k-means算法的简单示例
- 格式:ppt
- 大小:860.50 KB
- 文档页数:13
一、前言在数据分析和机器学习领域,k-means算法是一种常用的聚类算法,它可以将数据集分成不同的簇,每个簇内的数据点彼此相似,而不同簇之间的数据点相似度较低。
在matlab中,可以利用其强大的数学计算功能来实现k-means聚类算法。
本文将介绍如何在matlab中编写k-means聚类算法的代码。
二、matlab中的k-means算法1. 初始化数据集需要准备好要进行聚类分析的数据集。
这些数据可以是一组二维或多维的点,代表不同的特征。
在matlab中,可以使用矩阵来表示这些数据集,每一行代表一个数据点,每一列代表一个特征。
2. 设置聚类数量在进行k-means聚类算法之前,需要先确定要分成的簇的数量。
这个数量可以根据业务需求或者领域知识来确定。
在matlab中,可以使用kmeans函数来执行聚类分析,该函数需要指定数据集和聚类数量。
3. 运行k-means算法一旦准备好了数据集和聚类数量,就可以调用matlab中的kmeans 函数来执行k-means算法。
该函数会根据数据集和聚类数量来计算出不同簇的中心点,并将每个数据点分配到最近的簇中。
4. 可视化聚类结果完成k-means算法之后,可以将聚类结果可视化出来,以便更直观地理解不同簇之间的分布情况。
在matlab中,可以使用plot函数来绘制数据点和聚类中心,以及不同簇的分布情况。
三、示例代码以下是一个简单的matlab代码示例,演示了如何使用kmeans函数来执行k-means聚类算法:```matlab读取数据data = load('data.txt');设置聚类数量k = 3;运行k-means算法[idx, centers] = kmeans(data, k);可视化聚类结果figure;gscatter(data(:,1), data(:,2), idx);hold on;plot(centers(:,1), centers(:,2), 'kx', 'MarkerSize', 15, 'LineWidth', 3); ```以上代码首先读取了名为data.txt的数据集,然后设置了聚类数量为3。
Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。
它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。
Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。
一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。
K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。
它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。
接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。
在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。
引入sklearn.cluster包,并使用KMeans类即可。
以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。
最后,通过labels和centers 变量获取分类信息和中心点坐标。
二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。
层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。
kmeans聚类算法检测故障的matlab程序K-means聚类算法是一种常见的无监督学习算法,可用于对数据集进行分类或聚类。
将其应用于故障检测是一种有效的技术,它可以通过识别数据中的异常模式来检测故障。
本文将介绍如何使用Matlab 实现K-means聚类算法以检测故障。
一、程序概述以下是一个简单的Matlab程序,该程序使用K-means聚类算法来检测故障。
该程序首先读取一组传感器数据,然后应用K-means算法对这些数据进行聚类,最后识别出异常模式以检测故障。
二、数据预处理在运行K-means聚类算法之前,需要对数据进行预处理。
这包括去除噪声、填充缺失值、归一化数据等。
在本程序中,我们将使用Matlab内置的函数来执行这些步骤。
三、K-means聚类算法K-means算法的输入是一组数据点及其相应的类别标签。
算法将数据点分配给最近的类别中心(即质心),并更新质心。
这个过程重复进行,直到算法收敛或达到预设的迭代次数。
在Matlab中,可以使用`kmeans`函数来执行K-means聚类算法。
为了选择最佳的聚类数量(即K值),可以使用一些启发式方法,如肘部法则或轮廓系数。
在本程序中,我们使用轮廓系数来确定最佳的K 值。
四、故障检测一旦K-means聚类算法完成并得到聚类结果,就可以使用这些结果进行故障检测。
异常模式通常包括在正常状态下不会出现的极端值或模式变化。
可以使用一些统计测试(如Z-score测试)来检测这些异常模式。
在Matlab中,可以使用`findpeaks`函数来找到数据中的峰值和谷值,并使用这些信息来检测异常模式。
对于每个聚类,我们可以计算每个数据点的Z-score,并使用这些值来标记异常数据点。
一旦标记完异常数据点,就可以对这些数据进行可视化,以便更直观地检测故障。
五、结果展示和优化程序运行结束后,可以通过可视化工具(如Matlab内置的`scatter`函数)将结果展示出来。
聚类算法代码聚类算法是一种将数据集中的对象分组的方法,使得在同一组中的对象比不同组中的对象更相似。
在数据挖掘、机器学习和计算机视觉等领域中,聚类算法被广泛使用。
下面是一个简单的聚类算法代码示例,用于将数据集分成两组:```pythonimport numpy as npdef k_means(data, k):# 随机选择k个数据点作为聚类中心centers = data[np.random.choice(range(len(data)), k, replace=False)]while True:# 计算每个数据点到聚类中心的距离distances = np.linalg.norm(data[:, np.newaxis, :] - centers, axis=2)# 将数据点分配到距离最近的聚类中心labels = np.argmin(distances, axis=1)# 更新聚类中心new_centers = np.array([data[labels == i].mean(axis=0) for i in range(k)])# 如果聚类中心不再变化,退出循环if np.all(centers == new_centers):breakcenters = new_centersreturn labels```该代码使用k-means算法来聚类数据集。
首先,随机选择k个数据点作为初始聚类中心。
然后,计算每个数据点到聚类中心的距离,并将数据点分配到距离最近的聚类中心。
接着,更新聚类中心为所属聚类中所有数据点的平均值。
最后,重复执行以上步骤,直到聚类中心不再变化。
该聚类算法代码可用于处理各种数据集,例如图像、音频、文本等。
它的输出是一个数组,其中每个元素表示它所属的聚类。
该算法的效率和准确性取决于选择的k值以及数据集的分布和特征。
k-means算法例题
K-means算法是一种基于迭代的聚类算法,它利用距离公式将数据集分为K个不同的聚类,每个聚类具有最相似的数据点。
以下是使用K-means算法的一个简单案例:
题目:使用K-means算法将下列数据点进行聚类(这里使用欧式距离作为度量,K取值为2)
数据点:P1(1,2), P2(2,3), P3(5,6), P4(7,8), P5(9,10), P6(15,14), P7(16,13), P8(18,17), P9(20,19)
解题步骤:
1. 选择聚类的个数K=2。
2. 任意选择两个数据点作为初始聚类中心,例如选择P1和P6。
3. 计算每个数据点到两个聚类中心的距离,并将每个数据点分配到距离最近的聚类中。
4. 重新计算每个聚类的中心点,即将该聚类中所有数据点的坐标求平均值得到新的聚类中心。
5. 重复步骤3和4,直到聚类中心不再发生变化或达到最大迭代次数。
6. 输出最终的聚类结果。
根据以上步骤,可以得到该数据集的聚类结果为:{P1, P2, P3, P4, P5}和{P6, P7, P8, P9}。
其中,第一个聚类中心为(3,4),第二个聚类中心为(17,16)。
kmeans应用案例K-means 应用案例。
K-means 是一种常见的聚类算法,它可以对数据进行分组,找出数据中的相似性,并将数据划分为不同的类别。
在实际应用中,K-means 算法被广泛应用于数据挖掘、模式识别、图像分割等领域。
下面将介绍 K-means 算法在实际案例中的应用。
首先,我们来看一个简单的 K-means 应用案例,鸢尾花数据集。
鸢尾花数据集是一个经典的数据集,其中包含了鸢尾花的四个特征,花萼长度、花萼宽度、花瓣长度和花瓣宽度。
我们可以利用 K-means 算法对这些特征进行聚类,找出不同种类的鸢尾花。
通过 K-means 聚类分析,我们可以将鸢尾花数据集分为三个类别,分别对应于不同的鸢尾花种类。
这样的聚类结果有助于我们更好地理解鸢尾花数据的特点,对鸢尾花进行分类和识别。
除了鸢尾花数据集,K-means 算法还可以应用于其他领域。
例如,在市场营销中,我们可以利用 K-means 算法对客户进行分群,找出具有相似行为和偏好的客户群体,从而针对不同的客户群体制定个性化的营销策略。
在医学影像分析中,K-means 算法可以用于图像分割,将医学影像中的不同组织和结构进行分离,有助于医生更准确地诊断疾病。
在互联网广告投放中,K-means 算法可以对用户进行行为分析,找出具有相似兴趣和偏好的用户群体,从而提高广告的投放效果。
总的来说,K-means 算法是一种简单而有效的聚类算法,它在实际应用中具有广泛的应用前景。
通过对数据进行聚类分析,我们可以更好地理解数据的特点,发现数据中的规律和趋势,为决策提供有力的支持。
希望本文介绍的 K-means 应用案例能够帮助大家更好地理解和应用这一算法。
somk-means聚类分区案例K-means聚类分区案例第一篇在数据分析领域,聚类是一种常用的无监督学习方法,能够将数据集中具有相似特征的数据样本划分为不同的类别或群组。
其中,K-means聚类是一种常见而有效的方法,它通过为每个数据样本分配一个与之最相似的聚类中心来实现分类。
在本文中,我们将介绍一个关于K-means聚类分区的案例。
将我们的案例定位于零售行业,想象一家超市的连锁店正计划在不同区域开设新的分店。
为了确定最佳的分店位置,他们决定利用K-means聚类算法对特定区域的顾客进行分析。
这样可以使他们对不同的市场细分,更好地了解各个区域的消费者需求和购物习惯。
通过这种方式,企业可以制定更有针对性的市场营销策略,提高销售额和市场份额。
首先,我们需要收集一些与消费者行为相关的数据。
这些数据可以包括每个顾客的购买记录、年龄、性别、消费金额等信息。
假设我们已经获得了一份包含500个顾客的数据集。
接下来,我们需要对数据进行预处理。
这包括去除异常值、处理缺失值以及数据标准化等步骤。
这些步骤旨在保证数据质量和可靠性,在分析过程中不会产生误导性的结果。
一旦数据预处理完成,我们可以开始使用K-means聚类算法。
该算法的基本思想是,通过计算每个数据样本与聚类中心的距离,将其归类到距离最近的聚类中心。
为了完成这个过程,我们首先需要确定聚类的数量K,也就是分店的数量。
为了确定最佳的K值,我们可以使用一种称为肘方法的技巧。
该方法基于聚类误差平方和(SSE),即聚类中心与其所包含数据样本距离的平方和,来评估聚类质量。
我们可以通过尝试不同的K值,计算相应的SSE,然后选择SSE曲线上的“肘点”作为最佳的K值。
在确定了最佳的K值之后,我们可以应用K-means算法进行聚类分析。
通过迭代更新聚类中心和重新分配样本,我们可以获取最终的聚类结果。
这些结果可以帮助我们理解不同区域顾客的消费行为和购物偏好。
最后,我们可以将聚类结果可视化,并提取有关每个聚类的关键特征。
kmeans算法例题K-means算法是一种常用的聚类算法,用于将数据集划分为K 个不同的簇。
下面我将为你提供一个K-means算法的例题,并从多个角度进行回答。
假设我们有一个包含10个数据点的数据集,每个数据点有两个特征,x和y坐标。
我们的目标是将这些数据点划分为3个簇。
首先,我们需要选择3个初始聚类中心点。
这些初始点可以是随机选择的,或者根据某种启发式方法选择。
假设我们选择的初始聚类中心点分别是A(2, 10),B(5, 8)和C(1, 2)。
接下来,我们将每个数据点分配到离其最近的聚类中心点所代表的簇。
通过计算每个数据点与每个聚类中心点之间的欧氏距离,我们可以确定每个数据点的分配情况。
假设我们的计算结果如下:数据点1,(3, 8) -> 最近的聚类中心点是B -> 分配到簇2。
数据点2,(4, 7) -> 最近的聚类中心点是B -> 分配到簇2。
数据点3,(3, 5) -> 最近的聚类中心点是B -> 分配到簇2。
数据点4,(6, 9) -> 最近的聚类中心点是B -> 分配到簇2。
数据点5,(8, 7) -> 最近的聚类中心点是B -> 分配到簇2。
数据点6,(2, 2) -> 最近的聚类中心点是C -> 分配到簇3。
数据点7,(0, 4) -> 最近的聚类中心点是C -> 分配到簇3。
数据点8,(1, 2) -> 最近的聚类中心点是C -> 分配到簇3。
数据点9,(5, 2) -> 最近的聚类中心点是A -> 分配到簇1。
数据点10,(8, 1) -> 最近的聚类中心点是 A -> 分配到簇1。
现在,我们需要根据分配结果重新计算每个簇的聚类中心点。
对于每个簇,我们将其所有数据点的坐标取平均值,以得到新的聚类中心点。
根据上述分配结果,我们可以计算出新的聚类中心点为:簇1的新聚类中心点,((5+8)/2, (2+1)/2) = (6.5, 1.5)。
python 时间序列kmeans算法示例及概述说明1. 引言1.1 概述时间序列分析是指对一系列按时间顺序排列的数据进行统计和预测的方法。
时间序列数据在许多领域中都有广泛应用,例如金融市场、气象科学、医疗健康等。
针对时间序列数据的特点,K-means算法是一种常用的聚类分析方法,可以将相似模式的数据点聚合成簇,并对簇进行进一步分析。
本文主要介绍了Python在时间序列K-means算法中的应用,并提供了示例和概述说明。
首先概述了整篇文章结构,接着从引言部分开始逐步详细介绍相关内容。
1.2 文章结构文章将按照以下结构进行展开:引言:介绍本文的背景和目的。
时间序列分析概述:简单介绍时间序列及其在不同领域的应用,并强调Python 在时间序列分析中的优势。
K-means算法简介:阐述K-means算法的原理、步骤解释以及聚类效果评估指标。
Python实现时间序列K-means算法示例:展示如何使用Python实现时间序列K-means算法,包括数据准备与预处理、算法实现步骤详解以及结果分析与可视化展示。
结论与展望:总结本文的研究成果,并提出进一步研究的方向。
1.3 目的本文的主要目的是介绍Python在时间序列K-means算法中的应用,并通过详细的示例和概述说明帮助读者理解该算法在实际问题中的作用。
通过阐述时间序列分析的概念、K-means算法原理以及Python编程实现过程,读者可以学习如何使用Python对时间序列数据进行聚类分析。
接下来,我们将从时间序列分析概述部分开始讲解。
2. 时间序列分析概述2.1 时间序列概念介绍时间序列是按照时间顺序排列的一系列数据点的集合。
它们通常表示随着时间的推移而变化的某种现象,例如股票价格、气温变化、人口增长等。
时间序列的特点在于数据点之间存在相关性和依赖性,因为后一个数据点往往受前一个或多个数据点的影响。
2.2 时间序列分析应用领域时间序列分析在许多领域中都有广泛的应用。
kmeans应用案例Kmeans应用案例。
Kmeans是一种常用的聚类算法,它可以将数据集分成不同的组别,每个组别内的数据点之间的相似度较高,而不同组别之间的数据点相似度较低。
Kmeans算法在数据挖掘、模式识别、图像分割等领域有着广泛的应用。
下面我们将介绍Kmeans算法在实际应用中的一些案例。
首先,Kmeans算法在市场细分中的应用。
在市场营销中,我们经常需要对客户进行细分,以便更好地了解客户的需求和行为习惯。
Kmeans算法可以根据客户的消费行为、地理位置、年龄等特征,将客户分成不同的群体,从而帮助企业更好地制定营销策略,提高营销效果。
其次,Kmeans算法在医学影像分析中的应用。
在医学影像分析领域,医生需要对大量的影像数据进行分析,以辅助诊断和治疗。
Kmeans算法可以对医学影像数据进行聚类,将相似的影像分成一组,有助于医生更快地找到病变区域,提高诊断的准确性。
另外,Kmeans算法在推荐系统中也有着重要的应用。
在电商平台、社交媒体等应用场景中,推荐系统可以帮助用户发现他们感兴趣的产品或内容。
Kmeans算法可以根据用户的历史行为和偏好,将用户分成不同的群体,从而为用户推荐更符合其兴趣的产品或内容,提高推荐的准确性和用户满意度。
此外,Kmeans算法还可以在无人驾驶领域中发挥重要作用。
无人驾驶汽车需要对周围环境进行感知和理解,Kmeans算法可以对传感器获取的数据进行聚类,识别出不同的交通参与者、道路情况等,从而帮助无人驾驶汽车更好地做出决策,确保行车安全。
总的来说,Kmeans算法在各个领域都有着广泛的应用,它可以帮助我们更好地理解和利用数据,从而提高工作效率和决策的准确性。
随着人工智能和大数据技术的发展,相信Kmeans算法在未来会有着更广阔的应用前景。
python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)⼀.分散性聚类(kmeans)算法流程:1.选择聚类的个数k.2.任意产⽣k个聚类,然后确定聚类中⼼,或者直接⽣成k个中⼼。
3.对每个点确定其聚类中⼼点。
4.再计算其聚类新中⼼。
5.重复以上步骤直到满⾜收敛要求。
(通常就是确定的中⼼点不再改变。
优点:1.是解决聚类问题的⼀种经典算法,简单、快速2.对处理⼤数据集,该算法保持可伸缩性和⾼效率3.当结果簇是密集的,它的效果较好缺点1.在簇的平均值可被定义的情况下才能使⽤,可能不适⽤于某些应⽤2.必须事先给出k(要⽣成的簇的数⽬),⽽且对初值敏感,对于不同的初始值,可能会导致不同结果。
3.不适合于发现⾮凸形状的簇或者⼤⼩差别很⼤的簇4.对躁声和孤⽴点数据敏感这⾥为了看鸢尾花的三种聚类算法的直观区别,所以不⽤具体算法实现,只需要调⽤相应函数即可。
程序如下:import matplotlib.pyplot as pltimport numpy as npfrom sklearn.cluster import KMeansfrom sklearn import datasetsiris = datasets.load_iris()X = iris.data[:, :4] # #表⽰我们取特征空间中的4个维度print(X.shape)# 绘制数据分布图plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see')plt.xlabel('sepal length')plt.ylabel('sepal width')plt.legend(loc=2)plt.show()estimator = KMeans(n_clusters=3) # 构造聚类器estimator.fit(X) # 聚类label_pred = bels_ # 获取聚类标签# 绘制k-means结果x0 = X[label_pred == 0]x1 = X[label_pred == 1]x2 = X[label_pred == 2]plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0')plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1')plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2')plt.xlabel('sepal length')plt.ylabel('sepal width')plt.legend(loc=2)plt.show()运⾏结果:⼆.结构性聚类(层次聚类)1.凝聚层次聚类:AGNES算法(⾃底向上)⾸先将每个对象作为⼀个簇,然后合并这些原⼦簇为越来越⼤的簇,直到某个终结条件被满⾜2.分裂层次聚类:DIANA算法(⾃顶向下)⾸先将所有对象置于⼀个簇中,然后逐渐细分为越来越⼩的簇,直到达到了某个终结条件。
K-means算法是一种常用的聚类算法,在数据挖掘和机器学习领域有着广泛的应用。
它的主要思想是将数据分成K个簇,使得同一簇内的数据相似度较高,不同簇之间的数据相似度较低。
在本文中,我们将介绍K-means算法的原理,并给出其在Matlab中的实现代码。
下面是K-means算法在Matlab中的代码实现:1. 初始化簇中心```function [centroids] = initCentroids(X, K)随机初始化K个簇中心[m, n] = size(X);centroids = X(randperm(m, K), :);end```2. 分配样本到最近的簇```function [idx] = findClosestCentroids(X, centroids)根据当前簇中心,将每个样本分配到最近的簇中K = size(centroids, 1);idx = zeros(size(X,1), 1);m = size(X,1);for i=1:mmin_dist = inf;for j=1:Kdist = sum((X(i,:) - centroids(j,:)).^2);if dist < min_distmin_dist = dist;idx(i) = j;endendendend```3. 更新簇中心```function [centroids] =puteCentroids(X, idx, K) 对每个簇重新计算簇中心[m, n] = size(X);centroids = zeros(K, n);for i=1:Kcentroids(i, :) = mean(X(idx == i, :));endend```4. K-means算法主函数```function [centroids, idx] = runkMeans(X, initial_centroids,max_iters)K-means算法的主函数[m, n] = size(X);K = size(initial_centroids, 1);centroids = initial_centroids;previous_centroids = centroids;idx = zeros(m, 1);for i=1:max_iters计算每个样本到簇中心的最短距离idx = findClosestCentroids(X, centroids);更新簇中心centroids =puteCentroids(X, idx, K);endend```通过以上代码,我们可以在Matlab中实现K-means算法,并对数据进行聚类分析。
MATLAB的kmeans函数概述在数据分析和机器学习领域,k均值聚类(k-means clustering)是一种常用的无监督学习算法,用于将一组数据点分成k个不同的簇。
在MATLAB中,我们可以使用kmeans函数来实现这一算法。
本文将详细介绍kmeans函数的使用方法以及一些相关的概念和注意事项。
kmeans函数的语法和参数在MATLAB中,我们可以使用如下的语法来调用kmeans函数:[idx, C] = kmeans(X, k);其中,输入参数X是一个m×n的矩阵,表示m个n维数据点的集合。
k是一个正整数,表示要将数据点分成k个簇。
输出参数idx是一个长度为m的向量,表示每个数据点所属的簇的索引。
输出参数C是一个k×n的矩阵,表示k个簇的中心点。
除了必需的输入参数外,kmeans函数还有许多可选的参数,用于控制聚类的细节。
下面是一些常用的可选参数:’Start’参数[idx, C] = kmeans(X, k, 'Start', start);start是一个k×n的矩阵,表示k个初始簇中心点的位置。
可以使用k-means++算法或者随机生成初始点。
’EmptyAction’参数[idx, C] = kmeans(X, k, 'EmptyAction', action);action可以是以下三种字符串之一:‘error’、‘singleton’或者’drop’。
’error’表示如果某个簇为空,则报错;’singleton’表示如果某个簇为空,则将该簇的中心点设置为当前最远的数据点;’drop’表示如果某个簇为空,则将其从聚类中删除。
’MaxIter’参数[idx, C] = kmeans(X, k, 'MaxIter', maxIter);maxIter表示算法的最大迭代次数。
当算法达到最大迭代次数后仍未收敛,将会终止。
一、背景介绍MATLAB是一种用于算法开发、数据分析、数值计算和工业应用的高级技术计算语言和交互环境。
在MATLAB中,有丰富的工具箱可以用于数据分析和聚类算法。
其中,k-means聚类算法是一种常用的数据聚类方法,它可以有效地将具有相似特征的数据点聚集在一起。
二、3维数据在数据分析领域中,数据往往具有多维特征。
对于3维数据而言,每个数据点通常由三个特征组成,例如在空间中的三个坐标值。
这种情况下,我们可以使用k-means算法来对3维数据进行聚类分析,以发现数据点之间的内在关系和模式。
三、k-means聚类算法原理1. 随机初始化K个聚类中心。
2. 计算每个数据点与各个聚类中心的距离,将数据点分配到距离最近的聚类中心所在的簇。
3. 根据分配得到的簇重新计算每个簇的中心。
4. 重复步骤2和3,直到聚类中心不再发生变化,或者达到设定的迭代次数。
四、MATLAB中的k-means算法实现在MATLAB中,可以利用自带的Kmeans函数来实现对3维数据的聚类分析。
具体步骤如下:1. 准备3维数据,假设数据矩阵为X,每行代表一个数据点,每列代表一个特征。
2. 调用Kmeans函数进行聚类分析,例如:[idx, C] = kmeans(X, K),其中idx是每个数据点所属的簇的索引,C是聚类中心的坐标。
3. 根据idx的结果可以将数据点可视化展示在3维空间中,并标记不同颜色表示不同的簇。
五、实例演示下面通过一个具体的实例来演示如何使用MATLAB对3维数据进行k-means聚类分析。
1. 准备数据假设有一组三维数据,保存在一个名为data的矩阵中,每行代表一个数据点,三列分别代表三个特征。
我们可以使用以下MATLAB代码生成一个包含30个数据点的示例数据:```matlabdata = randn(30, 3);```2. 聚类分析调用Kmeans函数进行聚类分析,并将结果可视化展示。
```matlabK = 3; 假设有3个聚类中心[idx, C] = kmeans(data, K);scatter3(data(:,1), data(:,2), data(:,3), 50, idx, 'filled');hold onscatter3(C(:,1), C(:,2), C(:,3), 200, 'Marker', 'x');hold off```3. 分析结果根据可视化结果,我们可以观察到数据点被有效地分为了3个簇,并且每个簇的中心也被标记出来。
⼤数据挖掘算法篇之K-Means实例⼀、引⾔ K-Means算法是聚类算法中,应⽤最为⼴泛的⼀种。
本⽂基于欧⼏⾥得距离公式:d = sqrt((x1-x2)^+(y1-y2)^)计算⼆维向量间的距离,作为聚类划分的依据,输⼊数据为⼆维数据两列数据,输出结果为聚类中⼼和元素划分结果。
输⼊数据格式如下:118223240.00.051.00.060.01.072.01.081.02.092.02.0102.00.0110.02.0127.06.0137.07.0147.08.0158.06.0168.07.0178.08.0188.09.0199.07.0209.08.0219.09.022⼆、欧⼏⾥得距离:欧⼏⾥得距离定义:欧⼏⾥得距离( Euclidean distance)也称欧⽒距离,在n维空间内,最短的线的长度即为其欧⽒距离。
它是⼀个通常采⽤的距离定义,它是在m维空间中两个点之间的真实距离。
在⼆维和三维空间中的欧式距离的就是两点之间的距离,⼆维的公式是d = sqrt((x1-x2)^+(y1-y2)^)三维的公式是d=sqrt((x1-x2)^+(y1-y2)^+(z1-z2)^)推⼴到n维空间,欧式距离的公式是d=sqrt( ∑(xi1-xi2)^ ) 这⾥i=1,2..nxi1表⽰第⼀个点的第i维坐标,xi2表⽰第⼆个点的第i维坐标n维欧⽒空间是⼀个点集,它的每个点可以表⽰为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上⾯的公式.欧⽒距离看作信号的相似程度。
距离越近就越相似,就越容易相互⼲扰,误码率就越⾼。
三、代码⽰例1/****************************************************************************2* *3* KMEANS *4* *5*****************************************************************************/67 #include <stdio.h>8 #include <stdlib.h>9 #include <string.h>10 #include <conio.h>11 #include <math.h>1213// FUNCTION PROTOTYPES141516// DEFINES17#define SUCCESS 118#define FAILURE 019#define TRUE 120#define FALSE 021#define MAXVECTDIM 2022#define MAXPATTERN 2023#define MAXCLUSTER 10242526272829char *f2a(double x, int width){30char cbuf[255];31char *cp;33int d,s;34 cp=fcvt(x,width,&d,&s);35if (s) {36 strcpy(cbuf,"-");37 }38else {39 strcpy(cbuf,"");40 } /* endif */41if (d>0) {42for (i=0; i<d; i++) {43 cbuf[i+1]=cp[i];44 } /* endfor */45 cbuf[d+1]=0;46 cp+=d;47 strcat(cbuf,".");48 strcat(cbuf,cp);49 } else {50if (d==0) {51 strcat(cbuf,".");52 strcat(cbuf,cp);53 }54else {55 k=-d;56 strcat(cbuf,".");57for (i=0; i<k; i++) {58 strcat(cbuf,"0");59 } /* endfor */60 strcat(cbuf,cp);61 } /* endif */62 } /* endif */63 cp=&cbuf[0];64return cp;65 }6667686970// ***** Defined structures & classes *****71struct aCluster {72double Center[MAXVECTDIM];73int Member[MAXPATTERN]; //Index of Vectors belonging to this cluster 74int NumMembers;75 };7677struct aVector {78double Center[MAXVECTDIM];79int Size;80 };8182class System {83private:84double Pattern[MAXPATTERN][MAXVECTDIM+1];85 aCluster Cluster[MAXCLUSTER];86int NumPatterns; // Number of patterns87int SizeVector; // Number of dimensions in vector88int NumClusters; // Number of clusters89void DistributeSamples(); // Step 2 of K-means algorithm90int CalcNewClustCenters();// Step 3 of K-means algorithm91double EucNorm(int, int); // Calc Euclidean norm vector92int FindClosestCluster(int); //ret indx of clust closest to pattern93//whose index is arg94public:95void system();96int LoadPatterns(char *fname); // Get pattern data to be clustered97void InitClusters(); // Step 1 of K-means algorithm98void RunKMeans(); // Overall control K-means process99void ShowClusters(); // Show results on screen100void SaveClusters(char *fname); // Save results to file101void ShowCenters();102 };103//输出聚类中⼼104void System::ShowCenters(){105int i,j;106 printf("Cluster centers:\n");107for (i=0; i<NumClusters; i++) {108 Cluster[i].Member[0]=i;109 printf("ClusterCenter[%d]=(%f,%f)\n",i,Cluster[i].Center[0],Cluster[i].Center[1]); 110 } /* endfor */111 printf("\n");112 getchar();113 }114115//读取⽂件117 {118 FILE *InFilePtr;119int i,j;120double x;121if((InFilePtr = fopen(fname, "r")) == NULL)122return FAILURE;123 fscanf(InFilePtr, "%d", &NumPatterns); // Read # of patterns 18数据量124 fscanf(InFilePtr, "%d", &SizeVector); // Read dimension of vector 2维度125 fscanf(InFilePtr, "%d", &NumClusters); // Read # of clusters for K-Means 2簇126for (i=0; i<NumPatterns; i++) { // For each vector127for (j=0; j<SizeVector; j++) { // create a pattern128 fscanf(InFilePtr,"%lg",&x); // consisting of all elements129 Pattern[i][j]=x;130 } /* endfor */131 } /* endfor */132//输出所有数据元素133 printf("Input patterns:\n");134for (i=0; i<NumPatterns; i++) {135 printf("Pattern[%d]=(%2.3f,%2.3f)\n",i,Pattern[i][0],Pattern[i][1]);136 } /* endfor */137 printf("\n--------------------\n");138 getchar();139return SUCCESS;140 }141//***************************************************************************142// InitClusters *143// Arbitrarily assign a vector to each of the K clusters *144// We choose the first K vectors to do this *145//***************************************************************************146//初始化聚类中⼼147void System::InitClusters(){148int i,j;149 printf("Initial cluster centers:\n");150for (i=0; i<NumClusters; i++) {151 Cluster[i].Member[0]=i;152for (j=0; j<SizeVector; j++) {153 Cluster[i].Center[j]=Pattern[i][j];154 } /* endfor */155 } /* endfor */156for (i=0; i<NumClusters; i++) {157 printf("ClusterCenter[%d]=(%f,%f)\n",i,Cluster[i].Center[0],Cluster[i].Center[1]); //untransplant 158 } /* endfor */159 printf("\n");160 getchar();161 }162//运⾏KMeans163void System::RunKMeans(){164int converged;165int pass;166 pass=1;167 converged=FALSE;168//第N次聚类169while (converged==FALSE) {170 printf("PASS=%d\n",pass++);171 DistributeSamples();172 converged=CalcNewClustCenters();173 ShowCenters();174 getchar();175 } /* endwhile */176 }177//在⼆维和三维空间中的欧式距离的就是两点之间的距离,⼆维的公式是178//d = sqrt((x1-x2)^+(y1-y2)^)179//通过这种运算,就可以把所有列的属性都纳⼊进来180double System::EucNorm(int p, int c){ // Calc Euclidean norm of vector difference181double dist,x; // between pattern vector, p, and cluster182int i; // center, c.183char zout[128];184char znum[40];185char *pnum;186//187 pnum=&znum[0];188 strcpy(zout,"d=sqrt(");189 printf("The distance from pattern %d to cluster %d is calculated as:\n",p,c);190 dist=0;191for (i=0; i<SizeVector ;i++){192//拼写字符串193 x=(Cluster[c].Center[i]-Pattern[p][i])*(Cluster[c].Center[i]-Pattern[p][i]);194 strcat(zout,f2a(x,4));195if (i==0)196 strcat(zout,"+");197//计算距离198 dist += (Cluster[c].Center[i]-Pattern[p][i])*(Cluster[c].Center[i]-Pattern[p][i]);199 } /* endfor */201return dist;202 }203//查找最近的群集204int System::FindClosestCluster(int pat){205int i, ClustID;206double MinDist, d;207 MinDist =9.9e+99;208 ClustID=-1;209for (i=0; i<NumClusters; i++) {210 d=EucNorm(pat,i);211 printf("Distance from pattern %d to cluster %d is %f\n\n",pat,i,sqrt(d));212if (d<MinDist) {213 MinDist=d;214 ClustID=i;215 } /* endif */216 } /* endfor */217if (ClustID<0) {218 printf("Aaargh");219 exit(0);220 } /* endif */221return ClustID;222 }223//224void System::DistributeSamples(){225int i,pat,Clustid,MemberIndex;226//Clear membership list for all current clusters227for (i=0; i<NumClusters;i++){228 Cluster[i].NumMembers=0;229 }230for (pat=0; pat<NumPatterns; pat++) {231//Find cluster center to which the pattern is closest232 Clustid= FindClosestCluster(pat);//查找最近的聚类中⼼233 printf("patern %d assigned to cluster %d\n\n",pat,Clustid);234//post this pattern to the cluster235 MemberIndex=Cluster[Clustid].NumMembers;236 Cluster[Clustid].Member[MemberIndex]=pat;237 Cluster[Clustid].NumMembers++;238 } /* endfor */239 }240//计算新的群集中⼼241int System::CalcNewClustCenters(){242int ConvFlag,VectID,i,j,k;243double tmp[MAXVECTDIM];244char xs[255];245char ys[255];246char nc1[20];247char nc2[20];248char *pnc1;249char *pnc2;250char *fpv;251252 pnc1=&nc1[0];253 pnc2=&nc2[0];254 ConvFlag=TRUE;255 printf("The new cluster centers are now calculated as:\n");256for (i=0; i<NumClusters; i++) { //for each cluster257 pnc1=itoa(Cluster[i].NumMembers,nc1,10);258 pnc2=itoa(i,nc2,10);259 strcpy(xs,"Cluster Center");260 strcat(xs,nc2);261 strcat(xs,"(1/");262 strcpy(ys,"(1/");263 strcat(xs,nc1);264 strcat(ys,nc1);265 strcat(xs,")(");266 strcat(ys,")(");267for (j=0; j<SizeVector; j++) { // clear workspace268 tmp[j]=0.0;269 } /* endfor */270for (j=0; j<Cluster[i].NumMembers; j++) { //traverse member vectors271 VectID=Cluster[i].Member[j];272for (k=0; k<SizeVector; k++) { //traverse elements of vector273 tmp[k] += Pattern[VectID][k]; // add (member) pattern elmnt into temp 274if (k==0) {275 strcat(xs,f2a(Pattern[VectID][k],3));276 } else {277 strcat(ys,f2a(Pattern[VectID][k],3));278 } /* endif */279 } /* endfor */280if(j<Cluster[i].NumMembers-1){281 strcat(xs,"+");282 strcat(ys,"+");283 }285 strcat(xs,")");286 strcat(ys,")");287 }288 } /* endfor */289for (k=0; k<SizeVector; k++) { //traverse elements of vector290 tmp[k]=tmp[k]/Cluster[i].NumMembers;291if (tmp[k] != Cluster[i].Center[k])292 ConvFlag=FALSE;293 Cluster[i].Center[k]=tmp[k];294 } /* endfor */295 printf("%s,\n",xs);296 printf("%s\n",ys);297 } /* endfor */298return ConvFlag;299 }300//输出聚类301void System::ShowClusters(){302int cl;303for (cl=0; cl<NumClusters; cl++) {304 printf("\nCLUSTER %d ==>[%f,%f]\n", cl,Cluster[cl].Center[0],Cluster[cl].Center[1]); 305 } /* endfor */306 }307308void System::SaveClusters(char *fname){309 }四、主调程序1void main(int argc, char *argv[])2 {34 System kmeans;5/*6 if (argc<2) {7 printf("USAGE: KMEANS PATTERN_FILE\n");8 exit(0);9 }*/10if (kmeans.LoadPatterns("KM2.DAT")==FAILURE ){11 printf("UNABLE TO READ PATTERN_FILE:%s\n",argv[1]);12 exit(0);13 }1415 kmeans.InitClusters();16 kmeans.RunKMeans();17 kmeans.ShowClusters();18 }五、输出结果1 Input patterns:2 Pattern[0]=(0.000,0.000)3 Pattern[1]=(1.000,0.000)4 Pattern[2]=(0.000,1.000)5 Pattern[3]=(2.000,1.000)6 Pattern[4]=(1.000,2.000)7 Pattern[5]=(2.000,2.000)8 Pattern[6]=(2.000,0.000)9 Pattern[7]=(0.000,2.000)10 Pattern[8]=(7.000,6.000)11 Pattern[9]=(7.000,7.000)12 Pattern[10]=(7.000,8.000)13 Pattern[11]=(8.000,6.000)14 Pattern[12]=(8.000,7.000)15 Pattern[13]=(8.000,8.000)16 Pattern[14]=(8.000,9.000)17 Pattern[15]=(9.000,7.000)18 Pattern[16]=(9.000,8.000)19 Pattern[17]=(9.000,9.000)2021 --------------------2223 Initial cluster centers:24 ClusterCenter[0]=(0.000000,0.000000)25 ClusterCenter[1]=(1.000000,0.000000)262728 PASS=129 The distance from pattern 0 to cluster 0is calculated as:30 d=sqrt( .0000+ .0000)31 Distance from pattern 0 to cluster 0is0.0000003233 The distance from pattern 0 to cluster 1is calculated as:35 Distance from pattern 0 to cluster 1is1.0000003637 patern 0 assigned to cluster 03839 The distance from pattern 1 to cluster 0is calculated as:40 d=sqrt( 1.0000+ .0000)41 Distance from pattern 1 to cluster 0is1.0000004243 The distance from pattern 1 to cluster 1is calculated as:44 d=sqrt( .0000+ .0000)45 Distance from pattern 1 to cluster 1is0.0000004647 patern 1 assigned to cluster 14849 The distance from pattern 2 to cluster 0is calculated as:50 d=sqrt( .0000+ 1.0000)51 Distance from pattern 2 to cluster 0is1.0000005253 The distance from pattern 2 to cluster 1is calculated as:54 d=sqrt( 1.0000+ 1.0000)55 Distance from pattern 2 to cluster 1is1.4142145657 patern 2 assigned to cluster 05859 The distance from pattern 3 to cluster 0is calculated as:60 d=sqrt( 4.0000+ 1.0000)61 Distance from pattern 3 to cluster 0is2.2360686263 The distance from pattern 3 to cluster 1is calculated as:64 d=sqrt( 1.0000+ 1.0000)65 Distance from pattern 3 to cluster 1is1.4142146667 patern 3 assigned to cluster 16869 The distance from pattern 4 to cluster 0is calculated as:70 d=sqrt( 1.0000+ 4.0000)71 Distance from pattern 4 to cluster 0is2.2360687273 The distance from pattern 4 to cluster 1is calculated as:74 d=sqrt( .0000+ 4.0000)75 Distance from pattern 4 to cluster 1is2.0000007677 patern 4 assigned to cluster 17879 The distance from pattern 5 to cluster 0is calculated as:80 d=sqrt( 4.0000+ 4.0000)81 Distance from pattern 5 to cluster 0is2.8284278283 The distance from pattern 5 to cluster 1is calculated as:84 d=sqrt( 1.0000+ 4.0000)85 Distance from pattern 5 to cluster 1is2.2360688687 patern 5 assigned to cluster 18889 The distance from pattern 6 to cluster 0is calculated as:90 d=sqrt( 4.0000+ .0000)91 Distance from pattern 6 to cluster 0is2.0000009293 The distance from pattern 6 to cluster 1is calculated as:94 d=sqrt( 1.0000+ .0000)95 Distance from pattern 6 to cluster 1is1.0000009697 patern 6 assigned to cluster 19899 The distance from pattern 7 to cluster 0is calculated as: 100 d=sqrt( .0000+ 4.0000)101 Distance from pattern 7 to cluster 0is2.000000102103 The distance from pattern 7 to cluster 1is calculated as: 104 d=sqrt( 1.0000+ 4.0000)105 Distance from pattern 7 to cluster 1is2.236068106107 patern 7 assigned to cluster 0108109 The distance from pattern 8 to cluster 0is calculated as: 110 d=sqrt( 49.0000+ 36.0000)111 Distance from pattern 8 to cluster 0is9.219544112113 The distance from pattern 8 to cluster 1is calculated as: 114 d=sqrt( 36.0000+ 36.0000)115 Distance from pattern 8 to cluster 1is8.485281116117 patern 8 assigned to cluster 1123 The distance from pattern 9 to cluster 1is calculated as: 124 d=sqrt( 36.0000+ 49.0000)125 Distance from pattern 9 to cluster 1is9.219544126127 patern 9 assigned to cluster 1128129 The distance from pattern 10 to cluster 0is calculated as: 130 d=sqrt( 49.0000+ 64.0000)131 Distance from pattern 10 to cluster 0is10.630146132133 The distance from pattern 10 to cluster 1is calculated as: 134 d=sqrt( 36.0000+ 64.0000)135 Distance from pattern 10 to cluster 1is10.000000136137 patern 10 assigned to cluster 1138139 The distance from pattern 11 to cluster 0is calculated as: 140 d=sqrt( 64.0000+ 36.0000)141 Distance from pattern 11 to cluster 0is10.000000142143 The distance from pattern 11 to cluster 1is calculated as: 144 d=sqrt( 49.0000+ 36.0000)145 Distance from pattern 11 to cluster 1is9.219544146147 patern 11 assigned to cluster 1148149 The distance from pattern 12 to cluster 0is calculated as: 150 d=sqrt( 64.0000+ 49.0000)151 Distance from pattern 12 to cluster 0is10.630146152153 The distance from pattern 12 to cluster 1is calculated as: 154 d=sqrt( 49.0000+ 49.0000)155 Distance from pattern 12 to cluster 1is9.899495156157 patern 12 assigned to cluster 1158159 The distance from pattern 13 to cluster 0is calculated as: 160 d=sqrt( 64.0000+ 64.0000)161 Distance from pattern 13 to cluster 0is11.313708162163 The distance from pattern 13 to cluster 1is calculated as: 164 d=sqrt( 49.0000+ 64.0000)165 Distance from pattern 13 to cluster 1is10.630146166167 patern 13 assigned to cluster 1168169 The distance from pattern 14 to cluster 0is calculated as: 170 d=sqrt( 64.0000+ 81.0000)171 Distance from pattern 14 to cluster 0is12.041595172173 The distance from pattern 14 to cluster 1is calculated as: 174 d=sqrt( 49.0000+ 81.0000)175 Distance from pattern 14 to cluster 1is11.401754176177 patern 14 assigned to cluster 1178179 The distance from pattern 15 to cluster 0is calculated as: 180 d=sqrt( 81.0000+ 49.0000)181 Distance from pattern 15 to cluster 0is11.401754182183 The distance from pattern 15 to cluster 1is calculated as: 184 d=sqrt( 64.0000+ 49.0000)185 Distance from pattern 15 to cluster 1is10.630146186187 patern 15 assigned to cluster 1188189 The distance from pattern 16 to cluster 0is calculated as: 190 d=sqrt( 81.0000+ 64.0000)191 Distance from pattern 16 to cluster 0is12.041595192193 The distance from pattern 16 to cluster 1is calculated as: 194 d=sqrt( 64.0000+ 64.0000)195 Distance from pattern 16 to cluster 1is11.313708196197 patern 16 assigned to cluster 1198199 The distance from pattern 17 to cluster 0is calculated as: 200 d=sqrt( 81.0000+ 81.0000)201 Distance from pattern 17 to cluster 0is12.727922207 patern 17 assigned to cluster 1208209 The new cluster centers are now calculated as:210 Cluster Center0(1/3)( .000+ .000+ .000),211 (1/3)( .000+ 1.000+ 2.000)212 Cluster Center1(1/15)( 1.000+ 2.000+ 1.000+ 2.000+ 2.000+ 7.000+ 7.000+ 7.000+ 8 213 .000+ 8.000+ 8.000+ 8.000+ 9.000+ 9.000+ 9.000),214 (1/15)( .000+ 1.000+ 2.000+ 2.000+ .000+ 6.000+ 7.000+ 8.000+ 6.000+ 7.000+ 8.00 2150+ 9.000+ 7.000+ 8.000+ 9.000)216 Cluster centers:217 ClusterCenter[0]=(0.000000,1.000000)218 ClusterCenter[1]=(5.866667,5.333333)。
matlab k means 肘点计算全文共四篇示例,供读者参考第一篇示例:肘点法是一种用于确定K均值聚类中最佳羚值的方法,通过观察聚类误差的变化来找到最佳的聚类数。
在实际应用中,选择合适的聚类数对于数据的聚类效果至关重要,而肘点法可以帮助我们找到最佳的聚类数,从而更好地解释数据分布和结构。
K均值聚类是一种常用的无监督学习方法,可以将数据集划分为K 个不相交的簇。
在K均值聚类算法中,我们首先随机选择K个中心点,然后将数据点分配到最近的中心点所在的簇中,接着更新每个簇的中心点。
重复这个过程直到簇中心点不再变化或者达到了最大迭代次数。
在实际应用中,我们往往不知道数据集的真实分布情况,因此需要通过一些方法来确定最佳的簇数K。
肘点法是一种基于聚类误差的方法,可以帮助我们找到最佳的聚类数K。
聚类误差通常用簇内平方和(SSE)来衡量,即每个数据点与所属簇的中心点之间的距离的平方和。
当K的取值较小时,聚类误差会较大,因为每个簇中的数据点较少,簇内方差较大;而当K的取值较大时,聚类误差会逐渐减小,因为簇内方差较小。
当K的取值逐渐增大时,聚类误差会呈现下降趋势,直到某一点开始趋于平缓,形成一个类似于“肘点”的拐点。
肘点法的基本思想是寻找聚类误差的“肘点”,即聚类误差的下降速度突然减缓的位置,这个位置通常对应最佳的簇数K。
通过观察聚类误差随着K的变化的曲线图,我们可以找到明显的“肘点”,从而确定最佳的簇数K。
在Matlab中,我们可以使用kmeans函数进行K均值聚类,然后通过计算聚类误差来找到肘点。
下面是一个简单的示例代码:```matlab% 生成示例数据data = [randn(100,2)*0.75+ones(100,2);randn(100,2)*0.5-ones(100,2)];% 初始化聚类数的范围K_range = 1:10;% 计算簇内平方和(SSE)随着K的变化SSE = zeros(length(K_range),1);for i = 1:length(K_range)[~, C, sumd] = kmeans(data, K_range(i));SSE(i) = sum(sumd);end% 画出SSE随着K的变化的曲线figure;plot(K_range, SSE, 'bx-');xlabel('Number of clusters');ylabel('SSE');title('Elbow Method for Determining Optimal K');```通过运行以上代码,我们可以得到一个SSE随着K的变化的曲线图,然后观察曲线图找到明显的“肘点”,从而确定最佳的簇数K。
Kmeans算法的应⽤实例(Matlab版本)K-means是⼀种经典的聚类算法,是⼗⼤经典数据挖掘算法之⼀。
K-means算法的基本思想是:以空间中k个点为中⼼进⾏聚类,对最靠近他们的对象归类。
通过迭代的⽅法,逐次更新各聚类中⼼的值,直⾄得到最好的聚类结果。
假设要把样本集分为c个类别,算法描述如下: (1)适当选择c个类的初始中⼼; (2)在第k次迭代中,对任意⼀个样本,求其到c个中⼼的距离,将该样本归到距离最短的中⼼所在的类; (3)利⽤均值等⽅法更新该类的中⼼值; (4)对于所有的c个聚类中⼼,如果利⽤(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最⼤优势在于简洁和快速。
算法的关键在于初始中⼼的选择和距离公式。
K-means算法的应⽤之⼀就是图像的压缩。
假设有⼀张1600*2400⼤⼩的RGB图,那么需要1600*2400*3字节的空间来存放每个像素的三个通道值。
如果这是⼀张颜⾊单调的图⽚,我们就可以把颜⾊相近的像素点归类,⽤同⼀组RGB值来表⽰他们,把这组RGB值放⼊调⾊板的x 位置,原图⽚中属于这⼀聚类的像素点只需要保存x值,然后根据x值到调⾊板查找RGB值。
如果把⼀张图⽚的所有颜⾊聚成256个类,那么只需要1600*2400*1个字节来保存每个像素的调⾊板索引值,和256*3个字节保存调⾊板。
尽管这⼀过程会使照⽚的⾊彩略有失真,但是它可以⼤⼤节省存储空间。
下⾯是k-means算法的Matlab代码。
图⽚的像素按照RGB值被归为10个聚类,分别是原图像和聚类后的图像。
如果增加聚类的个数,图像的效果会有所改善。
K-Means主要有两个最重⼤的缺陷——都和初始值有关:K 是事先给定的,这个 K 值的选定是⾮常难以估计的。
很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。
( ISODATA 算法通过类的⾃动合并和分裂,得到较为合理的类型数⽬ K)K-Means算法需要⽤初始随机种⼦点来搞,这个随机种⼦点太重要,不同的随机种⼦点会有得到完全不同的结果。
Halcon 聚类算法1. 简介Halcon是一款广泛应用于机器视觉领域的软件库,提供了丰富的图像处理和分析功能。
其中,聚类算法是Halcon中重要的一部分,用于将数据集划分为不同的群组。
本文将介绍Halcon中常用的聚类算法及其应用。
2. K-Means 聚类算法K-Means是一种常见的聚类算法,它通过将数据集划分为K个簇来实现聚类。
该算法具有简单、高效的特点,并且在实际应用中广泛使用。
2.1 算法原理K-Means算法基于以下几个步骤:1.随机选择K个初始聚类中心。
2.将每个样本点分配到距离最近的聚类中心。
3.根据每个簇内样本点的均值更新聚类中心。
4.重复步骤2和3,直到收敛或达到最大迭代次数。
2.2 Halcon中使用K-Means算法在Halcon中,可以使用kmeans_clustering函数来执行K-Means聚类算法。
该函数需要指定输入数据集、簇数目以及其他参数。
以下是使用Halcon进行K-Means聚类的示例代码:read_image(Image, 'image.jpg')convert_image_type(Image, 'byte')reduce_domain(Image, ImageReduced)features := create_feature_set()add_features_object(features, ImageReduced, 7)kmeans_clustering(features, 4, KMeansHandle)get_clusters(KMeansHandle, Clusters)上述代码首先读取图像并将其转换为灰度图像,然后使用reduce_domain函数减少领域以提高聚类性能。
接下来,创建一个特征集并将图像添加到特征集中。
最后,使用kmeans_clustering函数执行聚类并获取聚类结果。
3. DBSCAN 聚类算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声数据具有较好的鲁棒性。