D1.1实数与区间
- 格式:pdf
- 大小:484.65 KB
- 文档页数:11
顺德一中实验学校校本课程——高中数学衔接课程(编号01)班级______姓名____________第一章 数与式的运算1.1 实数的分类及其基本性质【知识梳理】 有理数都可以写成有限小数(包括整数)或无限循环小数的形式;都可以表示成分数qp(p 、q 是互质的整数,q ≠0).反之,能表示成qp(p 、q 是互质的整数,q ≠0)形式的数都是有理数. 无理数是无限不循环小数,不能写成qp(p 、q 是互质的整数,q ≠0)的形式. 有理数与无理数统称为实数,具体分类如下:实数的基本性质:1.无界性:没有最大的实数,也没有最小的实数. 2.稠密性:任何两个实数之间有无数多个实数. 3.连续性:全体实数和数轴上的所有点是一一对应的.4.有序性:任何两个实数都可以比较大小.给定两个实数a 、b ,则a >b 、a=b 、a <b 三者之中有且仅有一个成立.在数轴上,右边的点表示的数比左边的点表示的数大.5.运算的封闭性:任何两个实数的和、差、积、商(除数不为零)一定是实数;任何一个实数都可以开奇次方,其结果是实数;只有当被开方数是非负实数时,才能开偶次方,其结果是实数.任何两个有理数的和、差、积、商(除数不为零)一定是有理数;但无理数不具有上述性质. 设m 为有理数,n 为无理数,则m+n 、m –n 是无理数;若m ≠0,则mn 、n m 、mn都是无理数;若m =0,则mn 、nm是有理数. 6.实数的运算满足交换律、结合律、分配律.⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧}{}{无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数【例题讲解】【例1】 下列各数:1、5、–3、π+1、311、0.12113111411115…、64、2+3、38中,哪些是整数?哪些是有理数?哪些是无理数?【解】以上各数中为整数的是:1、–3、64、38;为有理数的是:1、–3、64、38、311;为无理数的是:5、π+1、0.12113111411115…、2+3.【例2】 若x 是实数,下列说法对吗?若不对,请给出成立的条件.(1) –x <0; (2)2x 是偶数; (3)–|x |<0; (4)x +3>x ; (5)(–x )2= –x 2 ; (6)3x >2x . 【解】(1) 不对,当x >0时才成立; (2) 不对,当x 是整数时才成立;(3) 不对,当x ≠0时才成立; (4) 对;(5) 不对,当x =0时才成立; (6) 不对,当x >0时才成立.【例3】 比较下列各组数的大小.(1)23与32;(2)2+5与3+2. 【解】 (1) 因为23=12,32=18, 因为12<18,所以23<32.(2) 因为(2+5)2=7+210,(3+2)2=7+43=7+212, 因为7+210<7+212,所以2+5<3+2.【说明】 在实数集中,对于任意实数a 与b ,必存在a >b ,a=b ,a <b 三种关系中的一种.比较两个实数的大小方法有很多,可以通过变形(如本题(1)、(2))后进行判断;也可以利用数轴上右边的点表示的数比左边的点表示的数大来进行判断;还可以把实数化成小数后进行判断.另外还有“比差法”与“比商法”等.【例4】 若3+a 3=2b –523,求有理数a 和b 的值. 【解】 因为3=2b ,a = –52,所以a = –52,b = 23.【说明】 设p 为无理数,a 、b 、c 、d 为有理数,且b ≠0,d ≠0,,若a+bp =c+dp ,则必有a=c ,b=d . 【例5】 求无理数π的纯小数部分.【解】 因为3<π<4,所以π是整数3与一个小于1的正小数(即纯小数)的和,所以π的纯小数部分为π–3. 【说明】 无理数是无限不循环小数,每一个无理数都能写成一个整数与一个小于1的正的纯小数之和的形式.【练习1.1】 1.下列各数:–2、710、0.35、327、16、π、0.12112111211112…、13、2–3中,哪些是整数?哪些是有理数?哪些是无理数?2.若a 是实数,下列说法对吗?若不对,请给出成立的条件. (1) –a 2<0;(2) 2a+1是奇数;(3) |a |>0;(4) a –2<a ;(5)(–a )3 = –a 3;(6) a <2a3.比较下列各组数的大小. (1) 52与7;(2)2+6与3+5.4.(1)若a <b <0,比较|a |与|b |的大小;(2)若a <b <0,比较–a 、|b |、a –b 的大小. 5.求无理数5的纯小数部分. 6.已知(2a –1)2=9,求a 的值. 7.写出绝对值小于8的所有整数.8.设a 、b 是正有理数且(3a+2)a +(3b –2)b =253+2,求a 、b 的值.1.2 绝对值及其几何意义【知识梳理】数轴上表示一个数的点到原点的距离,叫做这个数的绝对值.其代数意义就是:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是0.即:,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩.|a |的几何意义是数轴上表示数a 的点与原点间的距离.|a –b |的几何意义是数轴上表示数a 的点与表示数b 的点间的距离. 绝对值有如下运算性质: (1) |ab |=|a ||b |; (2)||||b a b a =(b ≠0); (3) ||a |–|b ||≤|a+b |≤|a |+|b |;左边的等号当且仅当ab ≤0时取到,右边的等号当且仅当ab ≥0时取到; (4) ||a |–|b ||≤|a –b |≤|a |+|b |;左边的等号当且仅当ab ≥0时取到,右边的等号当且仅当ab ≤0时取到. 【例题讲解】【例1】 化简:(1) |2x –1|;(2) |x –1|+|x –3|.【解】 (1)本题分2x –1≥0、2x –1<0两种情况讨论:1o 当x ≥21时,2x –1≥0,原式=2x –1,2o 当x <21时,2x –1<0,原式=1–2x , 即:|2x –1|=⎪⎪⎩⎪⎪⎨⎧<-≥-21212112x x x x .(2)本题分x <1、1≤x <3、x ≥3三种情况讨论:1o 当x <1时,x –1<0,x –3<0,原式= 4–2x ; 2o 当1≤x <3时,x –1≥0,x –3<0,原式=2; 3o 当x ≥3时,x –1>0,x –3>0,原式= 2x –4,即:|x –1|+|x –3|=⎪⎩⎪⎨⎧≥-<≤<-342312124x x x x x . 【例3】 解不等式: (1) |x –1|≤1 (2) |x +1|>2.【解】 (1)根据绝对值的几何意义知不等式|x –1|≤1的解为到点1距离小于或等于1的所有点所对应的实数,由图可知为:0≤x ≤2;(2)根据绝对值的几何意义知不等式|x +1|>2的解为到点–1距离大于2的所有点对应的实数,由图可知为:x <–3或x >1.【说明】 本题也可以从整体换元的角度直接做,如第(1)题,我们把x –1看成a ,则有|a |≤1,有–1≤a ≤1,即–1≤x –1≤1.【练习1.2】1.下列命题中哪些是真命题?(1)|ab |=|a ||b |;(2)|a –b |=|b –a|;(3)若|a|=b ,则a=b ; (4)若|a|>|b|,则a >b ;(5)|a+b|=|a|+|b|. 2.若|a –2|=2–a ,求实数a 的取值范围.3.化简:(1)2x x ; (2)|1)23(2--|;(3)|1+2a | (a >0); (4)962+-m m –|1–m | (1<m <3)4.解方程:(1)x 2=|x|;(2)|x –3|=2.(3) |x +1|+|x |=1; 5.解不等式:(1)|x|>2;(2)|x –3|<5;(3)|x+2|≥1. 6.若|x |=1,2y =3,求x+y 的值.7.若a 、b 是实数,且(a+3)2+|b –1|=0,求ab的值. 8.若a 、b 、c 是非零实数,求M=abcabc c c b b a a ||||||||+++的值.图1.2–2。
第一章 实数集与函数习题课 实数集、确界原理与函数一、基本要求:1、掌握有关实数的性质与运算。
2、正确理解确界概念与确界原理,并运用于有关命题的运算与证明。
3、在中学已掌握函数概念的基础上,以两个数集之间映射的观点来加深对函数概念的理解。
4、进一步掌握函数的运算性质(四则运算、复合运算、和反函数等)及其表示方法。
5、加深对某些特性函数(有界函数、单调函数、奇(偶)函数和周期函数)的认识。
并能依次对所给函数是否具有上述性质做出判断。
二、内容复习:1、实数的定义:实数是有理数和无理数的统称。
有理数可用分数形式qp(q p ,为整数,0≠q )表示也可用有限十进小数或无限十进循环小数来表示;而无限十进不循环小数则称为无理数。
2、实数的性质:(1) 封闭性:实数集R 对加、减、乘、除(除数不为0)四则运算是封闭的.(2) 有序性:任意两实数b a ,必满足下述三个关系之一:b a <,b a =,b a >.(3) 传递性:若b a >,c b >,则c a >.(4) 阿基米德性:对任何R b a ∈,,若0>>a b ,则存在正整数n ,使得b na >.(5) 稠密性:任何两个实数之间必有另一个实数,且既有有理数,也有无理数.(6) 实数集与数轴上的点有着一一对应关系.3、绝对值的定义:⎩⎨⎧<-≥=.0,,0,||a a a a a 从数轴上看,数a 的绝对值||a 就是a 到原点的绝对值.4、绝对值的性质:(1) 0||||≥-=a a ;当且仅当时0=a 有0||=a .第一章 实数集与函数(2) ||||a a a ≤≤-.(3) )0(||;||>≤≤-⇔≤<<-⇔<h h a h h a h a h h a .(4)对任何R b a ∈,有如下的三角不等式:||||||||||b a b a b a +≤±≤-.(5) ||||||b a ab =. (6) )0(||||≠=b b a b a . 5、区间与邻域的概念:有限区间:设a 、R b ∈,且b a <开区间:}|{),(b x a x b a <<=.闭区间:}|{],[b x a x b a ≤≤=.半开半闭区间:}|{),[b x a x b a <≤=或}|{],(b x a x b a ≤<=.无限区间:}|{],(a x x a ≤=-∞,}|{),(a x x a <=-∞}|{],(a x x a ≥=+∞,}|{),(a x x a >=+∞R =+∞-∞),(邻域:设0,>∈δR a点a 的δ邻域:),(}|||{);(δδδδ+-=<-=a a a x x a U .点a 的空心δ邻域:}||0|{);(δδ<-<=a x x a U .点a 的左δ邻域:],();(a a a U δδ-=-.点a 的右δ邻域:),[);(δδ+=+a a a U .∞邻域:}|||{)(M x x U >=∞,其中为充分大的正数(下同).∞+邻域:}|{)(M x x U >=+∞;∞-邻域:}|{)(M x x U -<=-∞.6、确界的定义:确界是上确界与下确界的统称。
第一章实数集与函数1 实数一、实数及其性质定义1:(两个实数的大小关系) 给定两个非负实数x=a0.a1a2…a n…,y=b0.b1b2…b n…,其中a0,b0为非负整数,a k,b k(k=1,2,…)为整数,0≤a k≤9,0≤b k≤9。
若有a k=b k,k=1,2,…,则称x与y相等,记为x=y;若a0>b0或存在非负整数j,使得a k=b k(k=1,2,…j)而a j+1>b j+1,则称x大于y或y小于x,分别记为x>y或y<x.定义2:设x=a0.a1a2…a n…为非负实数。
称有理数x n=a0.a1a2…a n为实数x的n位不足近似,而有理数= x n称为实数x的n位过剩近似,n=1,2,….对于负实数x= -a0.a1a2…a n…,其n位不足近似与过剩近似分别规定为x n= -a0.a1a2…a n与= -a0.a1a2…a n.命题:设x=a0.a1a2…,y=b0.b1b2…为两个实数,则x>y等价条件是:存在非负整数n,使得x n>.例1:设x、y为实数,x<y. 证明:存在有理数r满足x<r<y.证:由于x<y,故存在非负整数n,使得<y n. 令r=(+y n),则r为有理数,且有:x≤<r<y n<y,即得x<r<y.实数的一些主要性质:1. 实数集R对加、减、乘、除(除数不为0)四则运算是封闭的,即任意两个实数的和、差、积、商(除数不为0)仍然是实数;2. 实数集是有序的,即任意两个实数a、b必满足下述三个关系之一:a<b,a=b,a>b.3. 实数的大小关系具有传递性,即a>b,b>c,则有a>c.4. 实数具有阿基米德性,即对任何a、b∈R,若b>a>0,则存在正整数n,使得na>b.5. 实数集R具有稠密性,即任何两个不相等的实数之间必有其它实数,且既有有理数,也有无理数;6. 如果在一条直线(通常画成水平直线)上确定一点O作为原点,指定一个方向为正向(通常把指向右边的方向规定为正向),并规定一个单位长度,则称此直线为数轴。
高等数学d类教材目录第一章:函数与极限1.1 实数与数集1.2 函数的概念1.3 函数的性质与运算1.4 映射与反函数1.5 极限的概念1.6 极限的运算法则1.7 无穷小与无穷大1.8 无穷大的比较与等价1.9 极限存在准则第二章:导数与微分2.1 切线与割线2.2 导数的定义与性质2.3 基本导数公式2.4 高阶导数与函数的近似2.5 隐函数与参数方程的导数2.6 微分的概念与计算2.7 导数在几何与物理中的应用2.8 铺垫篇:练习与思考第三章:微分中值定理3.1 极值与最值3.2 高阶导数与函数的凹凸性3.3 Rolle定理3.4 中值定理与拉格朗日中值定理3.5 洛必达法则与高阶导数的应用3.6 弧长与曲率3.7 泰勒公式与展开式3.8 微分中值定理的证明与扩展3.9 铺垫篇:练习与思考第四章:不定积分4.1 原函数与不定积分4.2 不定积分的基本性质4.3 简单的不定积分法4.4 第一类换元法4.5 第二类换元法4.6 分部积分法4.7 有理函数的积分4.8 特殊函数的积分4.9 定积分与无穷积分第五章:定积分与其应用5.1 定积分的概念与性质5.2 可积性与测度零函数5.3 函数的求积与积分区间5.4 牛顿-莱布尼兹公式5.5 定积分中值定理与平均值定理5.6 积分的应用:几何与物理5.7 主体思想解决问题5.8 微积分的历史渊源与思考第六章:多元函数微分学6.1 二元函数的概念与性质6.2 偏导数与全微分6.3 多元函数的链式法则6.4 隐函数与方程组的求导6.5 方向导数与梯度6.6 多元函数的极值与条件极值6.7 多元函数的二阶导数与Taylor公式第七章:重积分与曲线积分7.1 二重积分的概念与计算7.2 二重积分的性质7.3 二重积分的应用7.4 三重积分的概念与计算7.5 三重积分的性质7.6 三重积分的应用7.7 曲线积分的概念与计算7.8 曲线积分的应用7.9 广义积分的问题与思考第八章:曲面积分与散度定理8.1 曲面积分的概念与计算8.2 曲面积分的性质8.3 曲面积分的应用8.4 散度的概念与计算8.5 散度定理的推导与应用8.6 高斯定理的特殊情况8.7 广义积分的问题与思考第九章:曲线积分与环量定理9.1 曲线积分的概念与计算9.2 曲线积分的性质9.3 Green公式的推导与应用9.4 环量的概念与计算9.5 环量定理与Green公式的关系9.6 有向曲线积分的计算与应用9.7 广义积分的问题与思考第十章:无穷级数与幂级数10.1 数项级数的概念与性质10.2 正项级数的审敛法10.3 一般级数的审敛法10.4 绝对收敛与条件收敛10.5 幂级数的概念与性质10.6 幂级数的收敛半径10.7 幂级数的求和与展开10.8 项项可求和级数的特点10.9 广义积分的问题与思考结束语:本教材力求将高等数学的知识条理清晰地呈现给读者。
专题1.1实数及其运算知识点演练考点1:实数的分类例1.(2022·浙江·温州市南浦实验中学七年级期中)把下列各数的序号填入相应的集合里.,④7,⑤36,⑥3.1313313331⋯(两个“1”之间依次多一个“3”).①0,②―4,③23整数∶______;分数∶______;无理数∶________;1.(2022·陕西宝鸡·八年级期中)下列说法中正确的是( )A.有理数都是有限小数B.无限小数都是无理数C.无理数都是无限小数D.π是分数2【答案】C【分析】根据有理数的定义及无理数的定义即可得到答案.【详解】解:A选项无限循环小数也是有理数,故A不正确;B选项无限循环小数也是有理数,故B不正确;2.(2022·江苏·沭阳县怀文中学七年级期中)下列各数中,是无理数的是()A.13B.1.732C.―πD.2273.(2022·四川·成都嘉祥外国语学校八年级期中)以下四个数:―2,3.14,227,0.101,无理数的个数是( )A.1B.2C.3D.44.(2022·广东河·八年级期中)在5,―0.333⋯,0,0.10010001⋯,38,(―2)0,3.1415,2.10101⋯(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个5.(2022·吉林·农安县新农乡初级中学八年级期中)下列各数3.1415926,9,1.212212221……(相邻两,2―π,―2020,4中,有理数有___________个.个l之间2的个数逐次加1),176.(2022··七年级期中)把下列各数填入相应的横线内:,0,5.-6,π,―23整数:__________________;负数:__________________;实数:__________________.7.(2022·浙江·余姚市子陵中学教育集团七年级期中)把下列各数的序号分别填入相应的大括号内:①0,②-π,③1.5,④―25,⑤―6,⑥1.1010010001…(每两个“1”之间依次多1个“0”)7负数:{___________…};整数:{___________…};无理数:{___________…}.8.(2022·浙江宁波·七年级期中)把下列各数对应的序号填在相应的括号里.①0;②3;③-2.5;④π2;⑤-57;⑥|―3|;⑦1.202002…… (每两个“2”之间依次多一个“0”).正整数:()负分数:()无理数:()【答案】⑥;③⑤;②④⑦【分析】根据正整数,负分数和无理数的概念,即可求解.【详解】解:|―3|=3,正整数:(⑥)负分数:(③⑤)无理数:(②④⑦)【点睛】本题主要考查实数的分类,掌握无理数是无限不循环小数是解题的关键.9.(2022·福建省大田县教师进修学校八年级期中)把下列各数填入相应的括号内:2 3,3―5,0.·7,―3.14,36,(―2)2,1.010010001⋯(1)无理数:{…};(2)负实数:{…};(3)整数:{…};(4)分数:{…};10.(2022·浙江金华·七年级期中)把下列各数对应的编号填在相应的大括号里:(1)―49,(2)18,(3)57,(4)π2,(5)—3.141,(6)0,(7)7,(8)80%,(9)―|―5|,(10)0.101001...(自左而右每两个1之间依次多一个0).整 数:____________________________________分 数:____________________________________无理数:___________________________________例2.(1)(2022·山东·宁津县育新中学九年级阶段练习)下列选项中,对2的说法错误的是().A.2的相反数是―2B.2的倒数是22C.2的绝对值是2D.2是有理数(2)(2022·河北唐山·八年级期中)3―5的绝对值是___________.个单位长度的圆,将圆上的点A放在原点,并把(3)(2022·河北邢台·八年级期中)如图,有一个半径为12圆沿数轴逆时针方向滚动一周,点A到达点A′的位置,则点A′表示的数______;若点B表示的数是―10,则点B在点A′的______(填“左边”、“右边”).1.(2022·山西实验中学八年级期中)实数―3的相反数是( )A.3B.3C.―3D.―332.(2022·陕西·西安市铁一中学七年级期中)―5的绝对值是( )A.5B.―5C.5D.―53.(2022·安徽省马鞍山市第七中学七年级期中)已知a为实数,则―a+|a|的值为()A.0B.不可能是负数C.可以是负数D.可以是正数也可以是负数【答案】B【分析】通过分类讨论去绝对值,即可判断结果.【详解】当a>0时,―a+|a|=―a+a=0;当a=0时,―a+|a|=―a+a=0;当a<0时,―a+|a|=―a―a=―2a>0.综上所述,―a+|a|的值不可能是负数.故选:B.【点睛】本题主要考查了实数的绝对值,a是实数时,正数、0、负数三种情况都要考虑到,用到了分类讨论的方法.4.(2022·江苏无锡·八年级期中)5―2的相反数是()A.―0.236B.5+2C.2―5D.―2+5【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.5.(2022·河北石家庄·八年级期中)在以下说法中:①无理数和有理数统称为实数;②实数和数轴上的点是一一对应的;③0的算术平方根是0;④无限小数都是无理数.正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的相关概念、实数与数轴的对应关系、算术平方根的概念对各小题分析判断即可得解【详解】①无理数和有理数统称为实数,说法正确②实数和数轴上的点是一一对应的,说法正确③0的算术平方根是0,说法正确④无限小数都是无理数,说法错误,因为无限循环小数是有理数故选C【点睛】本题主要考查实数的相关概念、实数与数轴的对应关系、算术平方根的概念,算数平方根的概念是解题的关键6.(2022·湖北黄石·中考真题)1―2的绝对值是()A.1―2B.2―1C.1+2D.±(2―1)7.(2022·浙江·七年级专题练习)数轴上表示1,2的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.2―1B.1―2C.2―2D.2―2【答案】C8.(2022·四川省成都市七中育才学校八年级期中)5―1的相反数是____,绝对值是__________.9.(2022·四川·成都外国语学校八年级期中)已知a、b、c在数轴上的位置如图所示.化简a2―|a+b|+ (c―a)2+|b+c|―3b3=___________.10.(2022·江苏·苏州工业园区金鸡湖学校一模)计算:|―3|+(π+3)0―12.11.(2022·福建省永春第三中学七年级期中)已知实数a,b满足|a|=b, |ab|+ab=0,化简|a|+|―2b| +3a.【答案】2a+2b【分析】根据实数的性质,绝对值的性质,相反数的意义,判断出a,b的符号,进而化简绝对值,再根据整式的加减进行化简即可求解.【详解】解:∵|a|=b, |ab|+ab=0∴b≥0,ab≤0∴a≤0∴|a|+|―2b|+3a=―a+2b+3a=2a+2b.【点睛】本题考查了实数的性质,整式的加减,化简绝对值,判断出a,b的符号是解题的关键.12.(2022·安徽·合肥市第四十五中学橡树湾校区七年级期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示―2,设点B所表示的数为m.(1)实数m的值是______;(2)求|m―1|―|1―m|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与d―4互为相反数,求2c+3d的平方根.13.(2022·福建三明·八年级期中)实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,体现了数形结合思想.(1)由数到形:在数轴上用尺规作图作出―5对应的点P(不要写作法,保留作图痕迹).(2)由形到数:如图,在数轴上,点A,B表示的数分别为0,2,作BC⊥AB于点B,截取BC=1;连接AC,以点C为圆心,CB长为半径画弧交AC于点D;以点A为圆心,AD长为半径画弧交AB于点E,则点E表示的实数是________________.作法:作线段AB的垂直平分线MN;以点为半径作弧交数轴负半轴于点P.(2)解:由作法知CD=CB=1,AD考点3:平方根、算术平方根、与立方根例3.(2022·山东·德州市第九中学九年级期中)本学期第六章《实数》中学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根).性质一个正数有两个平方根,它们互为相反数:0的平方根是0;负数没有平方根.正数的立方根是正数;0的立方根是0;负数的立方根是负数.【类比探索】(1)探索定义:填写下表x411681x类比平方根和立方根,给四次方根下定义:______.(2)探究性质:①1的四次方根是______;②16的四次方根是______;③0的四次方根是______;④-625 ______(填“有”或“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:______;1.(2022·四川·绵阳中学英才学校二模)若―3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.―8C.±4D.±8【答案】D【分析】根据题意可得―3x m y和5x3y n是同类项,从而得到m=3,n=1,再代入,即可求解.【详解】解:∵―3x m y和5x3y n的和是单项式,∴―3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,∴(m+n)3的平方根是±8.故选:D.【点睛】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到―3x m y和5x3y n是同类项是解题的关键.2.(2022·广东北江实验学校三模)下列说法不正确的是()A.125的平方根是±15B.(-0.1)2的平方根是±0.1C.-9是81的算术平方根D.3-27=-33.(2022·江苏·连云港市新海初级中学三模)9的值为_______.4.(2022·上海嘉定·九年级期中)长为3、4的线段的比例中项长是___________.5.(2022·山西临汾·九年级期中)已知y=x―2+2―x―3,则(x+y)2022(x―y)2023的值为_____.【答案】2+3##3+26.(2022·山东·测试·编辑教研五二模)如图,这是由8个同样大小的立方体组成的魔方,体积为8,若阴影部分为正方形ABCD,则此正方形的边长是______.7.(2022·四川攀枝花·中考真题)3―8―(―1)0=__________.【答案】―3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.【详解】解:原式=―2―1=―3.故答案为:―3.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.8.(2022·广东·东莞市万江第三中学三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)―8的立方根是______;9.(2022·全国·九年级专题练习)已知c<b<0<a,且|b|<|a|,求(a―b)2+c2―|b+c|―|―b|―3(b―a)3的值.【答案】2a【分析】根据绝对值的意义可得a―b>0,b+c<0,―b>0,b―a<0,然后通过计算可得.【详解】解:∵c<b<0<a,|b|<|a|,10.(2022·全国·九年级专题练习)已知正数a的两个不同平方根分别是2x―2和6―3x,a―4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b3+3a―17的立方根.【答案】(1)a=36,b=5(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“a―4b的算术平方根是4”,把a的值代入a―4b,即可得出b的值.(2)根据(1)得出a=36,b=5,然后把a=36,b=5代入b3+3a―17,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是2x―2和6―3x,∴2x―2+6―3x=0,解得:x=4,∴2x―2=2×4―2=6,6―3x=6―3×4=―6,∵(±6)2=36,∴a=36,又∵a―4b的算术平方根是4,又∵42=16,∴a―4b=16,∴把a=36代入a―4b=16,可得:36―4b=16,解得:b=5.例4.(1)(2022·山东济南·模拟预测)最新统计,中国注册志愿者总数已超30000000人,30000000用科学记数法表示为()A.3×107B.3×106C.30×106D.3×105:30000000=3×107.故选:A.(2)(2022·四川德阳·二模)已知某种细胞的直径约为2.13×10―4cm,请问2.13×10―4这个数原来的数是()A.21300B.2130000C.0.0213D.0.000213解:2.13×10-4=0.000213,故选:D.知识点训练1.(2022·山东·济南市历城区教育教学研究中心一模)2021年5月15日,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆火星,为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A.47×107B.4.7×107C.4.7×108D.0.47×109【答案】C【分析】根据科学记数法的表示方法确定a,n的值即可.【详解】解:470000000=4.7×108,故选:C.【点睛】题目主要考查科学记数法的表示方法,熟练掌握科学记数法的表示方法是解题关键.2.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( )A.1.076×107B.1.076×108C.10.76×106D.0.1076×108【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正整数;当原数的绝对值<1时,n是负整数,由此即可得到答案.【详解】解:1076万=10760000=1.076×107.故选:A.【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.3.(2022·福建·九年级专题练习)某种细胞的直径是5×10―4毫米,这个数用小数表示是()A.0.00005B.0.0005C.―50000D.50000【答案】B【分析】根据科学记数法a×10n得到n=―4,所以小数点向前移动4位来求解.【详解】解:∵5×10―4∴n=―4,∴5×10―4=0.0005.故选:B.【点睛】本题主要考查了把科学记数法还原原数,还原原数时,关键是看n,n<0时,|n|是几,小数点就向前移几位.4.(2022·全国·七年级专题练习)据科学家估计,地球的年龄大约是4.6×109年,4.6×109是一个()A.7位数B.8位数C.9位数D.10位数【答案】D【分析】把科学记数转化为原数即可求得答案.【详解】解:4.6×109=4600000000,故选D.【点睛】本题考查了把科学记数法转化为原数,解题的关键是熟练掌握科学记数法的表示形式.5.(2022·全国·七年级专题练习)一个整数x用科学记数法表示为1.381×1028,则x的位数为()A.27B.28C.29D.30【答案】C【分析】将科学记数法表示的数的指数加上1得到原来的数的整数位,由此解答即可.【详解】x的整数数位少1位为28,则x的位数为29.【点睛】本题考查了把科学记数法表示的数整数位与指数的关系.6.(2022·河南·九年级专题练习)数据0.0000037用科学记数法表示成3.7×10―n,则3.7×10n表示的原数为().A.3700000B.370000C.37000000D.―3700000【答案】A【分析】根据用科学记数法表示绝对值小于1的数的方法,可确定n的值.即得出3.7×10n表示的数为3.7×106,再将其转化为数字即可.【详解】∵数据0.0000037用科学记数法表示成3.7×10―n,∴n=6,∴3.7×10n即为3.7×106,∴3.7×10n表示的原数为3700000.故选A.【点睛】本题主要考查数科学记数法之间的转换.掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同是解题关键.7.(2022·四川广安·九年级专题练习)近似数3.48×103精确到()A.百分位B.个位C.十位D.百位【答案】C【分析】先把科学记数法表示的数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.【详解】近似数3.48×103=3480,8在十位上,故精确到十位故选C【点睛】本题考查了求近似数,将科学记数法还原是解题的关键.8.(2022·山东师范大学第二附属中学模拟预测)数据0.0000314用科学记数法表示为( )A.3.14×10―5B.31.44×10―4C.3.14×10―6D.0.314×10―6【答案】A【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10―n,其中n为正整数,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000314=3.14×10―5故选:A.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10―n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2022·河北邯郸·七年级期末)0.000985用科学记数法表示为9.85×10―n,则9.85×10n还原为原数为()A.9850000B.985000C.98500D.9850【答案】C【分析】用科学记数法表示的数还原成原数时,n> 0时,n是几,小数点就向右移几位.【详解】∵0.000985= 9.85×10-4∴n=4,∴9.85×104= 98500.故选: C.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a× 10n”表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数科学记数法a×10n表示的数,还原成通常表示的数,就是把a的小数点向右移动n位所得到的数;把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2022·吉林长春·一模)“天文单位”是天文学中用来计量距离的一种单位.1天文单位用科学记数法表示为1.496×108千米,这个数也可以写成______亿千米.【答案】1.496【分析】根据1亿=108,对这个数进行换算即可作答.【详解】解:∵1亿=108,∴1.496×108千米=1.496亿千米,故答案为:1.496.【点睛】本题考查了科学记数法−−−原数,解题的关键是掌握科学记数法表示的数与原数的关系.考点5:实数的大小比较例5.(1)(2022·四川乐山·九年级专题练习)在实数|―3.14|,-3,―3,―π中,最小的数是()A.|―3.14|B.-3C.―3D.―π【答案】D【分析】根据实数的比较大小的规则比较即可.(2)(2022·山东济南·中考真题)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:―3<a<―2<0,0<b<1,∴ab<0,故A项错误,a+b<0,故B项错误,|a|>|b|,故C项错误,a+1<b+1,故D项错误.故选:D.知识点训练1.(2022·山东·测试·编辑教研五二模)下列实数中,最大的数是()A.―4B.―5C.0D.3【答案】D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数绝对值大的反而小,据此判断即可.【详解】解:∵―5<―4<0<3,∴最大的数是3,故选:D.【点睛】此题考查实数的大小比较的方法,熟练掌握:负实数<0<正实数,两个负数绝对值大的反而小,是解答此题的关键.2.(2022·湖南·长沙市南雅中学一模)下列实数中,最大的数是()A.0B.2C.πD.―33.(2022·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)在四个数―2,―0.6,1,3中,绝对值2最小的数是( )D.3A.―2B.―0.6C.124.(2022·江西·寻乌县教育局教学研究室二模)1,―2,0,3中最小的数是()A.1B.―2C.0D.35.(2022·四川·峨眉山市教育局二模)在2,-1,0,π这四个实数中,最小的一个实数是()2A.2B.-1C.0D.π26.(2022·河南·郑州市树人外国语中学九年级期末)下列四个实数中,绝对值最小的数是()A.﹣4B.―3C.2D.37.(2022·四川乐山·九年级专题练习)比较23和32的大小,下面结论正确的是( )A.23<32B.23=32C.23>32D.无法比较8.(2022·河北承德·九年级期中)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2} =1,因此,min{―2,―3}=__________;min(x2+2x+3),0=__________;若min(x―1)2,x2=1,则x=_____________.【答案】―3 0 2或―1##―1或29.(2022·河北·大名县束馆镇束馆中学三模)定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{﹣2,﹣4}=﹣2.(1)max{26,5}=_____;(2)若max{﹣12,(一1)2}=2x,则x=_____.2―x考点6与实数的相关的计算例6.(2022·山东烟台·九年级期中)计算(1)sin230°+2sin60°+tan45°―tan60°+cos230°(2)8―2sin45°+2cos60°+|1―2|+1.1.(2022·重庆市开州区德阳初级中学模拟预测)计算:|―3|+2―1=______.2.(2022·山东济南·模拟预测)计算:12―(2022―π)0―2×cos30°+(―12)―1.3.(2022·山东济南·模拟预测)计算:1―|3―1|+3tan30°+(2022―π)0.4.(2022·吉林长春·一模)计算:12―3tan30°+(2022―π)0―1.5.(2022·四川·峨眉山市教育局二模)计算:38+|3―23|―tan60°+(3)2+(π―2022)06.(2022·江苏·盐城市初级中学三模)计算:364+|sin45°―tan45°|+1.7.(2022·广西·南宁市第四十七中学九年级期中)计算:―(―1)2022+10÷2×12―1―3tan30°。