钢管穿孔工艺认识

  • 格式:doc
  • 大小:36.50 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对穿孔工艺的认识

一、概要

塑性变形一般来说就是使坯料在一定温度环境下通过专门的模具,使金属产生连续顺畅的流动使其变形以达到要求的几何形状的过程。穿孔就是把圆断面坯料穿制成毛管的变形过程。

我厂使用的穿孔机为狄舍尔二辊斜轧穿孔机,其封闭孔型由上下两个相对轧线倾斜的轧辊,左右两个主动导盘以及中间的一个随动顶头构成。

工艺流程

不考虑输送及工具更替,有效工艺环节有:

坯料加热—高压水除鳞—热定心—穿孔—吹硼砂。

坯料加热:使坯料达到最佳可塑温度,是整个钢管轧制的基础。

高压水除鳞:除去热坯料的外氧化铁皮,减小穿制的阻力。热定心:提高低塑性钢的可塑性,有效减小穿孔时的轴向阻力,减轻顶头耗损。

吹硼砂:除去毛管的内表面氧化物,为连轧减小阻力

穿孔中的金属变形

1.基本变形完全是几何尺寸的变化,是直观的变形,与材料的性质无关,而且基本变形取决于变形区的几何形状。

2.附加变形指的是材料内部的变形,是直观看不到的变形,是由于材料中内应力所引起的,是增大材料的变形应力,引起材料中产生的缺陷,主要有扭转变形、纵向剪切变形等,这种变形会降低产品质量并增加能量消耗,所以在实际生产中如何来减小附加变形是很重要的。

斜轧穿孔整个过程可以分为三个阶段,即不稳定—稳定—不稳定

第一个不稳定过程—管坯前端金属逐渐充满变形区阶段,即管坯同轧辊开始接触(一次咬入)到前端金属出变形区,这个阶段存在一次咬入和二次咬入。

稳定过程—这是穿孔过程主要阶段,从管坯前端金属充满变形区到管坯尾端金属开始离开变形区为止。

第二个不稳定过程—为管坯尾端金属逐渐离开变形区到金属全部离开轧辊为止

稳定过程和不稳定过程有着明显的差别,这在生产中很容易观察到的。如一只毛管上头尾尺寸和中间尺寸就有差别,一般是毛管前端直径大,尾端直径小,而中间部分是一致的。头尾尺寸偏差大是不稳定过程特征之一。造成头部直径大的原因是:前端金属在逐渐充满变形区中,金属同轧辊接触面上的摩擦力是逐渐增加的,到完全充满变形区才达到最大值,特别是当管坯前端与顶头相遇时,由于受到顶头的轴向阻力,金属向轴向延伸受到阻力,使得轴向延伸变形减小,而横向变形增加,加上没有外端限制,从而导致前端直

径大。尾端直径小,是因为管坯尾端被顶头开始穿透时,顶头阻力明显下降,易于延伸变形,同时横向展轧小,所以外径小。

虽然三个过程有所区别,但他们都在同一个变形区内实现的。变形区是由轧辊、顶头、导盘构成。整个变形区为一个较复杂的几何形状,大致可以认为,横断面是椭圆形,到中间有顶头阶段为一环形变形区。纵截面上是小底相接的两个锥体,中间插入一个弧形顶头。

变形区形状决定着穿孔的变形过程,改变变形区形状(决定于工具设计和轧机调整)将导致穿孔变形过程的变化。

穿孔变形区大致可分为四个区段(摘文)

Ⅰ区称之为穿孔准备区。Ⅰ区的主要作用是为穿孔作准备和顺利实现二次咬入。这个区段的变形特点是:由于轧辊入口锥表面有锥度,沿穿孔方向前进的管坯逐渐在直径上受到压缩,被压缩的部分金属一部分向横向流动,其坯料波面有圆形变成椭圆形,一部分金属轴向延伸,主要使表层金属发生形变,因此在坯料前端形成一个“喇叭口”状的凹陷。此凹陷和定心孔保证了顶头鼻部对准坯料的中心,从而可减小毛管前端的壁厚不均。

Ⅱ区称为穿孔区,该区的作用是穿孔,即由实心坯变成空心的毛管,该区的长度为从金属与顶头相遇开始到顶头圆锥带为止。这个区段变形特点主要是壁厚压下,由于轧辊表面与顶头表面之间距离是逐渐减小的,因此毛管壁厚是一边旋转,一边压下,因此是连轧过程,这个区段的变形参数以直径相对压下量来表示,直径上被压下的金属,同样可向横向流动(扩径)和纵向流动(延伸)但横向变形受到导盘的阻止作用,纵向延伸变形是主要的。导盘的作用不仅可以限制横向变形而且还可以拉动金属向轴向延伸,由于横向变形的结果,横截面呈椭圆形。

Ⅲ区称为碾轧区,该区的作用是碾轧均整、改善管壁尺寸精度和内外表面质量,由于顶头母线与轧辊母线近似平行,所以压下量是很小的,主要起均整作用。轧件横截面在此区段也是椭圆形,并逐渐减小。

Ⅳ区称为归圆区。该区的作用是把椭圆形的毛管,靠旋转的轧辊逐渐减小直径上的压下量到零,而把毛管转圆,该区长度很短,在这个区变形实际上是无顶头空心毛管塑性弯曲变形,变形力也很小。

变形过程中四个区段是相互联系的,而且是同时进行的,金属横截面变形过程是由圆变椭圆再归圆的过程

二、重要环节及参数

“孔腔”—中心疏松

穿孔工艺被广泛用于无缝钢管的生产始于1884年,两名锻工(曼内斯曼兄弟)在生产中发现旋转横锻出现“孔腔”这一重要现象。由于高速的自转产生离心力,同时由于管坯

旋转使其同一部位受到轧辊的压应力和导盘的拉应力不断转换形成的交变应力,管状断面轧件在中心会形成一个中心疏松区域,形成孔腔。区域内金属产生一个向外的运动趋势,但由于内部复杂的应力作用达到平衡,并没有产生动作或产生局部较小破裂现象。当有外力作用于中心时就打破了内部的复杂应力平衡,使内部金属顺利的向外运动,这就是穿孔的基础。

斜轧实心管坯时,在顶头接触管坯前常易出现金属中心破裂现象,当大量裂口发展成相互连接,扩大成片以后,金属连续性破坏,形成中心空洞即孔腔。在顶头前过早形成孔腔,会造成大量的内折,恶化钢管内表面质量,甚至形成废品,因此在穿孔工艺中力求避免过早形成孔腔。

影响孔腔形成的主要因素有:

1.变形的不均匀性(顶头前压缩量)

不均匀变形程度主要决定于坯料每半转的压缩量(称为单位压缩量),生产中指顶头前压缩量。顶头前压缩量愈大则变形不均匀程度也愈大,导致管坯中心区的切应力和拉应力增加,从而容易促进孔腔的形成。一般用临界压缩量来表示最大压缩量值的限制,压缩量小于临界压缩量则不容易或不形成孔腔。

2.椭圆度的影响

穿孔过程中在管坯横断面上存在着很大的不均匀变形,椭圆度愈大,则不均匀变形也愈大。按照体积不变定律可知,横向变形愈大则纵向变形愈小,将导致管坯中心的横向拉应力、切应力以及反复应力增加,加剧了孔腔的形成趋势

3.单位压缩次数的影响

在生产中主要指管坯从一次咬入到二次咬入过程中管坯的旋转次数,次数的增多就容易形成孔腔。

4.钢种本身塑性

钢的自然塑性由钢的化学成分、金属冶炼质量以及金属组织状态所决定,而组织状态又由管坯加热温度和时间所影响。一般来说塑性低的金属,穿孔性能差,容易产生孔腔

封闭孔型

我厂使用的是狄舍尔二辊斜轧穿孔机,穿孔轧制是由上下两个相对轧线倾斜的轧辊和左右两个主动旋转导盘形成外封闭圆,再由中间的一个随动顶头形成内封闭圆,这样就形成了一个环状封闭孔型。

封闭孔型的调整—椭圆度(包括轧辊上压下和下压上和导盘)以及顶头前压下

要使金属在穿孔过程中能连续顺畅的流动变形,适宜的椭圆度是很重要的,对应不同钢级的钢种调整不同的椭圆度,也就是我们常说的“车型”。高钢级的钢种,其塑性较低不易穿制,椭圆度小点,顶头前压下小点;低钢级的椭圆度稍大,顶头前压下大点。