b=(-b )2-4b b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需 ⎩⎨⎧ m 2≤0-255≤m ≤255-255≤m ≤0. ②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m 2≥1,则x 1≤0.⎩⎪⎨⎪⎧m 2≥1F (0)=1-m 2≤0m ≥2. 若m 2≤0,则x 2≤0, ⎩⎪⎨⎪⎧ m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x | 解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0.∴⎩⎪⎨⎪⎧ a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤4 3.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__. 解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916. 答案:(0,916] 4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________. ①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3)③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________. 解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧ 0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14. 6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3), 当0≤x <1时,最大值为0;当1≤x ≤3时,在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1. μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12) 10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性. 解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增. 11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2. 由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +b x,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b 1=1.即a +b =2.设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+b x 2恒成立. 由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立. 又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立. ∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________.解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧-3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9.B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2)④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________. 解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-19.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧-x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ). 11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值. 解:(1)证明:∴函数定义域为R ,其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x , 设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1) 又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2), 又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x (-1≤x ≤1)-12(x -2) (1<x <3) 由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a-2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b-a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________. 解析:∵2x -x 2=-(x -1)2+1≤1,∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧ a >1a 0-1=0a 2-1=2⇒a =3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数.(1)求a ,b 的值; (2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1. 从而有f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1, 由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13. 法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0 即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧ a ≤1a +1>1⇒0<a ≤1.答案:(0,1] 3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________. 解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________. 解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1, 故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:2 5.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x +e x e -x -e x =-e x +e -xe x -e-x =-f (x ),∴f (x )为奇函数,排除④. 又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.。
2022届高三高考考前回归课本数学复习(文科)山西省太原市实验中学2022届高三高考考前回归课本数学(文)第一节集合与逻辑1.集合中元素的特征:确定性,互异性,无序性。
如:已知集合A{某,某y,lg(某y)},B{0,|某|,y},且AB,则某y;(答:某1,y1)2.区分集合中元素的形式如某|ylg某—函数的定义域;y|ylg某—函数的值域;(某,y)|ylg 某—图象上的点集;2如:(1)设集合M{某|y某3},集合N=y|y某1,某M,则MN__;(2)设集合M{a|a(1,2)(3,4),R},N{a|a(2,3)(4,5),R},则MN___;(答:[1,),{(2,2)})AB{某|某A且某B};AB{某|某A或某B};euA{某|某U,某B}3.集合的交、并、补运算ABAABBAB痧UB痧U(AB)UUAA痧UBUABAUB;如:已知A{某|a某22某10},如果AR,则a的取值范围是(答a0)4.原命题:pq;逆命题:qp;否命题:pq;逆否命题:qp;互为逆否的两个命题是等价的;5.若pq且qp则p是q的充分非必要条件,或q是p的必要非充分条件;从命题的角度判断条件的充要性,应先把题目写成命题的形式,并对条件和结论进行简化,然后按充要条件的定义直接判定,由于充分条件和必要条件是相对的,因此在判定时要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲乙)”与“甲的充分条件是乙(乙甲)”,是两种不同形式的问题.如:\in\是\\的条件;(答:充分不必要条件)6.注意命题pq的否定与它的否命题的区别:命题pq的否定是pq;否命题是pq命题“p或q”的否定是“p且q”,“p且q”的否定是“p或q”;如:“若a和b都是偶数,则ab是偶数”的否命题是它的否定是(答:否命题:“若a和b都是偶数,则ab是奇数”,否定:“若a和b不都是偶数,则ab是奇数”)7.全称命题“某M,p(某)”的否定是“某0M,p(某0)”,即全称命题的否定是特称命题.特称命题“某0M,p(某0)”的否定是“某M,p(某)”,即特称命题的否定是全称命题.遇到“且”命题否定时变为“或”命题,遇到“或”命题否定时变为“且”命题.第二节函数与导数8.指数式、对数式a01,,lg2lg51,loga10,logaa1,loge某ln某,1man1log8()2的值为________如:abNlogaNb(a0,a1,N0),alogaNN;21(答:)64aa,anmmnmn9.基本初等函数类型(1)一次函数ya某b(2)二次函数①三种形式:一般式ya某2b某c;顶点式ya(某h)2k;零点式ya(某某1)(某某2)②区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系;2二次函数f(某)a某b某c(a0)在闭区间p,q上的最值只能在某b处及区2a间的两端点处取得,具体如下:如:若函数y2)③根的分布:画图,研究△>0、轴与区间关系、区间端点函数值符号;或采用零点存在定理研究12某2某4的定义域、值域都是闭区间[2,2b],则b=(答:2cc(某0)平移ya(对称中心为(b,a),两条渐近线)某某ba(4)对勾函数:y某是奇函数。
高三文科数学基础训练一答案一.选择题:二.填空题:11. 12. 13. 14.或 三.解答题:解:(1)∵…… 2分 …… 4分. …… 6分∴. …… 8分 (2)当时, 取得最大值,其值为2 . ……10分此时,即Z . ……12分高三文科数学基础训练二答案一.选择题:()11,-5271-<c 2>c ()x x x f cos 3sin +=⎪⎪⎭⎫ ⎝⎛+=x x cos 23sin 212⎪⎭⎫ ⎝⎛+=3sin cos 3cos sin 2ππx x ⎪⎭⎫ ⎝⎛+=3sin 2πx 2T π=13sin =⎪⎭⎫ ⎝⎛+πx )(x f 232x k πππ+=+26x k ππ=+∈k ()1.A 由 ,S9==18 2.C T 3.B q=(2,3),的充分条件,即q 是p 的充分条件,4.C 第一组中抽中的号码是65.D 由 ,设底面长为a ,则6.B 由 k=1应选k>3 7. A设直线l :既bx+ay-ab=0,设t=ab<0,,(t+3)(t-1)=0, 8.D 由条件A , 若l||m ,可能a 与为相交;由条件B 和C ,都有可能得a 与相交;而由条件D ,当l a 且l||m 时,m9.D 由f(x)的图像关于点成中心对称,19284a a a a +=+=199()2a a +11cos 21sin 2)2242x y x x π-=-=+-π=(4,4),A a a =-+p q ⌝⌝是-42,\-1643a a a ≤⎧∴≤≤⎨+≤⎩1268156,=⨯+∴ 343233R π=π2,4,R h ∴=∴=132= 24V ∴== 10,k=219,328,k 43,S S k S →=→==→==>∴1,x y a b+=222221,()2,a b a b a b ab ∴=∴+==+-2230a b t t +=∴+-= 13322t S ab ∴=∴==ββ⊥,||m αβαβ⊥⊥∴又3(,0)4-33()()0,()(),22f x f x f x f x ∴+--==-+又,即f(-t)=f(t),f(x)为偶函数,原式=f(1)=110. D 函数y=loga(x+3)-1的图像过定点A (-2,-1),-2m-n+1=0,即2m+n=1二.填空(每小题4分,共16分)11.12. 设S4=a,由由等比数列 ,3,9,27 得S12=13,S16=40,为正△,边长为2c ,p 为F1M 的中点,点p 在双曲线上,三.解答题()f x ∴33的周期T=3,且f(--x)=f(x+)22∴(2)(1)(1)1,(3)(0)2,(1)(2)(3)0,2008=36691f f f f f f f f ∴=-====-∴+==⨯+又∴∴∴124()(2)4?448n mu m n m n m n=++=+++=AB (13)(1)22,i i i AB =-+-+=-+∴=1340488481,4a,3a,4S S S S S =∴=∴-=a a a a a 12161340S S ∴=cos sin cos cos sin sin()sin ,cos B A A C A C A C B A =+=+=∴=112MF F ∆ 21PF ,PF ,c ∴==2,1c c a e a -=∴===解:(1),∴ T=,由,∴,∴∵得, 即f(x)在[0,]上的减区间为[0,](2)依题得g(x)=,∴g(x)为偶函数,∴, ∵,∴,∴,∴高三文科数学基础训练三答案一、 选择题1.B2.A3.C4.A5.B 6。
如不慎侵犯了你的权益,请联系我们告知! 【高 2012 级“零诊”数学考前必备】回归教材(高一上)一、 选择题1.如果 X = {x |x>-1} ,那么(A)0X(B) {0} X2.ax2 + 2x + 1 = 0 至少有一个负实根的充要条件是(A)0<a≤1(B) a<1(C) a≤13.命题 p:“a、b 是整数”,是命题 q:“ x 2 + ax + b = 0 有且仅有整数解”的(A)充分不必要条件(B) 必要不充分条件(C) 充要条件(C) X (D) {0} X (D) 0<a≤1 或 a<0 (D) 既不充分也不必要条件4.若 y =1 5x + b 与 y = ax + 3 互为反函数,则a+b=(A) -2(B) 22 (C) 45(D) -1033x x 5.已知 x + x – 1 = 3,则 2 + 2 的值为(A) 3 3(B) 2 56.下列函数中不是奇函数的是(ax + 1)x (A) y = ax-1ax – a -x (B) y = 2(C) 4 5 |x|(C) y = x(D) -4 5 1+x(D) y = log a 1-x7.下列四个函数中,不满足f(x1+ 2x2)≤f(x1)+ 2f(x2)的是(A) f(x) = ax + b(B) f(x) = x2 + ax + b(C) f(x) =1 x(D) f(x) = - lnx8.已知数列{an}的前 n 项的和 Sn= an - 1(a 是不为 0 的实数),那么{an}(A) 一定是等差数列(B) 一定是等比数列(C) 或者是等差数列,或者是等比数列(D) 既不可能是等差数列,也不可能是等比数列二、 填空题 9.设 A = x, yy 4x 6 ,B = x, yy 5x 3 ,则 A∩B =_______.10.不等式x2-23-x-x 13 ≥1 的解集是_______.11.已知 A = {x || x-a |< 4} ,B = {x || x-2 |>3} ,且 A∪B = R,则 a 的取值范围是________.112.函数 y = 8 2x1 的定义域是______;值域是______. 函数 y =1-(1 2)x的定义域是______;值域是______.13.已知数列{an}的通项公式为 a n = pn + q,其中 p,q 是常数,且,那么这个数列是否一定是等差数列?______ 如果是,其首项是______,公差是________.14.下列命题中正确的是。
课后限时集训(一)(建议用时:40分钟)A组基础达标一、选择题1.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4 B.2 C.0 D.0或4A[由题意知方程ax2+ax+1=0只有一个实数解或两个相等的根.当a=0时,方程无实根,则a≠0,Δ=a2-4a=0,解得a=4,故选A.]2.(2019·济南模拟)已知集合A={x|x2+2x-3=0},B={-1,1},则A∪B=( ) A.{1} B.{-1,1,3}C.{-3,-1,1} D.{-3,-1,1,3}C[A={-3,1},B={-1,1},则A∪B={-3,-1,1},故选C.]3.(2019·重庆模拟)已知集合A={0,2,4},B={x|3x-x2≥0},则A∩B的子集的个数为( )A.2 B.3 C.4 D.8C[B={x|0≤x≤3},则A∩B={0,2},故其子集的个数是22=4个.]4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ) A.2 B.3 C.4 D.5B[当m=2时,n=3或4,此时x=6或8.当m=3时,n=4,此时x=12.所以B={6,8,12},故选B.]5.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的集合B的个数是( ) A.5 B.4 C.3 D.2B[满足条件的集合B有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.]6.(2019·衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=( )A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8}A[由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.]7.(2019·青岛模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( ) A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.]二、填空题8.已知集合A ={x |x 2-2 019x +2 018<0},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是________.(-∞,1] [A ={x |1<x <2 018},B ={x |x ≥a }, 要使A ⊆B ,则a ≤1.]9.若集合A ={y |y =lg x },B ={x |y =x },则A ∩B =________. {x |x ≥0} [A =R ,B ={x |x ≥0},则A ∩B ={x |x ≥0}.]10.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________.-2或1 [由A ∩B ={-1,2}得⎩⎪⎨⎪⎧a +1=-1,a 2-2=2,或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1.]B 组 能力提升1.(2019·潍坊模拟)已知集合M ={x |lg x <1},N ={x |-3x 2+5x +12<0},则( ) A .N ⊆M B .∁R N ⊆MC .M ∩N =(3,10)∪⎝ ⎛⎭⎪⎫-∞,-43D .M ∩(∁R N )=(0,3]D [由M ={x |lg x <1}得M ={x |0<x <10};由-3x 2+5x +12=(-3x -4)(x -3)<0得N =x ⎪⎪⎪x <-43或x >3,所以∁R N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-43≤x ≤3,则有M ∩(∁R N )=(0,3],故选D.] 2.(2019·南昌模拟)在如图所示的Venn 图中,设全集U =R ,集合A ,B 分别用椭圆内图形表示,若集合A ={x |x 2<2x },B ={x |y =ln(1-x )},则阴影部分图形表示的集合为( )A .{x |x ≤1}B .{x |x ≥1}C .{x |0<x ≤1}D .{x |1≤x <2}D [由x 2<2x 解得0<x <2,∴A =(0,2),由1-x >0,解得x <1,∴B =(-∞,1),阴影部分图形表示的集合为A ∩(∁U B )={x |1≤x <2},故选D.]3.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________.[1,+∞) [由A ∩B ≠∅,得⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.]4.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.(-∞,4] [当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]。
数学回归根底训练1姓名 得分一.填空题1.假设集合M={x |y =x -1+1-x },集合N={x |12<2x <4},那么M∩N=. 2.复数z =52-i,那么复数z 2-2z =. 3.f (x )=x 3+x -2在P 处的切线与直线y =4x -1平行,那么切点P 的坐标是.4.假设函数f (x )对于任意的x ,有f’(x )=4x 3,f (1)=-1,那么此函数为.5.定义在R 上的函数f (x )在〔-∞,2〕上是增函数,且函数y=f (x +2)是偶函数,f (1)与f (4)的大小关系为.6.函数y=|x |的图像与x 轴、定直线x =-1及动直线x=t (t ∈[-1,1])所围成图形〔位于两条平行直线x =-1与x=t 之间的局部〕的面积为S ,那么S 关于t 的函数关系式S=f (t )= _________________.7.设函数f (x )= ⎩⎨⎧x 2+bx +c x ≤02x >0 ,假设f (-4)=f (0),f (-2)=-2,那么关于x 的方程f (x )=x 的解的个数是.8.二次函数f (x )的二次项系数为a ,且不等式f (x )>-x 的解集为〔1,2〕,假设f (x )的最大值为正数,那么a 的取值范围是.9.设函数f(x )是定义在R 上以3为周期的奇函数,假设f (1)>1,f (2)=2a -3a +1,那么a 的取值范围是_____.10.点集C 1,C 2,C 3,C 4分别表示函数f 1(x )=(1+x )2,f 2(x )=(1-x )2,f 3(x )=(1+|x |)2,f 4(x )=(1-|x |)2的图像,给出以下四个命题:①13C C ⊆;②24C C ⊆;③1234C C C C =;④1234C C C C =.其中真命题的编号是.二.解答题11.设函数f (x )=a 2-x 2|x +a |+a.(a ∈R 且a ≠0) 〔1〕分别判断当a =1及a =-2时函数的奇偶性.〔2〕在a ∈R 且a ≠0的条件下,将〔1〕的结论加以推广,使命题〔1〕成为推广后命题的特例,并对推广的结论加以证明. 数学根底训练1答案一.填空题1. {1};2. -1+2i ;3.(1,0)或(-1,-4) ;4. f(x)=x 4-2 ;5. f(1)<f(4) ;6.⎪⎪⎩⎪⎪⎨⎧≤<+≤≤--10,212101,212122t t t t ; 7. 3.变式:f(x)= ⎩⎨⎧1 x≥0-1 x <0那么不等式x+(x+3)f(x+1)≤1的解集是_[-1,2]_;8. 〔-∞,-3-22〕;9. (-1, 23).提示:f(2)=-f(-2)=-f(-2+3)=-f(1)<-1; 10. ③④.提示:f 3(x)= ⎩⎨⎧(1-x)2 x≤0(1+x)2 x >0 ,f 4(x)= ⎩⎨⎧(1+x)2 x≤0(1-x)2 x >0. 二.解答题11.〔1〕当1=a 时,1|1|1)(2++-=x x x f ,由.11,012≤≤-∴≥-x x 所以21)(2+-=x x x f )21()21(),21()21(,33)21(,53)21(--≠-≠∴=-=f f f f f f , )(x f ∴为非奇非偶函数。
)
一、选择题: 1.sin 480
的值为 A .12-
B .2-
C .12
D .2
2.函数2x y =(x ∈R )的反函数为
A .2log y x =(0x >)
B .2log y x =(1x >)
C .log 2x y =(0x >)
D .log 2x y =(1x >)
3.某个路口的交通指示灯,红灯时间为30秒,黄灯时间为10秒,绿灯时间为40秒.当你到达路口时,看见红灯的概率是
A .
18 B .38 C .12 D .58
4.已知等差数列{}n a 的前三项分别为1a -,21a +,7a +,则这个数列的通项公式为
A .43n a n =-
B .21n a n =-
C .42n a n =-
D .23n a n =-
5.已知向量OA 和向量OC 对应的复数分别为34i +和2i -,则向量AC
对应的复数为
A .53i +
B .15i +
C .15i --
D .53i -- 6.1a =是直线1y ax =+和直线()21y a x =--垂直的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
7.一个圆台的两底面的面积分别为π,16π,侧面积为25π,则这个圆台的高为
A .3
B .4
C .5 D
9.如图1所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经过A 、E 、D 、B 四点的双曲线的离心率为 A
1 B
1
C 1
D 1
10.若实数,,,a b c d 成等比数列,且曲线33y x x =-的极大值点是b ,极大值是c ,则ad 为( ) .A 2
.B 1
.C 1-
.D 2-
二、填空题:
11.已知函数()sin ,03y x x πωω⎛⎫
=+
∈> ⎪⎝
⎭
R 的最小正周期为π,则ω= . 12.某班的54名学生对数学选修专题《几何证明选讲》和《极坐标与参数方程》的选择情
况如下(每位学生至少选.......1.个专题...
):两个专题都选的有6人,选《极坐标与参数方程》的学生数比选《几何证明选讲》的多8人,则只选修了《几何证明选讲》的学生有 人.
13.设E,F,G ,分别是AB,BC,CA 的中点,则AF CE DG ++=。
14~15题是选做题.每小题5分,满分20分.第13题中的第一个空2分,第二个空3分. 14.在极坐标系中,若过点()4,0且与极轴垂直的直线交曲线6cos ρθ=于,A B 两点,则
=AB .
15.如图2,P 是⊙O 的直径AB 延长线上一点,PC 与⊙O 相切于
点C ,∠APC 的角平分线交AC 于点Q ,则AQP ∠的大小 为_________.
三.解答题16. 已知函()sin(
f x A x ω=+部分图象如图所示:
(1)求函数f(x)的解析式和减区间;
(2)函数f(x)的图像可以由y=sinx 变换得到?
图1
图2
高考复习回归课本基础训练(1)
一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分. 1.D 2.A 3.B 4.A 5.C 6.C 7.B 8.B 9.D 10.A 二、填空题:本大题考查基本知识和基本运算.本大题共5小题,其中11~13题是必做题,14~15题是选做题.每小题5分,满分20分.第13题中的第一个空2分,第二个空3分.
11.2 12.20 13.0 14
15.135
解12:设只选修了《几何证明选讲》的学生有x 人,则只选修了《几何证明选讲》和《极坐标与参数方程》的的学生有x+8人,所以8+x+6+x=54,x=20. 解15:方法1,取AO=OB=BP=1, 方法2,连接OC ,因为OA=OC,所以∠1=∠2,又PC 是切线,所以∠OCP=900,又∠3=∠4,由三角形PAC 的内角和定理得到∠1+∠2+∠3+∠4+900=1800,所以∠1+∠3=450,
所以在三角形PQC 中由内角和定理∠PQA=1800-(∠1+∠3)=1350.
三、解答题16.解:(1)解法1:因为,03π⎛⎫
⎪⎝⎭
是五点作图法中的第一点,7,112π⎛⎫
⎪⎝⎭
是第二点,所以 20
3
7122
A π
ωϕπ
πωϕ⎧
⎪=⎪
⎪+=⎨⎪⎪+=⎪⎩,解得22,2,3A πωϕ===-,所以
2()2sin(2)3
f x x π
=-。
解法2:
72,,,2,2,4123T T A πππππωω
=-====又7212
f π
⎛⎫
= ⎪⎝⎭
,得到722,1223πππϕϕ⨯+==-,所以2()2sin(2)3
f x x π=-。
解法3:72,,,2,2,4123T T A πππππωω=
-====由图可见f(x)是由y=2sin2x 向右平移3
π
得到,所以2()2sin(2())2sin(2)33
f x x x ππ
=-=-。
由23713222,,2321212
k x k k x k πππππ
ππππ+≤-
≤++≤≤+
f(x)的减区间是()713,1212k k k Z ππππ⎡⎤+
+∈⎢⎥⎣
⎦。
(2)解法1:先把y=sinx 的图像向右平移
23π个单位得到2sin 3y x π⎛
⎫
=- ⎪⎝
⎭
的图像,再把图像上的点横坐标缩小到原来的
12倍得到2sin 23y x π⎛⎫
=- ⎪⎝
⎭
的图像,最后把图像上的点纵坐标伸长到原来的2倍,得到22sin 23
y x π⎛⎫
=-
⎪⎝
⎭
的图像。
解法2:先把y=sinx 的图像上的点横坐标缩小到原来的1
2
倍得到sin 2y x =的图像,再向右平移
3π个单位得到2sin(2())sin(2)33
y x x ππ
=-=-的图像,最后把图像上的点纵坐标伸长到原来的2倍,得到22sin 23
y x π⎛
⎫
=- ⎪⎝
⎭
的图像。