A
已知:a , A, B, Ba
aB
α
求证:直线AB和 a 是异面直线
证明:(反证法)
库尔勒市·高一数学
X X X
线与面的位置关系
有且只有三种:
(1)直线在平面内-----有无数个公共点
a
a
a
α
a (2)直线在平面外:
①直线a和面α相交
:
a
a A
A
a
α
②直线a和面α平行 : a
a //
而不应画成图2那样.
图1
图2
库尔勒市·高一数学
面与面的位置关系
探究一
已知平面, ,直线a, b,且∥, a, b,则直线a与直线b具有怎样
的位置关系?
库尔勒市·高一数学
面与面的位置关系
探究二 如果三个平面两两相交,那么:
(1)它们的交线有多少条? 1条或3条 (2)它们把空间分成几个部分?
6或7或8个
A.0 B.1 C.2 D.3
库尔勒市·高一数学
线与面的位置关系
练习、若直线a不平行平面 且 a
则下列结论成立的是( B )
(A) 内所有直线与a异面 (B) 内不存在与a平行的直线 (C) 内存在唯一的直线与a平行 (D) 内的直线与a都相交
库尔勒市·高一数学
面与面的位置关系
第一、二层的底面α和β无论怎样延伸都没有公
2、若直线a在平面α外,则a ∥α; ( ) ×
3、若直线a∥b,直线bα,则a∥α; ( ) ×
4、若直线a∥b,bα,那么直线a就平行于平面α内
的无数条直线;
()
√
库尔勒市·高一数学
课堂小测:
A 5、平面α//平面β,且a⊂α,下列结论中错误的是( )