大数据分析与挖掘word版本共32页文档
- 格式:ppt
- 大小:2.60 MB
- 文档页数:32
《大数据分析与挖掘》课程教学大纲一、课程基本信息课程代码:16054103课程名称:大数据分析与挖掘英文名称:Big data analysis and mining课程类别:专业选修课学时:48(理论课:32, 实验课:16)学 分:3适用对象: 软件工程专业、计算机科学与技术考核方式:考查先修课程:多媒体技术、程序设计、软件工程二、课程简介本课程从大数据挖掘分析技术实战的角度,结合理论和实践,全方位地介绍基于Python语言的大数据挖掘算法的原理与使用。
本课程涉及的主题包括基础篇和实战篇两部分, 其中基础篇包括:数据挖掘基础,Python数据分析简介,数据探索,数据预处理和挖掘建模;实战篇包括:电力窃漏电用户自动识别,航空公司客户价值分析,中医证型关联规则挖掘,基于水色图像的水质评价,家用电器用户行为分析与事件识别,应用系统负载分析与磁盘容量预测和电子商务网站用户行为分析及服务推荐。
本课程不是一个泛泛的理论性、概念性的介绍课程,而是针对问题讨论基于Python语言机器学习模型解决方案的深入课程。
教师对于上述领域有深入的理论研究与实践经验,在课程中将会针对这些问题与学员一起进行研究,在关键点上还会搭建实验环境进行实践研究,以加深对于这些解决方案的理解。
通过本课程学习,目的是让学生能够扎实地掌握大数据分析挖掘的理论与应用。
This course introduces the principle and application of big data mining algorithm based on Python language comprehensively from the perspective of big data mining analysis technology practice, combining theory and practice. This course covers two parts, the basic part and the practical part. The basic part includes: basic data mining, introduction to Python data analysis, data exploration, data preprocessing and mining modeling. Practical article included: electric power leakage automatic identification of the user, airlines customer value analysis, TCM syndrome association rule mining, based on water quality evaluation of color image, household electrical appliancesuser behavior analysis and event identification, load analysis and application system disk capacity prediction and e-commerce website user behavior analysis and recommendation service.This course is not a general theoretical, conceptual introduction, but rather an in-depth discussion of problem solving based on the Python language machine learning model. Teachers have in-depth theoretical research and practical experience in the above areas. In the course, they will study these problems together with students, and build experimental environment for practical research on key points to deepen their understanding of these solutions. Through the study of this course, students are expected to master the application of big data analysis and mining.三、课程性质与教学目的本课程是软件工程和计算机科学与技术专业的选修课。
《大数据分析与挖掘》课程教学大纲一,课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 四八课程学分:三开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二,课程目地数据挖掘是一门新兴地叉学科,涵盖了数据库,机器学,统计学,模式识别,工智能以及高能计算等技术。
开设本课程地目地,是使学生全面而深入地掌握数据挖掘地基本概念与原理,掌握常用地数据挖掘算法,了解数据挖掘地最新发展,前沿地数据挖掘研究领域,以及数据挖掘技术在不同学科地应用。
课程具体目地如下:课程目标1:能够设计并实现大数据台下地数据挖掘系统。
了解由工程问题,到建模,再到数据挖掘算法设计地问题求解思维模式。
具有将数据挖掘算法应用于具体工程地能力;课程目标2:掌握大数据预处理,关联规则,分类以及聚类技术,并能够在主流大数据台上实现;课程目标3:具备较强地学最新数据挖掘领域研究成果地能力;能够分析与评价现有研究成果地问题与不足,并能够提出自己独立见解地能力;课程目标4:能够撰写系统设计方案与阶段技术报告,能够组织与协调项目组地工作,与成员行流与沟通。
三,课程目地与毕业要求对应关系毕业要求毕业要求具体描述课程目地工程素质(一)具有工程意识与系统观;(二)具有运用工程基础与专业知识解决复杂工程问题地能力课程目地一个素质(1)具有自主学,终身学与跟踪前沿地意识与惯。
(2)具有批判精神,对待事物有独立见解。
课程目地三,四系统设计与实现能力(1)针对计算有关地复杂工程问题,能够综合运用所掌握地计算机类有关知识,方法与技术,行问题分析与模型表达。
课程目地一,二毕业要求毕业要求具体描述课程目地(2)能够领导或独立设计解决方案或满足特定需求地计算机硬件,软件或网络系统,并能够实现有关系统或组件。
系统分析与评价能力针对计算有关地复杂工程问题解决方案或系统,能够综合运用所掌握地计算机类有关知识,方法与技术,设计实验,行分析与评价,包含其对社会,健康,安全,法律以及文化地影响分析与评价,并能够提出持续改地意见与建议。
⼤数据关键技术(四)—⼤数据分析及挖掘技术随着⼤数据时代的到来,在⼤数据观念不断提出的今天,加强数据⼤数据挖掘及时的应⽤已成为⼤势所趋。
什么是⼤数据挖掘?数据挖掘(Data Mining)是从⼤量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、⼈们事先不知道的、但⼜是潜在有⽤的信息和知识的过程。
数据挖掘对象根据信息存储格式,⽤于挖掘的对象有关系数据库、⾯向对象数据库、数据仓库、⽂本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。
数据挖掘流程定义问题:清晰地定义出业务问题,确定数据挖掘的⽬的。
数据准备:数据准备包括:选择数据–在⼤型数据库和数据仓库⽬标中提取数据挖掘的⽬标数据集;数据预处理–进⾏数据再加⼯,包括检查数据的完整性及数据的⼀致性、去噪声,填补丢失的域,删除⽆效数据等。
数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进⾏数据挖掘。
结果分析:对数据挖掘的结果进⾏解释和评价,转换成为能够最终被⽤户理解的知识。
数据挖掘分类直接数据挖掘:⽬标是利⽤可⽤的数据建⽴⼀个模型,这个模型对剩余的数据,对⼀个特定的变量(可以理解成数据库中表的属性,即列)进⾏描述。
间接数据挖掘:⽬标中没有选出某⼀具体的变量,⽤模型进⾏描述;⽽是在所有的变量中建⽴起某种关系。
数据挖掘的⽅法神经⽹络⽅法神经⽹络由于本⾝良好的鲁棒性、⾃组织⾃适应性、并⾏处理、分布存储和⾼度容错等特性⾮常适合解决数据挖掘的问题,因此近年来越来越受到⼈们的关注。
遗传算法遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,是⼀种仿⽣全局优化⽅法。
遗传算法具有的隐含并⾏性、易于和其它模型结合等性质使得它在数据挖掘中被加以应⽤。
决策树⽅法决策树是⼀种常⽤于预测模型的算法,它通过将⼤量数据有⽬的分类,从中找到⼀些有价值的,潜在的信息。
它的主要优点是描述简单,分类速度快,特别适合⼤规模的数据处理。
数据库数据分析和挖掘方案的说明书1. 简介本文旨在详细介绍数据库数据分析和挖掘方案,以帮助读者了解该方案并正确应用于相应领域。
数据库数据分析和挖掘是指通过对大量的、结构化的数据进行分析和挖掘,从中发现有价值的信息、模式、关联和趋势等。
本方案将介绍该领域的基本概念、技术和方法,并提供实例展示。
2. 数据库数据分析基础2.1 数据挖掘概述数据挖掘是指通过技术手段从大规模数据中挖掘出潜在的、以前未知的、又有用的信息和知识的过程。
它是数据库数据分析的重要环节,可以帮助我们发现异常、预测趋势、进行分类等。
2.2 数据库数据分析流程数据库数据分析通常包括数据清洗、数据预处理、特征选择、模型构建、模型评估和模型应用等环节。
在数据清洗中,我们需要处理缺失值、异常值和重复值等。
数据预处理包括数据平滑、数据变换和数据归一化等。
特征选择是为了选取对分析和挖掘有意义的特征。
模型构建涉及到算法选择和模型训练。
模型评估是对模型进行准确性和可靠性的评估。
模型应用是将训练好的模型应用于实际问题中,得出有用的结论。
3. 数据库数据分析方法3.1 关联规则挖掘关联规则挖掘是一种通过挖掘数据集中的频繁项集,然后生成关联规则的方法。
它可以帮助我们发现项之间的关联性,例如购物篮分析中的商品关联等。
3.2 聚类分析聚类分析是将数据集中的对象分成若干个互不相交的类或簇,使得同一类内的对象相似度较高,不同类之间的对象相似度较低。
它可以帮助我们发现数据集中的隐藏模式和群体。
3.3 分类分析分类分析是根据给定的数据集构建一个分类模型,以将新的对象划分到已知类别中。
它可以帮助我们进行预测和分类的工作,例如垃圾邮件分类、客户流失预测等。
4. 数据库数据分析案例以在线零售业为例,介绍数据库数据分析和挖掘在该行业中的应用。
首先,我们可以通过关联规则挖掘发现频繁购买的商品组合,以促进交叉销售。
其次,通过聚类分析可以将客户分成不同的细分市场,从而针对性地进行促销和推广活动。
大数据时代的数据分析与挖掘应用随着互联网技术的迅速发展和普及,每天都有数以亿计的数据在我们周围产生和流动。
这些数据包含了各行各业的信息,对于企业与个人而言,是宝贵的经济资源和商业资产。
但是面对如此庞大的数据量,如何进行有效的分析和挖掘,将其转化为实际利益,成为了摆在很多企业和个人面前的难题。
一、数据分析的基本概念首先,我们需要明确数据分析的基本概念。
所谓数据分析,就是利用相关的统计学、数学运算和机器学习算法等方法,去发现和提取数据中的有用信息,并将其转化为有意义的结论或决策支持。
数据分析可以应用于各种类型的数据,包括数值、字符、图像、音频和视频等等。
它的主要目的是为了去理解数据所反映的问题和现象,并从中发掘商业机会,做出有效的决策。
二、数据分析的基本流程数据分析的流程包含了以下几个步骤:1. 数据收集:通过各种手段(如网络、传感器等)收集数据,并对数据进行初步的清理和预处理,比如去除噪音、处理缺失值、标准化和归一化等等。
2. 数据存储:将收集到的数据存储到相应的数据库或文件中,以便后续进行查询和分析。
3. 数据预处理:对于收集到的大数据进行一些初步的处理和筛选,以保证数据的质量和可靠性。
这包括了数据采样、特征抽取和变量选择等等。
4. 数据分析:选择合适的算法,对数据进行分析和挖掘,提取数据中的有用信息,包括发现数据间的关联性、分析数据中的趋势和偏差、构建数据模型等等。
5. 结果解释:将分析出来的结果解释给客户或相关方(如企业高管、政府官员、科研人员等),并给出相应的建议或决策支持。
三、数据挖掘的基本技术除了数据分析之外,数据挖掘也是将大数据转化为实际效益的重要手段。
所谓数据挖掘,是指从大量数据中发掘隐含的、未知的有意义的信息和知识,以发现数据中的价值。
数据挖掘涉及的技术包括了分类、聚类、关联规则挖掘、序列模式挖掘、时序模式挖掘、异常检测等等。
其中,分类技术是将数据集合分成若干个群体,根据不同的属性将数据进行归类。
《大数据分析与挖掘》课程教学大纲一、课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 48课程学分:3开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二、课程目标数据挖掘是一门新兴的交叉性学科,涵盖了数据库、机器学习、统计学、模式识别、人工智能以及高性能计算等技术。
开设本课程的目的,是使学生全面而深入地掌握数据挖掘的基本概念和原理,掌握常用的数据挖掘算法,了解数据挖掘的最新发展、前沿的数据挖掘研究领域、以及数据挖掘技术在不同学科中的应用。
课程具体目标如下:课程目标1:能够设计并实现大数据平台下的数据挖掘系统。
了解由工程问题,到建模、再到数据挖掘算法设计的问题求解思维模式。
具有将数据挖掘算法应用于具体工程的能力;课程目标2:掌握大数据预处理、关联规则、分类以及聚类技术,并能够在主流大数据平台上实现;课程目标3:具备较强的学习最新数据挖掘领域研究成果的能力;能够分析和评价现有研究成果的问题与不足,并能够提出自己独立见解的能力;课程目标4:能够撰写系统设计方案和阶段性技术报告,能够组织和协调项目组的工作,与成员进行交流与沟通。
三、课程目标与毕业要求对应关系四、课程目标与课程内容对应关系实验大纲:五、课程教学方法本课程教学将结合大班讲授、小班项目研讨、项目开发以及交流与答辩的形式。
大班讲授主要培养学生对各种核心技术的掌握。
小班项目研讨用来训练学生们沟通与交流的能力,同时提高对系统进行评价的能力。
通过指导学生实现课堂上讲授的算法,学会比较各个算法的性能差异,激发学生的研究和创新兴趣。
六、课程考核方法七、主要教材与参考书(黑体、小四、加粗、行距20磅)1.《大数据分析与挖掘》纲撰写人:石胜飞。
大数据分析与挖掘技术综述随着数字化时代的到来,大数据已经成为了我们生活中不可忽视的一部分。
大数据的产生日益增长,如何从这海量的数据中获取有用的信息,成为了一个亟待解决的问题。
因此,大数据分析与挖掘技术应运而生,成为了各行各业中不可或缺的工具。
本文将对大数据分析与挖掘技术进行综述,探讨其应用现状及未来发展趋势。
1. 大数据分析的意义和应用大数据分析的意义在于从庞大的数据中挖掘出有用的信息,为决策者提供依据。
不仅仅是数量的积累,还要重视数据的质量和准确性。
利用大数据分析技术,可以对市场趋势、消费者需求等进行精准预测,为企业提供战略指导。
同时,在医疗领域,大数据分析技术可以帮助医生诊断疾病,提高医疗水平。
此外,大数据分析还应用于金融、交通等领域,促进社会经济的发展。
2. 大数据分析的技术和方法大数据分析的技术和方法主要包括数据采集、数据存储与管理、数据挖掘和数据可视化等。
数据采集是获取数据的关键一步,通过传感器、物联网等手段进行数据的实时采集。
数据存储和管理是对数据进行整理和管理,建立数据库或数据仓库,确保数据的可靠性和安全性。
数据挖掘则是从大数据中提取有意义的模式和规律,使用机器学习、聚类分析、关联分析等方法进行数据的挖掘。
最后,数据可视化将分析结果以图表、图像等形式呈现,使得数据更加直观易懂。
3. 大数据挖掘的技术和方法大数据挖掘是在大数据背景下的数据挖掘过程,主要包括特征提取、模型建立、模型评估和模式发现等步骤。
特征提取是将原始数据转化为可用于分析的特征向量,常用的方法包括主成分分析、卡方检验等。
模型建立是建立数学模型,对数据进行预测和分类,常用的方法有决策树、神经网络等。
模型评估是对建立的模型进行评价,以判断模型的准确性和可靠性。
模式发现则是从大数据中挖掘出潜在的模式和关系,以寻找隐藏在数据背后的规律。
4. 大数据分析与挖掘技术的未来发展趋势随着大数据的不断积累,如何更好地利用大数据分析与挖掘技术将成为一个持续关注的问题。
浅谈大数据时代的数据分析与挖掘随着改革开放的进一步深化,以及经济全球化的快速发展,我国各行各业都有了质的飞跃,发展方向更加全面。
特别是近年来科学技术的发展和普及,更是促进了各领域的不断发展,各学科均出现了科技交融。
在这种社会背景下,数据形式和规模不断向着更加快速、精准的方向发展,促使经济社会发生了翻天覆地的变化,同时也意味着大数据时代即将来临。
就目前而言,数据已经改变传统的结构模式,在时代的发展推动下积极向着结构化、半结构化,以及非结构化的数据模式方向转换,改变了以往的只是单一地作为简单的工具的现象,逐渐发展成为具有基础性质的资源。
文章主要针对大数据时代下的数据分析与挖掘进行了分析和讨论,并论述了建设数据分析与挖掘体系的原则,希望可以为从事数据挖掘技术的分析人员提供一定的帮助和理论启示,仅供参考。
标签:大数据;数据分析;数据挖掘;体系建设引言進入21世纪以来,随着高新科技的迅猛发展和经济全球化发展的趋势,我国国民经济迅速增长,各行业、领域的发展也颇为迅猛,人们生活水平与日俱增,在物质生活得到极大满足的前提下,更加追求精神层面以及视觉上的享受,这就涉及到数据信息方面的内容。
在经济全球化、科技一体化、文化多元化的时代,数据信息的作用和地位是不可小觑的,处理和归类数据信息是达到信息传递的基础条件,是发展各学科科技交融的前提。
然而,世界上的一切事物都包含着两个方面,这两个方面既相互对立,又相互统一。
矛盾即对立统一。
矛盾具有斗争性和同一性两种基本属性,我们必须用一分为二的观点、全面的观点看问题。
同时要积极创造条件,促进矛盾双方的相互转变。
数据信息在带给人们生产生活极大便利的同时,还会被诸多社会数据信息所困扰。
为了使广大人民群众的日常生活更加便捷,需要其客观、正确地使用、处理数据信息,完善和健全数据分析技术和数据挖掘手段,通过各种切实可行的数据分析方法科学合理地分析大数据时代下的数据,做好数据挖掘技术工作。