实验3 方法和数组
- 格式:doc
- 大小:50.50 KB
- 文档页数:3
C语言实验五实验报告——数组一、实验目的:1.了解数组的概念和基本使用方法;2.掌握一维数组和二维数组的定义、初始化、赋值及基本运算实现;二、实验内容与方法1.理论部分数组是一些具有相同类型的数据元素按一定顺序排列组合而成的集合,在程序设计中它是一个变量列表,由若干相同数据类型的元素组成。
通常用一个名字和一个下标来表示,下标可理解为数组元素在数组中的位置编号。
数组的特点:数组是根据顺序排列的元素的集合;所有的元素必须是相同类型。
数组的定义方法:1. 定义数组,数组元素类型 + 数组名[元素的个数];2. 元素的个数必须是整型常量或变量,定义时必须明确、指定元素的个数;3. 声明一个数组时,除了要指定数组的类型外,还要指定数组的名称;4. 数组定义完后,需要对其中的每个元素进行初始化。
可以在定义数组时赋初值,也可以通过赋值符号,对数组元素逐个进行赋值。
数组的初始化:1. 元素个数之间用逗号分开,最后1个元素后无逗号;2. 支持部分元素初始化;3. 定义和初始化可以一步完成。
二维数组数组可分为一维和多维数组。
一维数组可以看作是包含多个元素的向量,而二维数组可以看做是包含了多个一维数组的矩阵。
二维数组有行号和列号,因此,它同样需要两个下标。
数组元素类型数组名[行数][列数];数组元素类型数组名[ ][ ] = { {元素1, 元素2, ……}, {元素1, 元素2, ……}, ……{元素1, 元素2, ……}}2.实验代码**问题1:**定义一个一维数组a,包含有5个元素,分别为1,2,3,4,5;**问题2:**定义一个一维数组a,接收用户从键盘输入的5个数值,分别打印存储的各个元素。
三、实验结果与分析结果分析:定义了一个5个元素的一维数组a,并初始化了各个元素的值,其元素分别为1,2,3,4,5.循环遍历一遍数组a,并打印数组元素。
程序执行正常。
3.针对问题3:定义一个二维数组a,由4行3列组成,每个元素初始化为0,打印存储的各个元素;程序运行结果如下:四、实验总结:该实验主要是通过对C语言数组的理论知识和基本操作进行练习,加深了对数组的了解和掌握。
实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1. 理解并掌握根据转动定律测转动惯量的方法;2. 熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
图一刚体转动惯量实验仪图二承物台俯视图实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1:J1= J –J o (1) 由刚体的转动定律可知:T r – M r= J (2) 其中M r为摩擦力矩。
而 T = m(g -r α) (3) 其中 m —— 砝码质量g —— 重力加速度 α —— 角加速度 T —— 张力1. 测量承物台的转动惯量J o未加试件,未加外力(m =0 , T =0)令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有-M r1 = J o α1(4) 加外力后,令α =α2m(g –r α2)r –M r1 = J o α2(5)(4)(5)式联立得J o =212212mr mgrααααα---(6)测出α1 , α2,由(6)式即可得J o 。
2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。
加试样后,有-M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8)∴ J =234434mr mgrααααα---(9)注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。
c语言实验报告实验C 语言实验报告实验一、实验目的本次 C 语言实验的主要目的是通过实际操作和编程实践,加深对 C 语言基本语法、数据类型、控制结构、数组、指针等重要概念的理解和掌握,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程环境为 Visual Studio 2019,操作系统为Windows 10。
三、实验内容1、基本数据类型和运算符的使用定义不同类型的变量,如整数型(int)、浮点型(float、double)、字符型(char)等,并进行赋值和运算操作。
熟悉各种运算符的优先级和结合性,包括算术运算符(+、、、/、%)、关系运算符(>、<、>=、<=、==、!=)、逻辑运算符(&&、||、!)、位运算符(&、|、^、~、<<、>>)等。
2、控制结构的应用使用ifelse 语句实现条件判断,根据不同的条件执行相应的代码块。
运用 switch 语句进行多分支选择,处理不同的情况。
利用 for 循环、while 循环和 dowhile 循环实现重复执行的操作,例如计算数列的和、打印特定的图案等。
3、数组和字符串的操作定义和使用一维数组、二维数组,进行数组元素的访问、赋值和遍历。
掌握字符串的存储和处理方式,使用字符数组和字符串函数(如strlen、strcpy、strcmp 等)进行字符串的操作。
4、指针的应用理解指针的概念和指针变量的定义,通过指针访问变量和数组元素。
实现指针与数组、指针与函数的结合使用,体会指针在程序中的灵活运用。
5、函数的定义和调用编写自定义函数,实现特定的功能,如计算阶乘、判断素数等。
掌握函数的参数传递方式(值传递和地址传递),理解函数的返回值。
6、结构体和共用体的使用定义结构体类型,创建结构体变量,访问结构体成员。
了解共用体的概念和使用场景,比较结构体和共用体的区别。
四、实验步骤1、实验准备打开 Visual Studio 2019 开发环境,创建一个新的 C 语言项目。
实验报告实验三 高斯消去法与矩阵的三角分解一、实验目的1、掌握列主元素消去法,并且能够用MATLAB 编写相关程序,实现高斯消去法的求解。
2、能够用矩阵理论理解与研究高斯消去法,通过对矩阵的初等变换实现高斯消去法。
3、学会矩阵的三角分解,并且能够用MATLAB 编写相关程序,实现矩阵的三角分解,解方程组。
二、上机内容⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡2822171310871234567112345611123451111234111112311111121111111764321x x x x x x1、用列主元素高斯消去法求解方程组。
2、用列主元消去法求解方程组(实现PA=LU) 要求输出: (1)计算解X;(2)L,U;(3)正整型数组IP(i),(i=1,···,n) (记录主行信息)。
三、实验原理1、列主元素消去法用高斯消去法求解方程组时,为了减小误差,在消去的过程中要避免用绝对值较小的主元素。
因此在高斯消去法的每一步应该在系数矩阵货消去后的低阶矩阵中选取绝对值较大的元素作为主元素,保持|m ik |<=1,以减小计算过程中的舍入误差对计算解的影响。
此方法为完全主元素消去法。
完全主元素消去法在选主元素时花费一定的计算机时间,因此实际计算中常用列主元消去法。
列主元消去法在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。
装订 线第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定t使(2)如果t≠k,则交换[A,b]第t行与第k行元素。
(3)消元计算(4)回代求解计算流程图回代求解 b=b/a (当a nn ≠0)b ←(b -∑a x )/adet=a nn *det输出计算解及行列式及detk=1,2,…,n-1输入n ,A,b,εdet=1按列主元|a i(k),k |=max|a ik |C 0=a i(k),k换行 a ik a i(k)j(j=k,…n ) b k b j(k), 消元计算 (i=k+1,…,n ) a ik=a ik -a kk *m ik a ij=a ij -a kj *m ik (j=k+1,…,n )|C 0|<εi k =kdet=a kk det否否是是k<=n-1输出det(A)=0停机停机2. 矩阵的三角分解法 (1)定理设 n n R A ⨯∈ 。
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
实验三定积分的近似计算一、问题背景与实验目的利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分.本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用.二、相关函数(命令)及简介1.sum(a):求数组a的和.2.format long:长格式,即屏幕显示15位有效数字.(注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值.4.quad():抛物线法求数值积分.格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2);5.trapz():梯形法求数值积分.格式:trapz(x,y)其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun)例:计算0sin()dx xπ⎰x=0:pi/100:pi;y=sin(x);trapz(x,y)6.dblquad():抛物线法求二重数值积分.格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递.例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法.Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi)这时必须存在一个函数文件integrnd.m:function z = integrnd(x, y) z = y*sin(x);7.fprintf (文件地址,格式,写入的变量):把数据写入指定文件.例:x = 0:.1:1; y = [x; exp(x)];fid = fopen('exp.txt','w'); %打开文件 fprintf(fid,'%6.2f %12.8f\n',y); %写入 fclose(fid) %关闭文件 8.syms 变量1 变量2 …:定义变量为符号. 9.sym('表达式'):将表达式定义为符号.解释:Matlab 中的符号运算事实上是借用了Maple 的软件包,所以当在Matlab 中要对符号进行运算时,必须先把要用到的变量定义为符号. 10.int(f,v,a,b):求f 关于v 积分,积分区间由a 到b .11.subs(f ,'x',a):将 a 的值赋给符号表达式 f 中的 x ,并计算出值.若简单地使用subs(f),则将f 的所有符号变量用可能的数值代入,并计算出值.三、实验内容1. 矩形法根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即1()d ()nbi i ai f x x f x ς==∆∑⎰在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度.针对不同i ς的取法,计算结果会有不同,我们以 120d 1xx +⎰为例(取100=n ),(1) 左点法:对等分区间b x i n ab a x x a x n i =<<-+=<<<=ΛΛ10,在区间],[1i i x x -上取左端点,即取1-=i i x ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78789399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差0.7878939967307840.0031784ππ-=≈(2)右点法:同(1)中划分区间,在区间],[1i i x x -上取右端点,即取i i x =ς,12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78289399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 0.7828939967307840.0031884ππ-=≈(3)中点法:同(1)中划分区间,在区间1[,]i i x x -上取中点,即取12i ii x x ς-+=, 12 01d ()1ni i i xf x x ς==∆≈+∑⎰0.78540024673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7854002467307842.653104ππ--=≈⨯如果在分割的每个小区间上采用一次或二次多项式来近似代替被积函数,那么可以期望得到比矩形法效果好得多的近似计算公式.下面介绍的梯形法和抛物线法就是这一指导思想的产物.2. 梯形法等分区间b x i n a b a x x a x n i =<<-+=<<<=ΛΛ10,nab x -=∆ 相应函数值为n y y y ,,,10Λ(n i x f y i i ,,1,0),(Λ==).曲线)(x f y =上相应的点为n P P P ,,,10Λ(n i y x P i i i ,,1,0),,(Λ==)将曲线的每一段弧i i P P 1-用过点1-i P ,i P 的弦i i P P 1-(线性函数)来代替,这使得每个],[1i i x x -上的曲边梯形成为真正的梯形,其面积为x y y ii ∆⨯+-21,n i ,,2,1Λ=. 于是各个小梯形面积之和就是曲边梯形面积的近似值,11 11()d ()22nnbi i i i ai i y y x f x x x y y --==+∆≈⨯∆=+∑∑⎰, 即11 ()d ()22bn n ay y b a f x x y y n --≈++++⎰L , 称此式为梯形公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,10112 0d ()122n n y y x b a y y x n --≈++++=+⎰L 0.78539399673078, 理论值 12 0d 14x x π=+⎰,此时计算的相对误差 60.7853939967307845.305104ππ--=≈⨯很显然,这个误差要比简单的矩形左点法和右点法的计算误差小得多.3. 抛物线法由梯形法求近似值,当)(x f y =为凹曲线时,它就偏小;当)(x f y =为凸曲线时,它就偏大.若每段改用与它凸性相接近的抛物线来近似时,就可减少上述缺点,这就是抛物线法.将积分区间],[b a 作n 2等分,分点依次为b x i n a b a x x a x n i =<<-+=<<<=2102ΛΛ,nab x 2-=∆, 对应函数值为n y y y 210,,,Λ(n i x f y i i 2,,1,0),(Λ==),曲线上相应点为n P P P 210,,,Λ(n i y x P i i i 2,,1,0),,(Λ==).现把区间],[20x x 上的曲线段)(x f y =用通过三点),(000y x P ,),(111y x P ,),(222y x P 的抛物线)(12x p x x y =++=γβα来近似代替,然后求函数)(1x p 从0x 到2x 的定积分:21 ()d x x p x x =⎰22 ()d x x x x x αβγ++=⎰)()(2)(30220223032x x x x x x -+-+-γβα]4)(2)()()[(62022022202002γβαγβαγβα++++++++++-=x x x x x x x x x x 由于2201x x x +=,代入上式整理后得 21 ()d x x p x x ⎰)](4)()[(612122202002γβαγβαγβα++++++++-=x x x x x x x x )4(621002y y y x x ++-=)4(6210y y y nab ++-= 同样也有422 ()d x x p x x ⎰)4(6432y y y n ab ++-=……222 ()d n n x nx p x x -⎰)4(621222n n n y y y nab ++-=-- 将这n 个积分相加即得原来所要计算的定积分的近似值:22222212 11()d ()d (4)6ii nnbx i i i i ax i i b af x x p x x y y y n---==-≈=++∑∑⎰⎰, 即021******* ()d [4()2()]6bn n n ab af x x y y y y y y y y n---≈++++++++⎰L L 这就是抛物线法公式,也称为辛卜生(Simpson )公式.仍用 12 0d 1x x +⎰的近似计算为例,取100=n ,102132124222 0d [4()2()]16n n n x b ay y y y y y y y x n ---≈+++++++++⎰L L=0.78539816339745,理论值 12 0d 14x x π=+⎰,此时计算的相对误差 160.7853981633974542.827104ππ--=≈⨯4. 直接应用Matlab 命令计算结果(1) 数值计算 120d .1xx +⎰ 方法1:int('1/(1+x^2)','x',0,1) (符号求积分)方法2:quad('1./(1+x.^2)',0,1) (抛物线法求数值积分)方法3:x=0:0.001:1; y=1./(1+x.^2);trapz(x,y) (梯形法求数值积分) (2)数值计算 212 01d d x x y y -+⎰⎰方法1:int(int('x+y^2','y',-1,1),'x',0,2) (符号求积分)方法2:dblquad(inline('x+y^2'),0,2,-1,1) (抛物线法二重数值积分)四、自己动手1. 实现实验内容中的例子,即分别采用矩形法、梯形法、抛物线法计算 120d 1xx +⎰,取258=n ,并比较三种方法的精确程度.2. 分别用梯形法与抛物线法,计算 2 1d xx⎰,取120=n .并尝试直接使用函数trapz()、quad()进行计算求解,比较结果的差异.3. 试计算定积分 0sin d xx x+∞⎰.(注意:可以运用trapz()、quad()或附录程序求解吗?为什么?)4. 将 120d 1xx +⎰的近似计算结果与Matlab 中各命令的计算结果相比较,试猜测Matlab 中的数值积分命令最可能采用了哪一种近似计算方法?并找出其他例子支持你的观点.5. 通过整个实验内容及练习,你能否作出一些理论上的小结,即针对什么类型的函数(具有某种单调特性或凹凸特性),用某种近似计算方法所得结果更接近于实际值?6. 学习fulu2sum.m 的程序设计方法,尝试用函数 sum 改写附录1和附录3的程序,避免for 循环.五、附录附录1:矩形法(左点法、右点法、中点法)(fulu1.m ) format long n=100;a=0;b=1;inum1=0;inum2=0;inum3=0; syms x fx fx=1/(1+x^2); for i=1:nxj=a+(i-1)*(b-a)/n; %左点 xi=a+i*(b-a)/n; %右点 fxj=subs(fx,'x',xj); %左点值fxi=subs(fx,'x',xi); %右点值fxij=subs(fx,'x',(xi+xj)/2); %中点值inum1=inum1+fxj*(b-a)/n;inum2=inum2+fxi*(b-a)/n;inum3=inum3+fxij*(b-a)/n;endinum1inum2inum3integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum1 and real-value is about: %d\n\n',...abs((inum1-integrate)/integrate))fprintf('The relative error between inum2 and real-value is about: %d\n\n',...abs((inum2-integrate)/integrate))fprintf('The relative error between inum3 and real-value is about: %d\n\n',...abs((inum3-integrate)/integrate))附录2:梯形法(fulu2.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n;xi=a+i*(b-a)/n;fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);inum=inum+(fxj+fxi)*(b-a)/(2*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录2sum:梯形法(fulu2sum.m),利用求和函数,避免for 循环format longn=100;a=0;b=1;syms x fxfx=1/(1+x^2);i=1:n;xj=a+(i-1)*(b-a)/n; %所有左点的数组xi=a+i*(b-a)/n; %所有右点的数组fxj=subs(fx,'x',xj); %所有左点值fxi=subs(fx,'x',xi); %所有右点值f=(fxi+fxj)/2*(b-a)/n; %梯形面积inum=sum(f) %加和梯形面积求解integrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))附录3:抛物线法(fulu3.m)format longn=100;a=0;b=1;inum=0;syms x fxfx=1/(1+x^2);for i=1:nxj=a+(i-1)*(b-a)/n; %左点xi=a+i*(b-a)/n; %右点xk=(xi+xj)/2; %中点fxj=subs(fx,'x',xj);fxi=subs(fx,'x',xi);fxk=subs(fx,'x',xk);inum=inum+(fxj+4*fxk+fxi)*(b-a)/(6*n);endinumintegrate=int(fx,0,1)integrate=double(integrate)fprintf('The relative error between inum and real-value is about: %d\n\n',...abs((inum-integrate)/integrate))。
实验一(第1章实验)实验目的:1.掌握运行C语言程序的全过程。
2.熟悉编译环境。
3.初步熟悉C语言程序的语法规定。
4.了解简单函数的使用方法。
实验内容:1.编程且上机运行:求3个整数的和。
2.编程且上机运行:求2个数的和、差、积和商。
3.编程且上机运行:输入3个数,求最大值。
4.编程且上机运行:输入圆的半径,求圆的面积和周长。
5.在屏幕上输出:“hello world!”实验结果:实验二(第3章实验)1.实验目的:理解C语言的类型系统。
实验内容:写程序测试数据-2在类型char,int,unsigned int,long int,unsigned long int 中存储情况。
实验过程:实验结果:参见各种类型的存储实现描述。
2.实验目的:了解混合类型计算中类型的转换规则。
实验内容:写程序测试多种类型数据一起运算时类型的转换及表达式结果的类型。
注意unsigned int和int数据运算时类型转换的方向。
实验过程:/** 类型转换问题* 试问下面两个表达式等价吗?*/#include <stdio.h>#include <stdlib.h>int main() {unsigned int ui,uj;ui = 1;uj = 2;if (ui < uj)printf("\n%u < %u is true !\n", ui, uj);elseprintf("\n%u < %u is false !\n", ui, uj);if (ui - uj < 0)printf("\n%u - %u <0 is true !\n", ui, uj);elseprintf("\n%u - %u <0 is false !\n", ui, uj);system("pause");return 0;}实验结果:参见类型转换规则。
Python程序设计实验3:列表、元组的应⽤实验3:列表、元组的应⽤1. 查找最⼤元素的索引编写函数 indicesOfLargestElement(list),输⼊整数列表list, 返回 list 中最⼤元素所有的索引,索引以列表形式返回。
例⼦:IndexOfLargestElement([2, 1, 3, 1, 3]) # return [2,4](1)具体思路通过max函数获取列表中的最⼤值,并通过循环在列表中查找,如果当前值等于最⼤值,则将下标存⼊列表中。
(2)编程实现# 定义函数def IndexOfLargestElement(list):return[i for i, a in enumerate(list)if a ==max(list)]# 主函数temp =[]print("Please input numbers to end with -1:")# 循环获取输出while True:a =eval(input())if a ==-1:breaktemp.append(a)# 进⾏输出print(IndexOfLargestElement(temp))函数部分通过enumerate()对列表进⾏遍历,并通过max函数获取列表中的最⼤值,并通过循环在列表中查找,如果当前值等于最⼤值,则将下标存⼊列表中。
主函数部分先定义空列表,使⽤while循环读⼊数字并以-1结束,若输⼊值为-1则break出循环,若不为-1则存⼊列表中。
完成列表元素读⼊后调⽤函数并输出。
(3)运⾏并测试①开始运⾏程序,将提⽰输⼊数字并以-1结尾:②完成输⼊后即输出结果:2. 合并两个排序的列表编写函数 merge(list1, list2),将两个排序好的整数列表合并到⼀个新的排序列表中,返回这个新的列表。
使⽤两种⽅法实现 merge 函数:不使⽤ sort() 或 sorted();使⽤ sort() 或 sorted()。
R语⾔实验三实验三数组的运算、求解⽅程(组)和函数极值、数值积分【实验类型】验证性【实验学时】2 学时【实验⽬的】1、掌握向量的四则运算和内积运算、矩阵的⾏列式和逆等相关运算;2、掌握线性和⾮线性⽅程(组)的求解⽅法,函数极值的求解⽅法;3、了解 R 中数值积分的求解⽅法。
【实验内容】1、向量与矩阵的常见运算;2、求解线性和⾮线性⽅程(组);3、求函数的极值,计算函数的积分。
【实验⽅法或步骤】第⼀部分、课件例题:1.向量的运算x<-c(-1,0,2)y<-c(3,8,2)v<-2*x+y+1vx*yx/yy^xexp(x)sqrt(y)x1<-c(100,200); x2<-1:6; x1+x22.x<-1:5y<-2*1:5x%*%ycrossprod(x,y)x%o%ytcrossprod(x,y)outer(x,y)3.矩阵的运算A<-matrix(1:9,nrow=3,byrow=T);AA+1 #A的每个元素都加上1B<-matrix(1:9,nrow=3); BC<-matrix(c(1,2,2,3,3,4,4,6,8),nrow=3); C D<-2*C+A/B; D #对应元素进⾏四则运算x<-1:9A+x #矩阵按列与向量相加E<-A%*%B; E #矩阵的乘法y<-1:3A%*%y #矩阵与向量相乘crossprod(A,B) #A的转置乘以Btcrossprod(A,B) #A乘以B的转置4.矩阵的运算A<-matrix(c(1:8,0),nrow=3);At(A) #转置det(A) #求矩阵⾏列式的值diag(A) #提取对⾓线上的元素A[lower.tri(A)==T]<-0;A #构造A对应的上三⾓矩阵qr.A<-qr(A);qr.A #将矩阵A分解成正交阵Q与上三⾓阵R的乘积,该结果为⼀列表Q<-qr.Q(qr.A);Q;R<-qr.R(qr.A);R #显⽰分解后对应的正交阵Q与上三⾓阵Rdet(Q);det(R);Q%*%R #A=Q*Rqr.X(qr.A) #显⽰分解前的矩阵5.解线性⽅程组A<-matrix(c(1:8,0),nrow=3,byrow=TRUE) b<-c(1,1,1)x<-solve(A,b); x #解线性⽅程组Ax=bB<-solve(A); B #求矩阵A 的逆矩阵BA%*%B #结果为单位阵f<-function(x) x^3-x-1 #建⽴函数uniroot(f,c(1,2)) #输出列表中f.root为近似解处的函数值,iter为迭代次数,estim.prec为精度的估计值uniroot(f,lower=1,upper=2) #与上述结果相同polyroot(c(-1,-1,0,1)) #专门⽤来求多项式的根,其中c(-1,-1,0,1)表⽰对应多项式从零次幂项到⾼次幂项的系数7.求解⾮线性⽅程组(1)⾃编函数: (Newtons.R)Newtons<-function (funs, x, ep=1e-5, it_max=100){index<-0; k<-1while (k<=it_max){ #it_max 表⽰最⼤迭代次数x1 <- x; obj <- funs(x);x <- x - solve(obj$J, obj$f); #Newton 法的迭代公式norm <- sqrt((x-x1) %*% (x-x1))if (norm}; k<-k+1 }obj <- funs(x);list(root=x, it=k, index=index, FunVal= obj$f)} # 输出列表(2)调⽤求解⾮线性⽅程组的⾃编函数funs<-function(x){ f<-c(x[1]^2+x[2]^2-5, (x[1]+1)*x[2]-(3*x[1]+1)) # 定义函数组J<-matrix(c(2*x[1], 2*x[2], x[2]-3, x[1]+1), nrow=2,byrow=T) # 函数组的 Jacobi 矩阵list(f=f, J=J)} # 返回值为列表 : 函数值 f 和 Jacobi 矩阵 Jsource("F:/wenjian_daima/Newtons.R") # 调⽤求解⾮线性⽅程组的⾃编函数Newtons(funs, x=c(0,1))8.⼀元函数极值f<-function(x) x^3-2*x-5 # 定义函数optimize(f,lower=0,upper=2) # 返回值 : 极⼩值点和⽬标函数f<-function(x,a) (x-a)^2 # 定义含有参数的函数optimize(f,interval=c(0,1),a=1/3) # 在函数中输⼊附加参数9.多元函数极值(1)obj <-function (x){ # 定义函数F<-c(10*(x[2]-x[1]^2),1-x[1]) # 视为向量sum (F^2) } # 向量对应分量平⽅后求和nlm(obj,c(-1.2,1))(2)fn<-function(x){ # 定义⽬标函数F<-c(10*(x[2]-x[1]^2), 1-x[1])t(F)%*%F } # 向量的内积gr <- function(x){ # 定义梯度函数F<-c(10*(x[2]-x[1]^2), 1-x[1])J<-matrix(c(-20*x[1],10,-1,0),2,2,byrow=T) #Jacobi 矩阵2*t(J)%*%F } # 梯度optim(c(-1.2,1), fn, gr, method="BFGS")最优点 (par) 、最优函数值 (value)10.梯形求积分公式(1)求积分程序: (trape.R)trape<-function(fun, a, b, tol=1e-6){ # 精度为 10 -6N <- 1; h <- b-a ; T <- h/2 * (fun(a) + fun(b)) # 梯形⾯积 repeat{h <- h/2; x<-a+(2*1:N-1)*h; I <-T/2 + h*sum(fun(x)) if(abs(I-T) < tol) break; N <- 2 * N; T = I }; I}(2)source("F:/wenjian_daima/trape.R") # 调⽤函数f<-function(x) exp(-x^2)trape(f,-1,1)(3)常⽤求积分函数f<-function(x)exp(-x^2) # 定义函数integrate(f,0,1)integrate(f,0,10)integrate(f,0,100)integrate(f,0,10000) # 当积分上限很⼤时,结果出现问题integrate(f,0,Inf) # 积分上限为⽆穷⼤ft<-function(t) exp(-(t/(1-t))^2)/(1-t)^2 # 对上述积分的被积函数 e 2 作变量代换 t=x/(1+x) 后的函数integrate(ft,0,1) # 与上述计算结果相同,且精度较⾼第⼆部分、教材例题:1.随机抽样(1)等可能的不放回的随机抽样:> sample(x, n) 其中x为要抽取的向量, n为样本容量(2)等可能的有放回的随机抽样:> sample(x, n, replace=TRUE)其中选项replace=TRUE表⽰有放回的, 此选项省略或replace=FALSE表⽰抽样是不放回的sample(c("H", "T"), 10, replace=T)sample(1:6, 10, replace=T)(3)不等可能的随机抽样:> sample(x, n, replace=TRUE, prob=y)其中选项prob=y⽤于指定x中元素出现的概率, 向量y与x等长度sample(c("成功", "失败"), 10, replace=T, prob=c(0.9,0.1))sample(c(1,0), 10, replace=T, prob=c(0.9,0.1))2.排列组合与概率的计算1/prod(52:49)1/choose(52,4)3.概率分布qnorm(0.025) #显著性⽔平为5%的正态分布的双侧临界值qnorm(0.975)1 - pchisq(3.84, 1) #计算假设检验的p值2*pt(-2.43, df = 13) #容量为14的双边t检验的p值4.limite.central( )的定义limite.central <- function (r=runif, distpar=c(0,1), m=.5,s=1/sqrt(12),n=c(1,3,10,30), N=1000) {for (i in n) {if (length(distpar)==2){x <- matrix(r(i*N, distpar[1],distpar[2]),nc=i)}else {x <- matrix(r(i*N, distpar), nc=i)}x <- (apply(x, 1, sum) - i*m )/(sqrt(i)*s)hist(x,col="light blue",probability=T,main=paste("n=",i), ylim=c(0,max(.4, density(x)$y))) lines(density(x), col="red", lwd=3)curve(dnorm(x), col="blue", lwd=3, lty=3, add=T)if( N>100 ) {rug(sample(x,100))}else {rug(x)}}}5.直⽅图x=runif(100,min=0,max=1)hist(x)6.⼆项分布B(10,0.1)op <- par(mfrow=c(2,2))limite.central(rbinom,distpar=c(10,0.1),m=1,s=0.9)par(op)7.泊松分布: pios(1)op <- par(mfrow=c(2,2))limite.central(rpois, distpar=1, m=1, s=1, n=c(3, 10, 30 ,50)) par(op)8.均匀分布:unif(0,1)op <- par(mfrow=c(2,2))limite.central( )par(op)9.指数分布:exp(1)op <- par(mfrow=c(2,2))limite.central(rexp, distpar=1, m=1, s=1)par(op)10.混合正态分布的渐近正态性mixn <- function (n, a=-1, b=1){rnorm(n, sample(c(a,b),n,replace=T))}limite.central(r=mixn, distpar=c(-3,3),m=0, s=sqrt(10), n=c(1,2,3,10)) par(op)11.混合正态分布的渐近正态性op <- par(mfrow=c(2,2))mixn <- function (n, a=-1, b=1){rnorm(n, sample(c(a,b),n,replace=T))}limite.central(r=mixn, distpar=c(-3,3),m=0,s=sqrt(10),n=c(1,2,3,10)) par(op)第三部分、课后习题:3.1a=sample(1:100,5)asum(a)3.2(1)抽到10、J、Q、K、A的事件记为A,概率为P(A)=其中在R中计算得:> 1/choose(52,20)[1] 7.936846e-15(2)抽到的是同花顺P(B)=在R中计算得:> (choose(4,1)*choose(9,1))/choose(52,5) [1] 1.385e-05 3.3#(1)x<-rnorm(1000,mean=100,sd=100)hist(x)#(2)y<-sample(x,500)hist(y)#(3)mean(x)mean(y)var(x)var(y)3.4x<-rnorm(1000,mean=0,sd=1) y=cumsum(x)plot(y,type = "l")plot(y,type = "p")3.5x<-rnorm(100,mean=0,sd=1) qnorm(.025)qnorm(.975)t.test(x)由R结果知:理论值为[-1.96,1.96],实际值为:[-0.07929,0.33001]3.6op <- par(mfrow=c(2,2))limite.central(rbeta, distpar=c(0.5 ,0.5),n=c(30,200,500,1000))par(op)3.7N=seq(-4,4,length=1000)f<-function(x){dnorm(x)/sum(dnorm(x))}n=f(N)result=sample(n,replace=T,size = 1000)standdata=rnorm(1000)op<-par(mfrow=c(1,2)) #1⾏2列数组按列(mfcol)或⾏(mfrow)各⾃绘图hist(result,probability = T) lines(density(result),col="red",lwd=3)hist(standdata,probability = T)lines(density(standdata),col="red",lwd=3) par(op)。
第1篇一、实验目的1. 理解和掌握基本数据类型的概念及特点。
2. 掌握不同数据类型的存储方式和表示方法。
3. 能够根据实际需求选择合适的数据类型。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.8.53. 开发工具:PyCharm三、实验内容1. 基本数据类型实验2. 复杂数据类型实验3. 数据类型转换实验四、实验步骤及结果1. 基本数据类型实验(1)实验目的:了解基本数据类型的概念及特点。
(2)实验步骤:① 定义变量并赋值:a = 10,b = 'hello',c = 3.14② 输出变量的类型:print(type(a)),print(type(b)),print(type(c))(3)实验结果:变量a的类型为int,变量b的类型为str,变量c的类型为float。
2. 复杂数据类型实验(1)实验目的:了解复杂数据类型的概念及特点。
(2)实验步骤:① 定义列表:list1 = [1, 2, 3, 'a', 'b', 'c']② 定义元组:tuple1 = (1, 2, 3, 'a', 'b', 'c')③ 定义字典:dict1 = {'name': 'Tom', 'age': 18, 'gender': 'male'}④ 定义集合:set1 = {1, 2, 3, 'a', 'b', 'c'}(3)实验结果:列表list1的类型为list,元组tuple1的类型为tuple,字典dict1的类型为dict,集合set1的类型为set。
3. 数据类型转换实验(1)实验目的:掌握不同数据类型之间的转换方法。
(2)实验步骤:① 将字符串转换为整数:str1 = '123',int1 = int(str1)②将整数转换为浮点数:int2 = 10,float1 = float(int2)③ 将浮点数转换为字符串:float2 = 3.14,str2 = str(float2)(3)实验结果:字符串str1转换为整数int1的结果为123,整数int2转换为浮点数float1的结果为10.0,浮点数float2转换为字符串str2的结果为'3.14'。
【实验目的】(1)掌握数组的声明创建;(2)掌握数组的初始化;(3)掌握数组常用的操作;【实践1内容】打印数组元素该程序应提示用户输入几个整数,将它们存储到数组中,然后以向前和向后的顺序打印出这些整数。
完成程序,使其正常运行。
使用数组使程序足够灵活,无论用户想要多少个整数,它都可以工作。
运行示例如下:你要输入多少个数据? 4 请输入一个整数: 12 请输入一个整数: 8请输入一个整数: -2 请输入一个整数: 39正向顺序: 12 8 -2 39 逆向顺序: 39 -2 8 12数组和串实验总结第2篇行优先存储:掌握自己推导三角矩阵对角矩阵三对角矩阵(带状矩阵)的压缩存储|i-j|>1时,有ai,j = 0(1<=i,j<=n)行优先对于一个n*n的矩阵,最多只有n个非0元素,只需存储n个对角元素信息即可。
直接采用一维数组d[i]存储M(i,i)的值稀疏矩阵三元组 <行,列,值>定义一个新的结构体十字链表定义一个新的结构体杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。
求二项式展开式系数的问题,实际上是一种组合数的计算问题。
用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。
中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉三角示例如下:通过二维数组实现杨辉三角形前N行的求值并打印输出。
matlab 实验三 matlab程序设计与优化Matlab是一种高级的计算机编程语言,广泛应用于科学、工程、金融和其他领域。
在Matlab实验三中,我们将学习Matlab程序设计与优化。
本文将介绍Matlab实验三的内容和要求,并提供一些有用的技巧和建议,帮助读者更好地完成实验。
实验三的主要内容包括:1. Matlab程序设计基础2. Matlab程序优化技巧3. Matlab代码调试方法4. Matlab性能分析工具5. 实例分析与练习题下面我们将逐个介绍这些内容。
1. Matlab程序设计基础在本节中,我们将学习如何使用Matlab编写简单的程序。
以下是一些重要的概念和技巧:1)变量和数据类型:在Matlab中,变量可以存储不同类型的数据,如数字、字符串、逻辑值等。
常见的数据类型包括double、char、logical等。
2)运算符:Matlab支持各种数学运算符,包括加减乘除、幂运算等。
此外,还有逻辑运算符(如and、or)和比较运算符(如==、~=)。
3)控制结构:控制结构可以控制程序执行流程。
常见的控制结构包括if语句、for循环和while循环。
4)函数:函数是一种可重复使用的代码块,可以接受输入参数并返回输出结果。
Matlab中有很多内置函数,也可以编写自己的函数。
2. Matlab程序优化技巧在本节中,我们将学习如何优化Matlab程序以提高其性能。
以下是一些重要的技巧:1)向量化:向量化是一种将循环操作转换为矩阵操作的技术。
这样可以减少程序执行时间,并且使代码更简洁。
2)预分配数组:在编写Matlab程序时,应尽可能避免动态数组分配。
相反,应该预先分配所需大小的数组。
3)使用内置函数:Matlab中有许多内置函数,它们通常比用户自定义函数更快。
因此,在编写程序时应尽可能使用内置函数。
4)避免不必要的计算:在编写程序时,应尽可能避免不必要的计算。
例如,在循环中进行重复计算或计算已知结果等。
班级:姓名:学号:成绩
泛型、枚举和内部类
实验目的:
1.理解泛型的作用,掌握泛型类的声明及实例化的方法
2.掌握枚举类的定义和使用
3.掌握内部类的定义和使用方法
4.掌握匿名类的使用方法
实验要求和过程
1.修改书上程序7-4,要求利用具有泛型机制的Comparable<T>实现。
2.模仿程序8-5,利用匿名内部类实现对Account数组进行按照属性id的
大小进行排序。
3.在java.util包中有一接口Comparator<T>,提供了比较器的功能。
请根据
此接口定义的比较方法,针对类Account中的余额字段,完成比较器类
的定义(声明成普通外部类)。
修改书上程序7-4,验证你的设计是否正
确。
(比较一下题目1和题目3异同)
评语:
教师签字:日期:年月日。
实验三数组编程(设计性实验)一、实验目的1.进一步理解和掌握Java语言中数组的概念;2.掌握数组在方法中的使用,包括把数组传递给方法和从方法中返回数组,并能使用数组进行程序设计。
二、实验教学要求1.性质:必做实验实验类型:设计性2.时间要求:在讲完“数组”之后安排,需要6学时。
2.对学生的要求:编写好程序。
3.对教师的要求:预做本实验。
4.对实验室的要求:在windows环境中装有Java开发工具(如J2SE5.0版),以及IE6.0以上版本。
二、实验原理创建Java数组需要下面三个步骤:①声明数组声明数组的语法格式有如下两种:数组元素类型数组名[ ];数组元素类型[ ] 数组名;如int a[ ];int[ ] a;②创建数组空间声明数组仅仅指定了数组的名字和数组元素的类型,要想真正使用数组还需要为它分配内存空间,即创建数组空间。
在创建数组空间时,必须指明数组的长度,以确定空间的精确大小。
语法格式为:数组名=new 数组元素类型[数组元素的个数];如:int a[ ];a=new int[10];以上两步可组合在一起,用一条语句完成:int a[ ]=new int[10];用new运算符为数组分配内存空间的同时,数组的每个元素都会被自动赋予一个默认值。
整型为0,浮点型为0.0,字符型为'\0',布尔型为false,引用型为null。
③初始化数组元素如果是基本数据类型,那么这个步骤可以自行省略。
也可以在创建数组空间的时候,同时将初始值给出。
如:int a[ ]={1,2,3,4}; //int[] a=new int[]{1,2,3,4}在Java语言中,一个数组就是一个对象。
每个数组都有一个属性length,用来指明数组的长度。
数组元素的类型可以是基本数据类型,也可以是类类型,因此可以使用数组来包含一系列的对象。
student ——类名student s[ ]=new student[50];创建元素需使用如下形式的代码段:for(int i=0;i<s.length;++i){s[i]=new student( );}三、实验实例1.数据排序。
《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
概率统计实验指导书理学院实验中心数学专业实验室编写2009.12实验二 统计分析1 引1. 问题:湖中有鱼,其数不知。
现在请你想一个办法,能将湖中的鱼数大致估计出来。
2. 分析:有两种方法。
[方法一] 设湖中有N 条鱼。
先捕出r 条鱼,做上记号后放回湖中(设记号不会消失)。
让湖中的鱼充分混合后,再从湖中捕出s 条鱼,设其中有T 条鱼标有记号,则T 是随机变量,且服从超几何分布{}(0)t s tr N rsNC C P T t t r C --==≤≤。
应用极大似然估计思想,寻找N,使{}P T t =达到最大,得sr N t ⎡⎤=⎢⎥⎣⎦。
于是取sr N t ⎡⎤=⎢⎥⎣⎦作为湖中鱼数的一种估计,其中[]x 表示不超过x 的最大整数。
[方法二] 用矩估计法.因为T 服从超几何分布,其数学期望是()srE T N=,此即捕s 条鱼得到有标记的鱼的总体平均数。
而现在只捕一次,出现t 条有标记的鱼。
由矩估计法,令总体一阶原点矩等于样本一阶原点矩,即srt N =,也得sr N t ⎡⎤=⎢⎥⎣⎦。
3. 问题的解决:由上面的分析,要想估计出湖中的鱼数,首先需要取到样本数据,然后利用样本数据,采用统计中的点估计法对总体进行估计,其属于统计分析中的一部分。
本节重点进行与统计分析相关的实验。
2 实验目的1、利用常用的统计量描述样本数据的集中和分散程度,并对总体特征进行归纳和分析。
2. 学习用MATLAB 对总体均值、方差进行估计。
3. 学习用MATLAB 处理假设检验的相关问题。
4. 解决“引”中的实际问题。
3 实验内容1.使用MATLAB 对样本数据进行处理MATLAB 提供了若干对数据进行统计分析的命令,这些命令作用到一个矩阵上会对各列分别作用,得到一个行向量,现将这些命令列举如下:max 最大分量; mean 平均值; std 标准差; sum 分量和; product 分量积; cumsum 元素累和; min 最小分量; median 中位数; sort 按不增次序排序; hist 直方图; diff 差分函数; cumprod 元素累计积此外,命令corrcoef计算相关系数矩阵,格式为R=corrcoef(X),X为输入矩阵,它的行元素为观测值,列元素为变量,返回相关系数矩阵R,矩阵R的元素为R(i,j);命令cov计算协方差矩阵,格式为C=cov(X),X若为单个向量,cov(X)返回包含方差的标量;X若为矩阵,X的每一列表示一个变量而行元素为观测值。
《程序设计基础》课程标准课程编号:030501ZB适用专业:计算机、电子、电气课程类型:专业基础课课程性质:必修课课程学时:60 课程学分:4一、课程定位本课程是计算机、嵌入式、电子以及电气专业的一门专业基础课程,也是其它相关专业研究计算机控制以及嵌入式、物联网技术等的一门基础和工具课程。
本课程的主要任务是使学生掌握模块化、结构化编程的基本思想,学会使用C语言编制简单的应用程序,解决一般性应用问题,并有一定的上机操作及调试程序能力。
本课程的先导课程为计算机信息基础,后续课程为android、软件工程、单片机、嵌入式开发技术。
通过掌握C语言的各种语法、数组、函数、位运算等知识,为后续课程奠定语言基础。
二、课程目标1. 能力目标(1)能用C语言进行结构化的程序设计;(2)能用C语言解决一维数据的存储;(3)能用C语言解决库函数及自定义函数的调用;(4)能用C语言解决二进制数据的位运算。
2. 知识目标(1)理解模块化、结构化程序设计思想;(2)掌握C语言的数据类型、语句格式、程序设计结构等基本内容;(3)掌握C语言的数组、函数、位运算等基本内容;(4)熟悉C语言的环境和常规调试方法。
3.素质目标(1)初步具备复用性设计、模块化思维能力;(2)具有热爱科学,团队意识、创新意识和创新精神;(3)具有规范化的代码编写和文档书写习惯;(4)加强职业道德意识;三、课程内容与学时分配四、教学设计1.整体教学设计以结构化程序设计为框架,首先,以顺序结构、选择结构、循环结构为核心,突出程序设计的基本理念及技能,其次,采用项目牵引的方法,让学生理解和学习数组、函数和位运算等知识,最终的目的是使学生能应用C语言程序解决实际问题。
教学过程中,通过分组讨论、知识问答、单元测试等教学活动,课外,通过第二课堂、兴趣小组、技能培训等多种途径,并且充分开发学习资源,包括PPT、动画、在线课程等,给学生提供丰富的学习机会。
教学方法主要采用知识讲授法、引导启发法、案例教学等方法,每章配有实验课,让学生消化吸收理论知识,进一步提高编程水平。