反馈控制系统的传递函数解读
- 格式:doc
- 大小:122.00 KB
- 文档页数:3
反馈的传递函数反馈的传递函数反馈是一种重要的控制系统设计技术,广泛应用于电子、机械、航空、军事、化工等领域。
反馈是指将系统的输出信号作为输入信号重新送回系统,对系统进行补偿或调整而达到控制的目的。
在反馈控制中,反馈传递函数是一个重要的概念,本文将探讨反馈传递函数的含义、计算方法以及应用。
一、反馈传递函数的定义反馈传递函数是指反馈系统中输入输出之间的比例系数,它是输入信号与输出信号之间的函数关系。
通常用符号K表示,可以表示为:K = β / (1 + αH)其中,β 表示反馈回路中反馈信号的比例系数;α 表示前向信号的比例系数;H 表示系统的传递函数。
反馈传递函数 K 描述了反馈信号对系统输出的影响程度。
二、反馈传递函数的计算方法在实际反馈控制系统中,反馈传递函数的计算通常采用两种方法:仿射变换法和基尔霍夫定理法。
1.仿射变换法仿射变换法是一种重要的电路理论方法,广泛应用于控制系统中。
利用仿射变换法可以将反馈系统的传递函数表示为输入输出之间的仿射变换关系。
2.基尔霍夫定理法基尔霍夫定理法是一种基于电路理论的反馈传递函数计算方法,它基于基尔霍夫电路定理建立了反馈回路中的电路模型。
三、反馈传递函数的应用反馈传递函数广泛应用于各种控制系统中,如机械控制系统、电子控制系统、电力控制系统、化工控制系统、军事控制系统等。
在实际应用中,反馈传递函数可以用于研究系统的动态特性、稳定性分析及控制系统设计等。
1.研究系统动态特性反馈传递函数可以描述反馈系统的输入输出之间的关系,通过分析反馈传递函数可以研究系统的动态特性。
例如,可以对系统的响应速度、稳态误差、阻尼比等参数进行分析,从而对系统进行性能优化。
2.稳定性分析反馈控制系统的稳定性分析是控制系统设计中的重要问题。
反馈传递函数可以用于稳定性分析,例如判断系统的稳定性条件和研究系统的频率响应特性。
3.控制系统设计反馈控制系统的设计是利用反馈传递函数对系统进行优化的过程,通过反馈传递函数可以研究系统的动态特性、稳定性、抗干扰能力等性能。
反馈控制系统原理反馈控制系统是现代工业控制系统的基础,它的原理可以应用于各种领域,包括机械、电子、化工、航空、航天等。
本文将介绍反馈控制系统的原理,包括反馈控制系统的概念、组成和分类、反馈控制系统的基本原理、反馈控制系统的稳定性和性能分析、反馈控制器的设计方法等。
一、反馈控制系统的概念、组成和分类反馈控制系统是一种通过测量输出信号并将其与所需信号进行比较,从而调节系统输入信号的控制系统。
反馈控制系统由四个基本部分组成:传感器、误差放大器、执行器和反馈控制器。
其中,传感器用于将系统的输出信号转换为电信号,误差放大器用于比较输出信号和所需信号之间的误差,执行器将误差信号转换为系统的输入信号,反馈控制器则用于调节误差信号。
根据系统的反馈路径,反馈控制系统可以分为开环控制系统和闭环控制系统。
开环控制系统是指输入信号不受输出信号的影响,输出信号也不会对输入信号产生影响的控制系统。
闭环控制系统是指系统的输出信号会对输入信号进行反馈调节的控制系统。
闭环控制系统的反馈路径可以分为负反馈和正反馈两种情况。
负反馈是指输出信号与所需信号之间的误差信号通过反馈路径返回到误差放大器进行比较调节,从而减小误差。
正反馈则是指误差信号通过反馈路径返回到系统的输入端口,增加误差,使得系统失去控制。
二、反馈控制系统的基本原理反馈控制系统的基本原理是通过误差信号来调节系统的输入信号,使得系统的输出信号与所需信号尽可能接近。
反馈控制系统的调节过程可以分为三个阶段:传递函数的建立、稳态误差的计算和控制器的设计。
传递函数是反馈控制系统的重要参数,它描述了系统输入信号与输出信号之间的关系。
传递函数可以通过系统的数学模型进行推导,通常采用拉普拉斯变换的方法进行求解。
传递函数的形式为:G(s) = Y(s) / X(s)其中,G(s)表示系统的传递函数,s为复频域变量,Y(s)和X(s)分别表示系统的输出信号和输入信号。
稳态误差是指系统在稳定状态下输出信号与所需信号之间的误差。
控制系统中的传递函数分析传递函数是控制系统中的重要概念,用于描述输入信号与输出信号之间的关系。
通过对传递函数的分析,我们可以深入了解控制系统的性能和稳定性。
本文将对控制系统中的传递函数进行详细分析与讨论。
一、传递函数的定义及表示在控制系统中,传递函数是描述输入信号与输出信号之间关系的数学模型。
通常由拉普拉斯变换表示,可以表示为以下形式:G(s) = Y(s) / X(s)其中,G(s)为传递函数,Y(s)为输出信号的拉普拉斯变换,X(s)为输入信号的拉普拉斯变换。
二、传递函数的性质传递函数具有以下几个重要的性质:1. 线性性质:传递函数具有线性特性,即满足叠加原理,对于两个输入信号分别为X1(s)和X2(s),输出信号分别为Y1(s)和Y2(s),则对应的传递函数分别为G1(s)和G2(s),则有:G(a*X1(s) + b*X2(s)) = a*G1(s) + b*G2(s)其中,a和b为常数。
2. 时不变性:传递函数具有时不变性,即传递函数对于输入信号的响应不随时间变化而变化。
3. 因果性:传递函数具有因果性,即输入信号的响应只依赖于当前及过去的输入信号,而不依赖于未来的输入信号。
4. 稳定性:传递函数的稳定性可以通过判断系统的极点位置来确定。
当所有极点的实部均为负数时,传递函数是稳定的。
三、传递函数的频域分析传递函数可以通过频域分析进行研究和理解。
1. 幅频特性:通过传递函数的模来描述系统的幅频特性。
传递函数的模为:|G(s)| = sqrt((Re(G(s)))^2 + (Im(G(s)))^2)其中,Re(G(s))为传递函数的实部,Im(G(s))为传递函数的虚部。
幅频特性可以反映系统对不同频率信号的增益情况。
2. 相频特性:通过传递函数的相位角来描述系统的相频特性。
传递函数的相位角为:arg(G(s)) = atan(Im(G(s)) / Re(G(s)))相频特性可以反映系统对不同频率信号的相位变化情况。
控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt 由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。
证:同理可推广到n阶:当初始条件为0时,即则有4、积分定理设f(t)的拉氏变换为F(s),则,其中时的值。
已知单位负反馈系统的开环传递函数开环传递函数是单位负反馈系统中一种重要的状态参数,它描述了闭环系统控制信号(此处为输出)与被控对象(此处为输入)的变化关系。
开环传递函数又叫作理想传递函数,它可以提供我们对系统的控制设计以及系统之间的非线性关系等有效的参考,是控制设计中不可或缺的一部分。
一个完整的开环传递函数由五个状态参数组成:频率常数(ωn)、调压比(K)、后跟时间常数(Td)、刚性项(Kt)和刚度奖励系数(KF)。
频率常数ωn 代表的是系统的谐振频率,指的是一个系统以单位频率开始谐振,并以逐渐减少的幅度谐振的频率;调压比K 代表的是把系统的输入信号增益调节至某一特定的值,而后跟时间常数Td代表的是系统输入变化引起系统输出变化的时间,即系统模型建立时间;刚性项Kt 代表的是控制系统中调压器与被调机构之间相对刚度的比例;而刚度奖励系数KF代表的是系统被控制样本点所受到的刚度平衡系数。
知道了开环传递函数的五个参数,我们就可以利用它来分析某些给定的单位负反馈系统的性能特性。
如果我们想要知道系统的可控性,就可以通过分析其频率常数,从而判断其稳定性特性;同样,针对不同的调压比K不同的系统延迟时间Td也可以观察其系统的收敛情况;当然,刚性项Kt刚度奖励系数KF 也可以用来测算系统的稳定性特性,若这两个参数设置不当,则可能导致系统失控。
由此可见,开环传递函数对于控制设计来说是至关重要的。
但是,由于系统的参数不确定以及系统的非线性等因素,在利用开环传递函数去分析系统性能的时候,我们往往会碰到一些难以解决的问题。
这时候我们就可以采用一些模拟计算方法,比如状态空间转换和矩阵展开等技术,使开环传递函数变得更加柔性,从而实现准确的系统模拟分析。
归结起来,开环传递函数在控制设计中有着重要的作用,它可以提供一套更加灵活的工具,帮助我们去分析单位负反馈系统的性能,进而能有效地改善我们的控制设计,从而提高系统的性能和效率。
所以,利用开环传递函数分析系统性能的方法是控制设计的一个重要技术,必不可少。
一个反馈控制系统在工作过程中,一般会受到两类信号的作用,统称外作用。
一类是有用信号或称输入信号、给定值、指令等,用)(t r 表示。
通常)(t r 是加在控制系统的输入端,也就是系统的输入端;另一类则是扰动,或称干扰)(t n ,而干扰)(t n ,可以出现在系统的任何位置,但通常,最主要的干扰信号是作用在被控对象上的扰动,例如电动机的负载扰动等。
一、系统的开环传递函数系统反馈量与误差信号的比值,称为闭环系统的开环传递函数,二、系统的闭环传递函数1、输入信号)(s R 作用下的闭环传递函数令0)(=s D ,这时图1可简化成图2(a)。
输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。
而输出的拉氏变换式为2、干扰)(s D 作用下的闭环传递函数同样,令0)(=s R ,结构图1可简化为图3(a)。
以)(s D 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。
系统在扰动作用下所引起的输出为三、系统的误差传递函数系统的误差信号为)(s E ,误差传递函数也分为给定信号作用下的误差传递函数和扰动信号作用下的传递函数。
前者表征系统输出跟随输入信号的能力,后者反映系统抗扰动的能力。
1、输入信号)(s R 作用下的误差传递函数为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2)(b 。
列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。
用表示。
)()()()()()()()(21s H s G s H s G s G s E s B s G K ===)()()(21s G s G s G =)()(1)()()()(1)()()()()(2121s H s G s G s H s G s G s G s G s R s C s +=+==Φ)()()()(1)()()(2121s R s H s G s G s G s G s C +=)()(1)()()()(1)()()()(2212s H s G s G s H s G s G s G s N s C s n +=+==Φ)()()()(1)()(212s N s H s G s G s G s C +=)()()(s R s s εΦε=2、干扰)(s D 作用下的误差传递函数同理,干扰作用下的偏差传递函数,称干扰偏差传递函数。
2-8 反馈控制系统的传递函数
一个反馈控制系统在工作过程中,一般会受到两类信号的作用,统称外作用。
一类是有用信号或称输入信号、给定值、指令等,用)(t r 表示。
通常)(t r 是加在控制系统的输入端,也就 是系统的输入端;另一类则是扰动,或称干扰)(t n ,而干扰)(t n ,可以出现在系统的任何位置,
但通常,最主要的干扰信号是作用在被控对象上的扰动,
例如电动机的负载扰动等。
一个闭环控制系统的典型结构图,如图2-48所示,
应用叠加原理可分别求出下面几种传递函数。
一、输入信号)(t r 作用下的闭环传递函数
令0)(=t n ,这时图2-48可简化成图2-49)(a 。
输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。
)
()()(1)()()()()(2121s H s G s G s G s G s R s C s +==
Φ 而输出的拉氏变换式为 )()()()(1)()()(2121s R s H s G s G s G s G s C += (2-61)
为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2-49)(b 。
列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。
用)()
()(s R s s εΦε=表示。
)()()(11)()()(21s H s G s G s R s s +==
εΦε (2-62)
二、干扰)(t n 作用下的闭环传递函数 同样,令0)(=t r ,结构图2-48可简化为图2-50)(a 。
以)(s N 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。
)
()()(1)()()()(212s H s G s G s G s N s C s n +==Φ 系统在扰动作用下所引起的输出为
)()()()(1)()(212s N s H s G s G s G s C += (2-63)
同理,干扰作用下的偏差传递函数,称干扰偏差传递函数。
用)(s n εΦ表示。
以)(s N 作为输入,)(s ε作为输出的结构图,如图2-50)(b 。
)()()(1)()()()
()(212s H s G s G s H s G s N s s n +-==εΦε (2-64)
显然,系统在同时受)(t r 和)(t n 作用下,系统总输出,根据线性系统的叠加原理,应为各外作用分别引起的输出的总和,将式(2-61)和(2-63)相加,即为总输出的变换式
)()()()(1)()()()()(1)()()(2122121s N s H s G s G s G s R s H s G s G s G s G s C +++= (2-65) 式中,如果系统中的参数设置,能满足1)()()(21>>s H s G s G 及1)()(1>>s H s G ,则系统总输出表达式(2-65)可近似为
)()
(1)(s R s H s C ≈ 上式表明,采用反馈控制的系统,适当地选配元、部件的结构参数,系统就具有很强的抑制干扰的能力。
同时,系统的输出只取决于反馈通路传递函数及输入信号,而与前向通路传递函数几乎无关。
特别是当1)(=s H 时,即系统为单位反馈时,)()(s R s C ≈,表明系统几乎实现了对输入信号的完全复现,即获得较高的工作精度。
同理,根据式(2-62)和式(2-64)可得系统总的偏差为
)()()()(s N s R s s n e εΦΦε+=
将上式推导的四种传递函数表达式进行比较,可以看出两个特点
(1)它们的分母完全相同,均为)]()()(1[21s H s G s G +,其中)()()(21s H s G s G 称为开环传递函数。
所谓开环传递函数,是指在图2-48所示典型的结构图中,将)(s H 的输出断开,亦即断开系统主反馈回路,这时从输入)(s R (或)(s ε)到)(s B 之间的传递函数。
开环传递函数在今后各章讨论中是十分重要的。
(2)它们的分子各不相同,且与其前向通路的传递函数有关。
因此,闭环传递函数的分子随着外作用的作用点和输出量的引出点不同而不同。
显然,同一个外作用加在系统不同的位置上,对系统运动的影响是不同的。