阻抗教程
- 格式:pdf
- 大小:366.12 KB
- 文档页数:47
阻抗、过渡边界条件和完美电导体边界条件
金属是一种高导电材料,能够非常好地反射入射的电磁波—光、微波及无线电波。
当通过RF 模块和波动光学模块模拟频域电磁波问题时,您可以通过其中的几个选项来模拟金属物体。
这里,我们将介绍阻抗、过渡边界条件和完美电导体边界条件,并说明每类条件何时使用。
什么是金属?
对于什么是金属这个问题,我们可以从用于求解电磁波问题的Maxwell 控制方程组开始。
考虑以下频域形式的Maxwell 方程组:
上述方程通过RF 模块和波动光学模块的电磁波,频域接口求解。
方程求解了工作(角)频率下的电场。
其他输入项包括以下材料属性:是相对磁导率、是相对介电常数,是电导率。
出于本文的讨论目的,我们将假设集肤深度相对较小且有损耗的材料都是金属。
有损耗材料指任何介电常数或磁导率为复数值、或电导率非零的材料。
也就是说,有损耗材料会向控制方程引入一个虚数值项。
这会在材料内产生电流,集肤深度是电流进入材料内深度的测量指标。
工作频率非零时,电磁感应都会将有损耗材料中的电流推向边界处。
集肤深度是指电流减小到63% 时进入材料的距离,可以通过以下公式计算:
其中和都可以是复数值。
在极高的频率(接近光学波段)下,材料接近等离子共振,我们实际上会通过复数值介电常数来表征金属。
但当在低于这些频率下对金属进行模拟时,我们可以假设介电常数为一、磁导率为实数值,电导率非常高。
因此上述方程可以简化为:
不过在您开始利用COMSOL Multiphysics 进行模拟前,首先应计算或粗略估算所有模拟。
PCB阻抗设计及计算教程PCB阻抗设计及计算是电路设计与布局中的重要一环,它对于保证电路性能、抑制信号干扰和提高系统稳定性具有至关重要的作用。
本文将介绍PCB阻抗的基本概念,阻抗设计的目标和方法,并详细解释如何进行PCB阻抗计算。
1.基本概念:在PCB设计中,阻抗是指电流或信号在电路板上的传输时遇到的阻碍。
阻抗主要由导线、平面、空气等介质的特性决定。
常见的阻抗有单端阻抗和差分阻抗。
2.阻抗设计的目标:(1)确保信号完整性:通过控制阻抗,避免信号的反射和损耗,确保信号的完整性,避免信号失真以及噪声和串扰的引入。
(2)抑制系统的电磁辐射:通过设计合适的阻抗,减少电流的回流路径,降低系统的电磁辐射水平,提高抗干扰能力。
(3)提高系统的工作稳定性:通过阻抗设计和匹配,使得信号传输更加稳定,避免因阻抗不匹配引起的系统不稳定和故障。
3.阻抗设计的方法:(1)常规PCB布局:根据电路需求和信号速度,尽量避免使用过长过窄的线路,减小阻抗不匹配和信号失真的可能性。
(2)地线的设计:地线是设计阻抗的重要因素之一,它应该尽量宽而平,以减小阻抗,提高地线的传输能力。
(3)控制环境因素:根据设计需求,合理选择PCB板材和层间距,控制介质常数,进而控制阻抗值。
(4)信号层堆叠:通过合理的层次规划和PCB板厚度选择,控制信号层之间的间距和层间介质特性,达到要求的阻抗。
4.PCB阻抗计算:(1)阻抗计算规则:根据线宽、线距和介质常数等参数,可以使用在线计算软件或公式进行阻抗计算。
常用的公式有微带线和线间微带线的计算公式。
(2)使用在线计算软件:目前市面上有许多免费的在线阻抗计算软件,只需输入所需参数即可得到计算结果。
(3)使用电磁仿真软件:对于复杂的PCB设计,可以使用电磁仿真软件进行阻抗计算,如ADS、CST等软件。
仿真软件可以更加准确地计算阻抗,并考虑复杂的环境因素。
总结:PCB阻抗设计及计算是PCB设计中不可忽视的一环,它对电路性能和系统稳定性具有重要影响。
前言 (4)实验1 电阻、电容、电压和电流的测量 (5)一、实验目的 (5)二、原理说明 (5)三、实验任务 (5)四、实验仪器设备 (7)五、预习思考及注意事项 (7)六、实验报告要求 (7)实验2 电压源、电流源及其等效转换 (8)一、实验目的 (8)二、原理说明 (8)三、实验任务 (8)四、实验仪器设备 (9)五、预习思考及注意事项 (10)六、实验报告要求 (10)实验3 仪表内阻对测量的影响 (10)一、实验目的 (10)二、原理说明 (10)三、实验任务 (11)四、实验仪器设备 (11)五、预习思考及注意事项 (12)六、实验报告要求 (12)实验4 受控源的特性测试 (12)一、实验目的 (12)二、原理说明 (12)三、实验任务 (13)四、实验仪器设备 (14)五、预习思考及注意事项 (14)六、实验报告要求 (14)实验5 叠加定理、替代定理的验证 (14)一、实验目的 (14)二、原理说明 (14)三、实验任务 (15)四、实验仪器设备 (15)五、预习思考及注意事项 (15)六、实验报告要求 (16)实验6 直流电路的戴维南等效和诺顿等效 (16)一、实验目的 (16)二、原理说明 (16)三、实验任务 (16)四、实验仪器设备 (17)五、预习思考及注意事项 (17)六、实验报告要求 (17)实验7 交流电路中基本参数电阻、电感和电容的测量 (17)二、原理说明 (18)三、实验任务 (18)四、实验仪器设备 (19)五、预习思考及注意事项 (19)六、实验报告要求 (19)实验9 交流无源一端口网络等效参数的测定 (20)一、实验目的 (20)二、原理说明 (20)三、实验任务 (21)四、实验仪器设备 (22)五、预习思考及注意事项 (22)六、实验报告要求 (22)实验8 非线性元件特性曲线的测定及曲线绘制 (22)一、实验目的 (22)二、原理说明 (22)三、实验任务 (23)四、实验仪器设备 (24)五、预习思考及注意事项 (24)六、实验报告要求 (24)实验10 功率测量及功率因数的提高 (25)一、实验目的 (25)二、原理说明 (25)三、实验任务 (25)四、实验仪器设备 (26)五、预习思考及注意事项 (26)六、实验报告要求 (26)实验11 单相变压器的特性测试 (26)一、实验目的 (26)二、原理说明 (27)三、实验任务 (27)四、实验仪器设备 (28)五、预习思考及注意事项 (28)六、实验报告要求 (28)实验12 互感的测量 (28)一、实验目的 (28)二、原理说明 (28)三、实验任务 (31)四、实验仪器设备 (31)五、预习思考及注意事项 (31)六、实验报告要求 (31)实验13 三相电路的相序、电压、电流及功率测量 (32)一、实验目的 (32)二、原理说明 (32)四、实验仪器设备 (34)五、预习思考及注意事项 (34)六、实验报告要求 (35)综合实验1 一阶RC电路的暂态响应 (35)一、实验目的 (35)二、实验原理 (35)三、实验内容 (38)四、实验设备 (40)五、预习思考及实验注意事项 (40)六、实验报告 (41)综合实验3 二阶RLC串联电路的暂态响应 (41)一、实验目的 (41)二、原理说明 (41)三、实验任务 (45)四、预习思考及注意事项 (46)五、报告要求 (47)综合实验专题2 供电电路及最大功率传输 (48)一、工程应用示例 (48)二、相关电路原理 (48)三、研究内容或设计目标 (48)四、研究方案和计划 (49)五、研究报告 (50)提示1:阻抗匹配与最大功率传输的软件仿真以及阻抗变换电路的设计方法 (50)提示2:三相电路的软件仿真研究中构造三相电源的方法 (51)提示3:参考变压器特性、日光灯功率测量以及三相电路测量等操作实验 (52)综合实验专题5 裂相电路 由单相电压转变为三相电压的电路设计 (52)一、研究目的 (52)二、相关原理 (52)三、研究内容或设计目标 (53)四、预习思考及注意事项 (53)五、报告要求 (53)附录B MS8200G数字多用表 (54)一、概述 (54)二、主要技术指标 (54)三、面板结构 (56)四、使用说明 (56)前言《电路实验教程》是针对电类专业本科生电路实验课程编写的教学用书。
PCB阻抗设计及计算教程首先,我们需要了解什么是PCB阻抗。
在PCB设计中,阻抗是指电流在信号线上传播时所遇到的电阻和电感的综合效应。
在高频信号传输中,信号的衰减和失真与电路的阻抗密切相关。
为了设计出满足要求的阻抗,首先需要选择合适的 PCB 材料。
PCB材料的电性能参数直接影响到线宽和间隔的选择。
常用的 PCB 材料有FR-4、Rogers等。
接下来,我们来介绍几种常见的PCB阻抗设计计算方法。
1. 单条微带线(Microstrip)单条微带线是最常见的PCB传输线形式。
它是由一个导线和地板之间的基底(多层结构中还有介质层)组成,导线通常用铜来制作。
在设计单条微带线时,我们需要确定线宽和介电常数,通过下面的公式计算阻抗:Z = Zo/sqrt(Er)其中Z是阻抗,Zo是选择的参考阻抗,Er是介电常数。
2. 差分微带线(Differential Microstrip)差分微带线通常用于高速差分信号传输。
它与单条微带线的区别在于,它需要考虑两个导线之间的耦合效应。
差分微带线的阻抗计算可以通过类似于单条微带线的公式进行。
3.高速数字电路的阻抗设计在高速数字电路设计中,通常使用等电平微波阻抗设计方法。
这种方法是通过控制信号线两边的地形设计和调整线宽来实现的。
根据信号的上升时间和频率要求,可以通过仿真软件模拟不同线宽和间隔的组合,最终选择合适的参数。
4.使用在线计算工具除了手动计算,现在有很多在线工具可以帮助我们进行PCB阻抗设计。
这些工具通常基于已建立的模型和经验,可以快速准确地计算出所需的参数。
可以并使用可靠的在线PCB阻抗计算工具进行设计。
在实际应用中,还需要考虑布线的布局、信号线的分布和复杂网络中的设计等因素。
因此,除了以上介绍的基础阻抗设计和计算方法外,也需要结合实际情况进行综合考虑。
总之,PCB阻抗设计及计算是电子工程中非常重要且复杂的一部分。
只有确保阻抗的准确设计,才能保证信号传输的稳定性和可靠性。
zview软件拟合电化学阻抗图解————————————————————————————————作者:————————————————————————————————日期:前些天传了个zview软件,最近又看到很多人在问这个,今天有点时间,干脆简单怎么使用。
1.导入数据[有人PM我,说看不到图,估计是最近教育网连google不畅之故,因为我的图是上传至google空间的。
今天索性把图重新上传至本坛,以消除此问题。
另,如果图有错,请pm我][第二次重新上传部分不能显示图,呵呵,留影,看看还会不会再出错07-07-17][Last edit by maxwell]仪器采购指南:电化学工作站电化学配件PH电极关键词:拟合zview入门交流阻抗谱相关帖子:【资料】电化学噪声的分析与应用1支持:15次感谢:10次2006-9-12 19:29:00 1楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]2.数据格式要求:只要是三列数据,如下图:实部、虚部和频率即可;[Last edit by maxwell]相关帖子:【讨论】电解池的设计2006-9-12 19:32:00 2楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]3.激活数据:[Last edit by maxwell]相关帖子:【原创】介绍一个论坛,染料敏化太阳能电池论坛2006-9-12 19:33:00 3楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]4.删除不需要的数据,也就是zview不能拟合的部分:[Last edit by maxwell]相关帖子:【求助】请问什么叫微分析系统?2006-9-12 19:35:00 4楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]5.即时拟合,也就是为后面的拟合获取初值:1)这个需要一个一个元件单独进行,如图中1处所标,选中部分准备进行即时拟合;2)这里忘标了,在左上角打框的地方,点击它就是即时拟合了;3)选择适宜的等效元件,如2处所标识,获得初值[Last edit by maxwell]相关帖子:【求助】哪位高手有Zview的说明2006-9-12 19:48:00 5楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]6.建立适宜的等效电路,这个取决于自己的体系:[Last edit by maxwell]相关帖子:【原创】文献查询群及介绍一个文献查询交流的好论坛2006-9-12 19:52:00 6楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]7.把1处的数据,用鼠标抓起来,丢到2处去:[Last edit by maxwell]相关帖子:【分享】电镀中间体在多层镀镍体系中的应用.2006-9-12 19:54:00 8楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇)maxwell (maxwell)技术:军士长财富:温饱积分:870 经验:130 声望:68 时长:3510[个人资料] [给他留言] [帖子合集][回复] [引用并回复] [维护]8.把1处的fixed改称free,为拟合作准备:点击2开始拟合,但在拟合前还有个地方需要部补充一下,因为有张图丢失了,没心情去补,描述如下:这张图左上方有个model,点击进去将mode改为fitting才能拟合。
I- Impedance or admittance Nyquist ’s diagramsImpedance Z and admittance Y are two inverse transfer functions linked by the following very simple relation:Y1Z(1)Let us consider the electrical circuit shown in Fig. 1 corresponding to circuit #1 of the Test Box-3 [1].Fig. 1: Voigt circuit made of three Rs and two Cs.The experimental Nyquist diagram of the impedance Z is show in Fig. 2 [1]. Since frequency values are lost in the Nyquist diagram, it is useful to indicate the frequency of some characteristic points (top of the semi-Fig. 2: Nyquist impedance diagram of the electrical circuit shown in Fig. 1. Arrow always indicates increasing frequencies.Obviously the high frequency semi-circle is smaller than the low frequency semi-circle.To highlight the high frequency part of the diagram, it is better to plot the admittance diagram instead of the impedance diagram as it is shown in Fig. 3.The admittance diagram in Fig. 3 shows the high frequency semi-circle better. Does the graph of the admittance contain more information than the graph of the impedance? No, the admittance diagram only presentsFig. 3: Nyquist admittance diagram of the electrical circuit shown in Fig. 1.II- Impedance or admittance Bode diagramsTo be convinced of that, we can plot the impedance and admittance Bode diagrams as shown in Fig. 4. Let us recall that plotting the Bode diagram of a transfer function H consists of plotting the decimal logarithm of the magnitude of H given by:22H) (Im H) (Re Hand the phase of H given by:HRe HIm arctanHφ versus the decimal logarithm of frequency or radial frequency.Application note #8Impedance, admittance, Nyquist, Bode, Black, etc …According to Eq. (1), it is obvious thatZ log YlogandZ Y φφThe graphs showing magnitude and phases on Fig. 4 are symmetrical with respect to the horizontal axis. There is no more information in an admittance diagram than in an impedance diagram.II- Impedance or admittance Black diagramsFig. 4: Bode impedance and admittance diagrams of the electrical circuit shown in Fig. 1.Electricians use other representations, such as Black diagrams, for example, where the decimal logarithm of the magnitude is plotted versus the phase (Fig. 5).Fig. 5: Black impedance and admittance diagrams of the electrical circuit shown in Fig. 1.As with the Nyquist diagram, frequency values are lost in Black Adiagram. Therefore, it is useful to indicate the frequency of some characteristic points.Reference:[1] Bio-Logic Application Note#9( )。
一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这儿阻抗的意义。
传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论)如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克)在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求一般是1~2mm,根据板厚要求来分层得到各厚度高度. 在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来走线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采用polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过走线阻抗要求来计算出线宽W(目标)2,各厂家的制程能力不一致,因此计算方法不一样,需要和厂家进行确认3,表层采用coated microstrip 计算的原因是,厂家会有覆绿漆,因而没用surface microstrip 计算,但是也有厂家采用surface microstrip 来计算的,它是经过校准的4,w1 和w2 不一样的原因在于pcb 板制造过程中是从上到下而腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候厂家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字面来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2在计算差分阻抗的时候和上面计算类似,除所需要的通过走线阻抗要求来计算出线宽的目标除线宽还有线距,在此不列出选用的图是在计算差分阻抗注意的是:1,在满足DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时又满足其单端阻抗,因此我通常选择的是先满足差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板厂是不考虑的,实际做很多板子,问题确实不算大,看样子差分线还是走线同层同via 同间距要求一定要符合)特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)。
Module13:PDN Step1:设置电源网络● Setup > Power Supp ● 选中Select supply ● Edit Supply Voltage 自动识别的电压经常有误值没有<>符号。
● S4VCC 附加说明:在PI 仿真中行去耦分析。
Step2:检查层叠● BoardSim > Edit St● 仿真之前最好检查一异常需要修改。
DN 阻抗后仿真 源网络Supplies。
pply nets 列表中的复选框,该网络被识别为电源网Edit Supply Voltages 中Voltages 栏输入对应的电压值。
<>表示自自动识别的电压经常有误,需要修改。
直接输入电压值即可,注意手电压修改为0.9。
真中,当前要分析的电源网络必须明确的设置为电源BoardSim > Edit Stackup button检查一下层叠结构是否正确。
尤其是介质厚度和介电电源网络。
表示自动识别的电压注意手动输入的电压当前要分析的电源网络必须明确的设置为电源。
否则无法进介电常数等,如有● 层叠厚度和介电常数Step3:电容分组● Decoup Groups 对话框。
● 分组电容。
左边是尚未并且封装相同的自动分到一组● 错误分组处理自动分组有时会出现错误中元器件的名称一定要有一定规范比较随意,同种电容有不同的如果自动分组有错误,电常数关系到仿真时寄生参数的计算。
Models > Edit Decoupling-Capacitor Groups,弹出Assign Decoupli是尚未分组的电容,右侧是自动分组的电容。
原则上并且封装相同的自动分到一组。
现错误,注意检查上图中Part Name 栏没有名称的分组中元器件的名称一定要有一定规范,同种电容名称一定要相同,这样有利于分同种电容有不同的名字,处理电容分组很麻烦。
,可以点击Auto-Grouping 按钮,弹出Auto-Groupinoupling-Capacitor原则上,相同电容值的分组。
附件1:基础训练题目阻抗匹配网络的计算学院自动化学院专业电气工程及其自动化班级1004班姓名南杨指导教师朱国荣2012 年7 月 4 日基础强化训练的目的1.较全面的了解常用的数据分析与处理原理及方法2.能够运用相关软件进行模拟分析3.掌握基本的文献检索和文献阅读的方法4.提高正确的撰写论文的基本能力训练内容与要求阻抗匹配网络的计算使信号源(其内阻Rs=12Ω)与负载(RL=3Ω)相匹配插入一阻抗匹配网络求负载吸收的功率初始条件Matlab软件基本操作及其使用方法指导老师签名﹍﹍﹍﹍日期:﹍﹍年﹍﹍月﹍﹍日目录1.摘要 (4)2.MATLAB简介 (5)3.阻抗及阻抗匹配的概念 (6)3.1阻抗的概念 (6)3.2阻抗匹配的概念 (6)4.阻抗匹配网络的计算 (6)4.1对阻抗匹配网络进行原理分析 (7)4.2 建模: (7)4.3应用MATLAB对上面的题目编程 (8)4.4 结果 (9)5.结果对比与分析 (10)6.心得体会. (11)7.参考文献. (12)1. 摘要本文主要是通过训练使学生掌握相关的理论知识及实际处理方法,熟练使用MATLAB语言编写所需应用程序,上机调试,输出实验结果,并对实验结果进行分析。
MATLAB 的名称源自 Matrix Laboratory ,它是一种科学计算软件,专门以矩阵的形式处理数据。
MATLAB 将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作。
本文运用了MATLAB的M程序编程的方法对于一个电路进行了分析。
体现了MATLAB的强大功能。
关键字:MATLAB,M文件,矩阵,计算AbstractThis paper is mainly to ask students to master relevant theoretical knowledge and practical operating methods by training. We should use MATLAB to write applications, computer debugging, then output results and analysis it. The full name of MATLAB is Matrix Laboratory. It is a kind of special scientific calculation software with the matrix form data processing. Because MATLAB not only combines the high-performance numerical calculation and visualization, but also provided a lot of built-in functions, it widely used in scientific calculations, the control system, information processing, simulation and design work.This paper is based on the M programming and design methods of module simulink. We use these two methods to analyzes the circuit.We can see the strong function of MATLAB.keyword: MATLAB, M files, simulation module, Matrix, calculating2.MATLAB简介标点符号统一,如,。