材料科学与工程基础1详解
- 格式:ppt
- 大小:30.04 MB
- 文档页数:8
材料科学与工程基础第一章1、金属键的定义金属键:由金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。
2、离子晶体中组成粒子的结合它们的结合是依靠离子键的作用,即依靠正、负离子间的库伦作用。
3、实际材料中的键型组合金属键、离子键、共价键、范德华力、氢键4、共价键晶体中价键的形成(以硅晶体为例,计算键数比例) 共价键是由两个或多个电负性相差不大的原子间通过共用电子对形成的化学键(请教老师下)第二章1、置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就是置换固溶体。
2、合金相的分类固溶体(置换固溶体、间隙固溶体)、中间相(正常价化合物、电子价化合物、与原子尺寸因素有关的化合物、超结构)3、体心立方和面心立方晶体中的间隙4、晶面指数与面间距的关系晶面指数低的晶面其面间距较大,晶面指数高的晶面其面间距小。
5、硅酸盐的基本结构单元硅和氧按不同比例组成的各种负离子团6、常见的硅酸盐结构孤岛状、组群状、链状、层状、架状。
第三章1、位错运动的基本方式滑移、攀移。
2、混合位错的分解混合位错可以分为刃型位错、螺型位错。
(怎么分)3、层错能与层错出现几率的关系层错能越高,出现层错的几率越小。
4、晶体生长过程中产生位错的主要来源①由于溶体中杂质原子在凝固过程中不均匀分布,使晶体先后凝固部分的成分不同,从而点阵常数也有差异,可能形成位错作为过度②由于温度梯度、浓度梯度、机械振动等的影响③晶体生长过程中由于相邻晶粒发生碰撞或因液流冲击。
(要写的如①那样吗)5、如何判断位错反应能否进行第四章1、FICK第一定律的描述对象描述了一种稳态扩散,即质量浓度不随时间而变化。
P1402、影响扩散系数的因素温度、压力、化学成分(组元特征、组元浓度、第三组元的影响)、材料结构(固溶体类型、晶体结构)、晶体缺陷、应力的作用、其他(电场、磁场、热场、表面张力)第五章1、弹性不完整性多晶态、或非晶态或是两者皆有的物质,其内部存在各种类型的缺陷,在弹性变形时,可能出现加载线和卸载线不重合、应变的发展跟不上应力的变化等有别于理想弹性变形的现象。
第四章第一讲材料科学与工程基础(顾宜材料的性能materials property性能决定用途。
本章对材料的力学性能、热性能、电学、磁学、光学性能以及耐腐蚀性,复合材料及纳米材料的性能进行阐述。
4-1 固体材料的力学性能Mechanical Properties of Solid Materials结构件:力学性能为主非结构件:力学性能为辅,但必不可少mechanical property of materials stress and strain Elastic deformation Modulus Viscoelasticity permanent deformation Strength Fracture4-1-1 材料的力学状态mechanical states of matrials 1.金属的力学状态A 晶态结构,B 较高的弹性模量和强度,C 受力开始为弹性形变,接着一段塑性形变,然后断裂,总变形能很大, D 具有较高的熔点。
某些金属合金 A 呈非晶态合金, B 具有很高的硬度和强度,C 延伸率很低而并不脆。
D 温度升高到玻璃化转变温度以上,粘度明显降低,发生晶化而失去非晶态结构。
2. 无机非金属的力学状态A 玻璃相熔点低,热稳定性差,强度低。
B 气相(气孔)的存在导致陶瓷的弹性模量和机械强度降低。
C 陶瓷材料也存在玻璃化转变温度Tg。
D 绝大多数无机材料在弹性变形后立即发生脆性断裂,总弹性应变能很小。
陶瓷材料的力学特征高模量高强度高硬度低延伸率3. 聚合物的力学状态(1) 非晶态聚合物的三种力学状态①玻璃态②高弹态③粘流态(2) 结晶聚合物的力学状态A 结晶聚合物常存在一定的非晶部分,也有玻璃化转变。
B 在T g 以上模量下降不大Tm、TfC 在T m 以上模量迅速下降D 聚合物分子量很大,T mT f ,则在T m 与T f 之间将出现高弹态。
E 分子量较低,T m T f , 则熔融之后即转变成粘流态,玻璃化温度(Tg)是非晶态塑料使用的上限温度是橡胶使用的下限温度熔点(Tm)是结晶聚合物使用的上限温度4-1-2 应力和应变stress-strain If a load is static or changes relatively slowly with a time and is applied uniformly over a cross section or surface of a member, the mechanical behavior may be ascertained by a simple stress-strain test. These are mostly commonly conducted for materials at room temperature.4-1-2 应力和应变(stress and strain)应力:单位面积上的内力,其值与外加的力相等。
材料科学与工程知识点大一材料科学与工程是一门综合性的学科,涉及到材料的结构、性能、制备和应用等方面的知识。
作为大一学生,了解材料科学与工程的一些基础知识是非常重要的。
本文将介绍一些大一学习材料科学与工程时需要了解的知识点。
1. 材料的分类材料可以根据其成分和性质的不同进行分类。
常见的材料有金属、陶瓷、聚合物和复合材料等。
金属具有良好的导电性和导热性,常见的金属有铁、铜和铝等。
陶瓷具有优异的耐热性和耐腐蚀性,如瓷器和玻璃等。
聚合物是由大量重复单元组成的高分子材料,如塑料和橡胶等。
复合材料则是由两种或两种以上的不同材料组合而成,形成新的材料性能。
2. 材料的结构与性能材料的性能与其内部结构密切相关。
晶体结构是材料内部原子或离子的排列方式,晶体结构的不同会影响材料的力学性能和导电性能等。
晶体结构可以通过X射线衍射等方法进行表征。
此外,非晶态结构和多晶结构也是常见的材料结构形式。
3. 材料的制备方法材料的制备方法多种多样,不同的制备方法可以得到不同性质的材料。
常见的制备方法有熔融法、溶液法、气相法和固相法等。
熔融法是将材料加热至其熔点,然后使其冷却凝固得到固体材料。
溶液法是将材料溶解在溶剂中,然后通过溶剂的挥发或沉淀得到所需的材料。
气相法是通过化学反应将气体或蒸汽转变成固体材料。
固相法是在固体材料之间进行反应,生成新的固体材料。
4. 材料性能的测试与评价材料的性能测试对于研究材料的力学性能、导电性能、导热性能等具有重要意义。
常见的测试方法包括拉伸试验、硬度测试、电阻测试和热传导测试等。
材料性能的评价是根据实验结果对材料的性能进行综合评估,判断其是否符合使用要求。
5. 材料的应用领域材料科学与工程在各个领域都有着广泛的应用。
在航空航天领域,需要研究和使用高温合金、复合材料等材料以满足极端环境下的工作条件。
在能源领域,需要研究和开发高效电池材料、光伏材料等以满足能源需求。
在医疗领域,需要研究和应用生物材料以制造人工关节、人工血管等。
四川大学本科课程《材料科学与工程基础》教学大纲一、课程基本信息课程名称(中、英文):《材料科学与工程基础》(FUNDAMENTALS OF MATERIALS SCIENCE AND ENGINEERING)课程号(代码):30014530课程类别:专业基础课学时/学分:48 /3先修课程:大学化学、大学物理、物理化学适用专业:高分子材料与工程等二级学科材料类专业开课时间:大学二年级下期二、课程的目的及任务材料科学与工程是二十世纪六十年代初期创立的研究材料共性规律的一门学科,其研究内容涉及金属、无机非金属和有机高分子等材料的成分、结构、加工同材料性能及材料应用之间的相互关系。
材料科学、材料工业和高新技术的发展要求高分子材料与工程等二级学科材料类专业的学生必须同时具备“大材料”基础和“中材料”专业的宽厚知识结构。
本课程是材料类专业的学科基础课程,是联系基础课与专业课的桥梁。
本课程从材料科学与工程的“四要素”出发,采用“集成化”的模式,详细讲授金属材料、无机非金属材料、高分子材料、复合材料等各种材料的共性规律及个性特征。
使学生建立材料制备/加工——组成/结构——性能---应用关系的“大材料”整体概念,从原理上认识高分子材料等各种材料的基本属性,及其在材料领域中的地位和作用。
为以后二级学科“中材料”专业课程的学习、材料设计、以及材料的应用等奠定良好基础。
本课程采用中文教材与英文原版教材相结合,实施“双语”教学。
使学生通过本课程的学习,熟悉材料科学与工程领域的主要英文专业词汇,提高对英文教材的阅读理解能力。
三、课程的教学内容、要点及学时分配(以红字方式注明重点难点)第一章绪论(1学时)本章概要:简要介绍材料的定义及分类,材料科学与工程的基本内容。
使学生了解本课程的学习内容和学习方法。
讲授要点:材料的定义、分类材料科学与工程的定义、性质、重要性(举例)课程学习的目的、方法、要求第二章材料结构基础(15学时)本章概要:按照从微观到宏观、从内部到表面、从静态到动态、从单组分到多组分的顺序,阐述原子电子结构、原子间相互作用和结合方式,固体内部和表面原子的空间排列状态、聚集态结构的有序性、无序性和转变规律及相互关系。
材料科学与工程基础第1章、导言学习重点:仔细学过这一章后,你应当掌握以下内容:1.列出材料应用所涉及到的6种不同性质。
2.描述材料在设计、生产和应用中涉及的四要素,叙述它们之间的关系。
3.描述材料选择过程的三条重要标准。
4.(a)列出固体材料的三种主要分类,描述这三种材料各自的化学特征。
(b)记住另外三种形式的材料,以及每种的特征。
1.1 历史的回顾与展望超乎一般人的认识,材料可能是对人类文明影响最根深蒂固的一类物质。
交通运输,住房,穿衣,通讯,娱乐和食品生产,实质上、我们日常生活中的每一部分都在一定程度会受到这种或那种材料的影响。
历史上,社会的进步和发展都与人类生产和掌握某种材料满足自己的需要密切相关。
事实上,早先的文明曾按照人类开发某种材料的能力来划分时代(例如石器时代,青铜器时代等等)。
最早的人类所遇到的材料极为有限,通常是天然的土生土长的一些东西,如石头,木材,粘土,兽皮等等。
随着时代的发展,人类发现了生产材料的技术,这些人造的材料性能上优于天然材料,这类新材料包括陶瓷和各种金属。
后来人们发现通过热处理和加入其它物质可以改变这些材料的性能。
从某种意义上说,材料的应用总是伴随着一种筛选过程,也就是说,从有限的材料中筛选出其特性最适用于特定场合使用的材料。
直到近代,科学家们开始知道材料的结构组成与其性质之间的关系。
在过去60年里,人们所获得的各种知识从很大程度上已经改变了对许多材料的认识。
迄今为止,已有成千上万种具有不同特性的材料被开发出来以满足我们这个现代和复杂社会的需要,这些材料包括金属、塑料、玻璃和纤维。
技术的进步使人类的生活变得越来越舒适,而这一切又与我们所使用的材料密切相关。
人类对某一类材料认识程度的进步往往是这个时代技术革命的前奏。
例如,如果没有廉价的钢铁和其他相应材料,就不会有当今的汽车工业。
复杂电子设备的基本单元是由半导体材料构成的。
因此,我们目前的电子信息时代,它的材料基础是半导体材料。
材料科学与工程基础引言材料科学与工程是一门跨学科的学科,涉及到材料的结构、性质、制备和应用等方面。
在现代社会中,材料科学与工程的发展对于推动科技进步和经济发展起着重要作用。
本教案将介绍材料科学与工程的基础知识,帮助学生建立对材料科学与工程的基本理解和认识。
一、材料的分类与性质1. 无机材料无机材料是指由无机化合物或无机元素组成的材料,如金属、陶瓷、玻璃等。
无机材料具有独特的物理、化学和机械性质,广泛应用于各个领域。
2. 有机材料有机材料是指由有机化合物组成的材料,如塑料、橡胶、纤维等。
有机材料具有良好的可塑性和可加工性,被广泛应用于塑料工业、纺织工业等领域。
3. 复合材料复合材料是由两种或两种以上的材料组成的材料,具有较高的强度和刚度。
复合材料广泛应用于航空航天、汽车制造等领域。
4. 材料的性质材料的性质包括物理性质、化学性质和机械性质等。
物理性质包括密度、热导率、电导率等;化学性质包括化学稳定性、腐蚀性等;机械性质包括强度、硬度、韧性等。
二、材料的结构与组织1. 结晶结构结晶结构是指材料中原子或分子的排列方式。
不同的结晶结构决定了材料的物理和化学性质。
常见的结晶结构有立方晶系、六方晶系等。
2. 非晶态结构非晶态结构是指材料中原子或分子的排列无规则,没有明显的长程有序性。
非晶态材料具有特殊的性质,如高强度、高硬度等。
3. 材料的组织材料的组织是指材料中各个组成部分的分布和排列方式。
材料的组织对材料的性能和性质有重要影响。
常见的材料组织有晶粒、相、孪晶等。
三、材料的制备与加工1. 材料的制备方法材料的制备方法包括物理方法、化学方法和机械方法等。
物理方法包括溶液法、气相法等;化学方法包括沉积法、合成法等;机械方法包括粉末冶金、挤压等。
2. 材料的加工方法材料的加工方法包括热加工和冷加工两种。
热加工包括热轧、锻造等;冷加工包括冷轧、冷拔等。
不同的加工方法可以改变材料的结构和性质。
四、材料的性能测试与评价1. 材料的物理性能测试材料的物理性能测试包括密度测试、热导率测试、电导率测试等。
材料科学与工程基础材料科学与工程基础是材料科学与工程专业学生的一门重要基础课程,也是其后续专业课程的基础。
材料科学与工程基础课程主要涉及材料结构、性能与应用三个方面的内容。
首先,材料结构是材料科学与工程基础课程的核心内容之一。
它主要包括晶体结构、非晶态结构、晶体缺陷等。
晶体结构是研究晶体材料内部原子排列方式的科学,晶体结构的不同会直接影响材料的性质与应用。
非晶态结构是研究非晶态材料内部原子排列方式的科学,非晶态材料具有无定形的特点,其性质与晶体材料有很大差异。
晶体缺陷是指晶体中存在的各种类型的缺陷,缺陷的特点会直接影响材料的性能与应用。
其次,材料性能是材料科学与工程基础课程的另一个重要内容。
材料性能指的是材料在一定条件下所表现出来的特征与行为。
材料的性能可以分为物理性能、化学性能、力学性能等。
物理性能主要包括热性能、电性能、磁性能等,研究材料在不同温度、压力等条件下的表现。
化学性能主要包括耐腐蚀性、氧化性等,研究材料在化学环境中的表现。
力学性能主要包括强度、硬度、韧性等,研究材料在外力作用下的变形行为。
最后,材料应用是材料科学与工程基础课程的另一个重点。
材料应用主要包括金属材料、陶瓷材料、聚合物材料等在不同领域的应用。
金属材料广泛应用于工业领域,如汽车、航空、航天等;陶瓷材料主要应用于电子、光学等领域;聚合物材料主要应用于塑料、橡胶等领域。
材料科学与工程基础课程通过介绍不同材料的应用,帮助学生了解材料的特性与工程应用。
综上所述,材料科学与工程基础是一门涵盖材料结构、性能与应用的重要课程。
学生通过学习材料结构,了解材料内部原子排列方式的差异;通过学习材料性能,了解材料在不同条件下的特性与行为;通过学习材料应用,了解不同材料在各个领域的应用情况。
这些知识为学生进一步深入学习材料科学与工程专业课程奠定了坚实的基础。
材料科学与工程基础知识材料科学与工程是一门涵盖材料的结构、性能、制备、应用及其相关科学原理和工程技术的学科。
在现代科技领域,材料科学与工程发挥着重要的作用,其知识基础涵盖了许多领域,包括材料结构和性能、固态物理、化学、能源、机械、电子、环境等。
以下是关于材料科学与工程的基础知识:1.材料的分类材料可以根据其组成、性质和应用分为金属材料、陶瓷材料、高分子材料和复合材料等。
金属材料具有良好的导电性和导热性,适用于制造结构件、导热元件和电子器件等。
陶瓷材料具有优良的耐高温、耐磨损和绝缘特性,主要应用于制造电子陶瓷、建筑陶瓷和磁性材料等。
高分子材料具有较好的可塑性和绝缘性能,广泛应用于塑料、橡胶和纤维等领域。
复合材料是由两种或多种材料按一定比例混合而成,具有优异的性能,例如碳纤维增强复合材料具有高强度和轻质的特点。
2.材料的晶体结构材料的晶体结构是由原子或离子按照一定的空间排列规则而构成的。
晶体被分为晶格和晶胞,晶格是由原子或离子堆积而成的三维结构,而晶胞是晶格中最小的重复单元。
常见的晶体结构有立方晶系、六方晶系、正交晶系、四方晶系等。
材料的晶体结构直接影响着其力学性能、热学性能和电学性能等。
3.材料的性能材料的性能包括力学性能、热学性能、电学性能、化学性能等。
力学性能包括强度、韧性、硬度等,这些性能能够反映材料在外力作用下的抗变形和抗破坏能力。
热学性能包括热传导性、线膨胀系数等,这些性能决定了材料的热稳定性和导热性。
电学性能包括导电性、绝缘性等,这些性能决定了材料在电子器件中的应用。
化学性能决定了材料在不同环境下的耐腐蚀性能和反应活性。
4.材料的制备与加工材料的制备包括化学合成、物理制备和机械制备等多种方法。
化学合成是通过化学反应来制备材料,如溶胶-凝胶法、溶液法、气相沉积等。
物理制备是通过物理方法改变材料的结构和性质,如溅射法、激光熔凝法、热处理等。
机械制备是通过机械加工方法来制备材料,如铸造、锻造、挤压等。
材料科学与工程基础顾宜第章材料科学与工程基础课程是材料科学与工程专业中非常重要的一门课程,它主要涵盖了材料科学与材料工程的基础知识和理论体系,包括材料的结构、性能、加工、功能、应用等方面的内容。
本文将简要介绍材料科学与工程基础顾宜第一章的内容。
第一节:材料科学与材料工程的概述材料科学与工程领域历史悠久,其研究内容涉及到了多种领域,包括材料的制备、性能、应用等方面。
材料科学是一门涉及诸多学科的学科,包括物理学、化学、工程学、计算机科学、数学等,因此其应用范围非常广泛。
材料工程是一门工程科学,主要研究材料在设计、制造、加工和应用过程中的特定问题。
它是材料科学的一个分支学科。
材料工程主要包括三个方面的工作,分别是材料的设计、制造和应用。
材料科学与工程是相互依存、相互促进的关系,材料科学提供了关于材料物理学、化学和机械学等方面的基础知识,而材料工程应用这些知识来制造新材料、设计新产品和开发新工艺。
第二节:材料的种类与分类材料可以根据多种分类标准进行分类,包括组成成分、性质、结构、形态等多种方式。
其中,按照组成成分分类是常用的一种方式。
金属材料金属材料是其中最重要和应用最广泛的一种材料。
金属材料具有热导和电导良好、强度高、延展性好等优良的物理性能,因此用途广泛,包括航空航天、汽车工业、医疗器械、电子设备、建筑材料等领域。
非金属材料非金属材料也是重要的一类材料。
它们可以被分为有机和无机两类。
常见的有机非金属材料包括塑料、橡胶和纤维类;无机非金属材料包括玻璃、陶瓷、水泥等。
非金属材料具有良好的化学稳定性、绝缘性、耐腐蚀性、光学性能等优异性能,因此它们在电子、能源、化工、建筑等领域都有着广泛的应用。
复合材料复合材料是由两种或多种不同材料组合而成的一种材料。
它们的性能比单一材料更高,因此应用领域广泛,包括医学、交通、航空航天等行业。
目前,复合材料的研发成为了全球材料科学研究热点之一。
第三节:材料的结构与性能材料的性能是指材料在特定条件下所表现出的物理、化学和机械性质。
材料科学基础第一章第一章:基本概念和定义材料科学是研究材料性质、结构和制备方法的学科,它是现代科学和工程技术的基础之一、材料科学的发展与人类社会的进步息息相关,它为现代化生产和科技创新提供了重要的支撑。
材料是构成物质的基本单元,是由原子、离子或分子组成的。
材料可分为金属材料、非金属材料和新型材料三大类。
其中,金属材料具有良好的导电性和热传导性,主要用于制造工程结构和电子器件;非金属材料具有绝缘性和高温耐受性,主要用于绝缘和耐火材料;新型材料则是指在人工合成的基础上通过改变晶格结构、添加元素等手段制造出来的材料。
材料科学的研究对象主要包括材料的结构、性能、制备方法和应用等。
材料的结构是指材料的组织形态,包括晶体结构、非晶态结构和微观结构等。
晶体结构是指材料中原子、离子或分子排列成有序的方式,它对材料性能有重要影响。
非晶态结构是指材料中原子、离子或分子排列成无序的方式,具有特殊的物理和化学性质。
微观结构是指材料中原子、离子或分子的尺寸和形态分布等,它也会直接影响材料的性能。
材料的性能是指材料在特定条件下表现出来的特性,包括机械性能、电磁性能、热性能、化学性能和光学性能等。
机械性能是指材料在外力作用下的变形和破坏行为,主要包括强度、硬度和韧性等。
电磁性能是指材料在电场、磁场和光场等作用下的响应能力,主要包括导电性、磁性和光学性质等。
热性能是指材料在热力学条件下的热传导、膨胀和熔化等特性。
化学性能是指材料与其他物质之间的化学反应和变化行为,主要包括腐蚀性、氧化性和还原性等。
光学性能是指材料对光的透射、反射和吸收等特性。
材料的制备方法是指制造材料的过程和方法,主要包括物理方法、化学方法和生物方法等。
物理方法是指通过物理性质的变化来改变材料的结构和性能,如高温熔炼、沉淀和烧结等。
化学方法是指通过化学反应来合成材料,如溶胶-凝胶法、沉淀法和电化学方法等。
生物方法是指利用生物体或生物分子来制备材料,如生物矿化和生物复合材料等。