基因工程常用工具酶及应用知识讲解
- 格式:ppt
- 大小:889.50 KB
- 文档页数:41
《基因工程的基本工具》知识清单一、限制性内切核酸酶(限制酶)限制酶是基因工程中最重要的工具酶之一。
它就像一把精准的“分子剪刀”,能够识别特定的核苷酸序列,并在特定的位点将 DNA 分子切开。
限制酶具有特异性,不同的限制酶识别的核苷酸序列不同。
例如,EcoRⅠ限制酶识别的序列是 GAATTC,而 BamHⅠ限制酶识别的序列是 GGATCC 。
当限制酶识别到特定序列后,就会在该位点将 DNA 双链切断,形成黏性末端或平末端。
黏性末端是指被切开的 DNA 双链的末端,一条链突出几个碱基,另一条链对应位置凹进去几个碱基,就像“锯齿”一样。
而平末端则是指切开的双链末端是平齐的。
限制酶的发现和应用,为基因工程中对 DNA 进行精确的切割和操作奠定了基础。
二、DNA 连接酶有了“剪刀”将 DNA 切开,还需要“胶水”将它们连接起来,这就是DNA 连接酶的作用。
DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。
DNA 连接酶连接的是 DNA 片段之间的磷酸二酯键。
在基因工程中,常用的 DNA 连接酶有 E·coli DNA 连接酶和 T4 DNA 连接酶。
E·coli DNA 连接酶只能连接黏性末端,而 T4 DNA 连接酶既能连接黏性末端,也能连接平末端,但连接平末端的效率相对较低。
三、载体在基因工程中,要将目的基因导入受体细胞,就需要一个“运输工具”,这就是载体。
载体需要具备一些特定的条件:1、能够在受体细胞中稳定保存并自我复制。
这样才能保证目的基因在受体细胞中能够长期存在和表达。
2、具有多个限制酶切点,以便插入目的基因。
3、具有标记基因,便于筛选含有目的基因的受体细胞。
常见的载体有质粒、λ噬菌体的衍生物和动植物病毒等。
质粒是一种小型的环状DNA 分子,广泛存在于细菌等原核生物中。
它具有自主复制能力,并且通常含有一些抗生素抗性基因作为标记基因。
一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
《基因工程的基本工具》讲义基因工程作为现代生物技术的核心领域,为人类解决许多重大问题提供了强大的手段。
要深入理解基因工程,首先需要了解其基本工具,就如同工匠需要熟悉手中的工具才能打造出精美的作品一样。
一、限制性内切酶限制性内切酶,简称限制酶,是基因工程中的“剪刀”。
它能够识别特定的核苷酸序列,并在特定的位点切割 DNA 分子。
这些酶的发现具有一定的偶然性。
在细菌中,它们被用于抵御外来DNA 的入侵,通过切割入侵的 DNA 来保护自身。
科学家们巧妙地利用了这一特性,将其应用于基因工程中。
限制酶具有高度的特异性,不同的限制酶识别的核苷酸序列不同,切割的位点也不同。
例如,EcoRI 识别的序列是 5' GAATTC 3' ,并在G 和 A 之间切割。
限制酶切割 DNA 产生的末端有两种类型:黏性末端和平末端。
黏性末端是指被切割后的DNA 片段末端有单链突出,就像“粘性的尾巴”,容易相互连接;平末端则是平整的切口。
二、DNA 连接酶有了“剪刀”将 DNA 切断,还需要“胶水”将其连接起来,这就是DNA 连接酶的作用。
DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。
在基因工程中,常用的 DNA 连接酶有 T4 DNA 连接酶等。
DNA 连接酶连接的是 DNA 片段之间的磷酸二酯键,这是保证DNA 分子结构稳定的重要化学键。
三、载体基因工程中,目的基因需要一个“运输工具”才能进入受体细胞并稳定存在和表达,这个“运输工具”就是载体。
常见的载体有质粒、噬菌体和动植物病毒等。
质粒是一种小型的环状 DNA 分子,存在于许多细菌和酵母菌中。
它具有自主复制能力,并且能够携带一些外源基因。
作为载体,需要具备一些重要的特点。
首先,要有一个或多个限制酶切割位点,以便插入目的基因。
其次,要有标记基因,用于筛选含有目的基因的受体细胞。
例如,氨苄青霉素抗性基因可以用来筛选导入了重组质粒的细菌。
基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。
在基因工程的过程中,基因工程工具酶发挥着关键的作用。
本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。
一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。
它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。
1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。
它们通常识别的序列是4到8个碱基对长,具有一定的对称性。
一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。
1.3 应用限制性内切酶在基因工程中有着广泛的应用。
它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。
通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。
二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。
在基因工程中,连接酶通常被用于连接目标基因和载体。
2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。
它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。
2.3 应用连接酶在基因工程中的应用非常广泛。
它们可以用于构建重组DNA分子、进行目标基因的插入等。
通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。
三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。
在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。
3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。
它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。
3.3 应用修饰酶在基因工程中起着重要的作用。
它们可以用于DNA甲基化的分析、目标基因的修饰等。
基因工程所需要的酶引言基因工程是一项重要的生物技术,它利用酶的特殊功能来改变生物体的遗传信息。
酶在基因工程中起着关键作用,它们能够催化特定的化学反应,使得基因组中的DNA序列发生改变。
本文将介绍基因工程中常用的酶以及它们在不同的应用领域中的作用。
常用酶及其功能1. 限制性内切酶限制性内切酶是一类能够识别DNA序列并在特定位置切割DNA链的酶。
它们广泛应用于基因工程中的DNA重组、克隆和测序等领域。
限制性内切酶根据其识别位点和切割模式被分类为不同类型,如EcoRI、BamHI等。
这些酶可以将DNA分子切割成片段,并产生粘性或平滑末端,为后续操作提供方便。
2. DNA连接酶DNA连接酶是一种能够将两个单链DNA或RNA分子连接成一个完整双链分子的酶。
它们在基因工程中常被用于连接DNA片段,构建重组DNA分子。
T4 DNA连接酶是常用的DNA连接酶之一,它能够将DNA片段连接成环状或线性结构。
3. 核酸聚合酶核酸聚合酶是一类能够催化DNA或RNA的合成的酶。
在基因工程中,核酸聚合酶被广泛应用于PCR(聚合酶链式反应)和基因克隆等领域。
其中,Taq DNA聚合酶是PCR反应中最常用的核酸聚合酶之一,它能够耐高温,并具有高度特异性和高效率。
4. 核酸修复酶核酸修复酶是一类能够修复DNA损伤和错误的酶。
在基因工程中,核酸修复酶被用于修复突变的DNA序列,纠正基因组中的错误。
CRISPR-Cas9系统利用Cas9核酸修复酶来导向性地切割和编辑目标DNA序列。
5. 核苷三磷脂转移ase核苷三磷脂转移ase(NTPase)是一类能够催化核苷三磷酸与核苷二磷酸之间的磷酸酯键转移的酶。
在基因工程中,NTPase被广泛应用于DNA合成和修饰等领域。
DNA聚合酶的活性依赖于NTPase的催化作用。
酶在基因工程中的应用1. DNA重组和克隆在基因工程中,限制性内切酶被广泛应用于DNA重组和克隆。
通过选择适当的限制性内切酶,可以将目标DNA片段与载体DNA连接起来,构建重组DNA分子。
《基因工程的基本工具》知识清单一、限制性内切酶限制性内切酶,又称限制酶,是基因工程中最重要的工具之一。
它就像一把极其精准的“分子剪刀”,能够识别特定的核苷酸序列,并在特定的位点切割 DNA 分子。
限制酶的作用特点具有高度的特异性。
每种限制酶所识别的核苷酸序列通常是回文序列,即从两条链的5'端向3'端读取,序列是相同的。
例如,EcoRⅠ识别的序列是 GAATTC,切割位点就在 G 和 A 之间。
限制酶的切割方式有两种:一种是在识别序列的中轴线两侧进行切割,产生的 DNA 片段末端是平末端;另一种是在中轴线处切割,产生的 DNA 片段末端是黏性末端。
黏性末端因为具有互补的单链,所以在DNA 连接酶的作用下更容易连接。
限制酶在基因工程中的主要用途是切割目的基因和载体,以便于构建重组 DNA 分子。
二、DNA 连接酶有了“剪刀”把 DNA 切开,还需要“胶水”把它们粘起来,这时候就轮到 DNA 连接酶发挥作用了。
DNA 连接酶能够将两个具有相同末端的 DNA 片段连接在一起。
常见的 DNA 连接酶有两种,分别是 E·coli DNA 连接酶和 T4 DNA 连接酶。
E·coli DNA 连接酶只能连接黏性末端,而 T4 DNA 连接酶既可以连接黏性末端,也可以连接平末端,但连接平末端的效率相对较低。
在基因工程中,DNA 连接酶用于将切割后的目的基因和载体连接,形成重组 DNA 分子。
三、载体载体是将外源基因送入受体细胞的“运输工具”。
它需要具备一些特定的条件。
首先,载体要有一个或多个限制酶切点,以便插入目的基因。
其次,载体要有自我复制的能力,或者能整合到受体细胞的染色体 DNA 上,随染色体 DNA 一起复制。
再者,载体要有标记基因,便于重组 DNA分子的筛选。
常见的标记基因有抗生素抗性基因、荧光蛋白基因等。
常见的载体有质粒、噬菌体和动植物病毒等。
质粒是一种小型的环状 DNA 分子,广泛存在于细菌和酵母菌等微生物中。