概率统计作业4-2
- 格式:doc
- 大小:161.50 KB
- 文档页数:3
第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率统计作业题《概率统计》习题(⼀)⼀、填空题1.设 A 、B 、C 是三个随机事件。
试⽤ A 、B 、C 分别表⽰事件 1)A 、B 、C ⾄少有⼀个发⽣ 2)A 、B 、C 中恰有⼀个发⽣3)A 、B 、C 不多于⼀个发⽣2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A = 3.若事件A 和事件B 相互独⽴, P()=,AαP(B)=0.3,P(A B)=0.7, 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成⼀⾏,那末恰好排成英⽂单词SCIENCE 的概率为5. 甲、⼄两⼈独⽴的对同⼀⽬标射击⼀次,其命中率分别为0.6和0.5,现已知⽬标被命中,则它是甲射中的概率为⼆、选择题1. 设A,B 为两随机事件,且B A ?,则下列式⼦正确的是(A )P (A+B) = P (A); (B )()P(A);P AB = (C )(|A)P(B);P B =(D )(A)P B -=()P(A)P B -2. 以A 表⽰事件“甲种产品畅销,⼄种产品滞销”,则其对⽴事件A 为(A )“甲种产品滞销,⼄种产品畅销”;(B )“甲、⼄两种产品均畅销” (C )“甲种产品滞销”;(D )“甲种产品滞销或⼄种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个⽩的,现在两个⼈不放回地依次从袋中随机各取⼀球。
则第⼆⼈取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都⼤于零,则A ,B 也相互独⽴。
(D )若A ,B 相互独⽴,那么A 与B 也相互独⽴。
5.若()1P B A =,那么下列命题中正确的是(A )A B ? (B )B A ? (C )A B -=? (D )()0P A B -=三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
第四章测评(二)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+b e xD.y=a+b ln x2.(2021安徽淮南田家庵校级月考)在建立两个变量y与x的回归模型中,分别选择了4个不同的模型,模型1的相关系数r为0.88,模型2的相关系数r为0.945,模型3的相关系数r为0.66,模型4的相关系数r为0.01,其中拟合效果最好的模型是()A.模型1B.模型2C.模型3D.模型43.设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态曲线如图所示,下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≥t)≥P(Y≥t)D.对任意正数t,P(X≤t)≥P(Y≤t)4.(2021安徽宣城郎溪校级月考)甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( ) A.0.49B.0.42C.0.7D.0.915.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (单位: 万公顷)关于年数x (单位:年)的函数关系较为接近的是( ) A.y=0.2x B.y=0.1x 2+0.1x C.y=0.2+log 4xD.y=2x106.(2021江西抚州南城校级期中)设离散型随机变量X 的分布列为若随机变量Y=X-2,则P (Y=2)等于( ) A.0.3B.0.4C.0.6D.0.77.(2021北京西城校级期中)在一段时间内,甲去博物馆的概率为0.8,乙去博物馆的概率为0.7,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去博物馆的概率是( ) A.0.56B.0.24C.0.94D.0.848.(2021陕西榆林一模)设0<a<12,0<b<12,随机变量ξ的分布列为当a 在0,12内增大时,( ) A.E (ξ)增大,D (ξ)增大 B.E (ξ)增大,D (ξ)减小 C.E (ξ)减小,D (ξ)增大 D.E (ξ)减小,D (ξ)减小二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对某中学的高中女生体重y(单位:kg)与身高x(单位:cm)进行线性回归分析,根据样本数据(x i,y i)(i=1,2,3,…,12),计算得到相关系数r=0.996 2,用最小二乘法近似得到回归直线方程为y^=0.85x-85.71,则以下结论正确的是()A.y与x正相关B.x与y具有较强的线性相关关系,得到的回归直线方程有价值C.若该中学某高中女生身高增加1 cm,则其体重约增加0.85 kgD.若该中学某高中女生身高为160 cm,则可断定其体重为50.29 kg10.(2021福建福州一模)“一粥一饭,当思来之不易”,道理虽简单,但每年我国还是有2 000多亿元的餐桌浪费,被倒掉的食物相当于2亿多人一年的口粮.为营造“节约光荣,浪费可耻”的氛围,某市发起了“光盘行动”.某机构为调研民众对“光盘行动”的认可情况,在某大型餐厅中随机调查了90位来店就餐的客人,制成如下列联表,通过计算得到χ2的值为9.已知P(χ2≥6.635)=0.010,P(χ2≥10.828)=0.001,则下列判断正确的是()A.在该餐厅用餐的客人中大约有66.7%的客人认可“光盘行动”B.在该餐厅用餐的客人中大约有99%的客人认可“光盘行动”C.有99%的把握认为“光盘行动”的认可情况与年龄有关D.在犯错误的概率不超过0.1%的前提下,认为“光盘行动”的认可情况与年龄有关11.(2021新高考Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则下列说法错误的是( ) A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立12.小张从家到公司开车有两条线路,所需时间(单位:分钟)随交通堵塞状况有所变化,其概率分布如表所示,则下列说法正确的是( )A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件B.从所需的平均时间看,线路一比线路二更节省时间C.如果要求在45分钟以内从家赶到公司,小张应该走线路一D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04 三、填空题:本题共4小题,每小题5分,共20分.13.(2021四川成都武侯校级模拟)已知某产品的销售额y (单位:万元)与广告费用x (单位:万元)之间的关系如表所示,若销售额与广告费用之间的回归直线方程为y ^=6.5x+a ^,预计当广告费用为6万元时的销售额约为 万元.14.一个袋子内装有除颜色不同外其余完全相同的3个白球和2个黑球,从中不放回地任取两次,每次取一球,在第一次取到的是白球的条件下,第二次也取到白球的概率是 .15.(2021福建福州期中)已知随机变量ξ服从二项分布,即ξ~B6,12,则E (2ξ+3)= ,D (2ξ+3)= .16.(2021浙江杭州期中)已知随机变量ξ的分布列如表所示,若P (ξ≤x )=34,则实数x 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021山东模拟)短视频已成为很多人生活中娱乐不可或缺的一部分,很多人喜欢将自己身边的事情拍成短视频发布到网上,某人统计了发布短视频后1~8天的点击量(单位:万次)的数据并进行了初步处理,得到下面的散点图及一些统计量的值.其中t i =x i 2.某位同学分别用两种模型:①y ^=b ^x 2+a ^,②y ^=d ^x+c ^进行拟合. (1)根据散点图,比较模型①,②的拟合效果,应该选择哪个模型?(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程;(在计算回归系数时精确到0.01) (3)预测该短视频发布后第10天的点击量是多少.附:b ^=∑i=1n(x i -x)(y i -y)∑i=1n (x i -x)2,a ^=y −b ^x .18.(12分)(2021陕西模拟)为了调查某校学生对学校食堂的某种食品的喜爱是否与性别有关,随机对该校100名性别不同的学生进行了调查,得到如下列联表.(1)请将上述列联表补充完整;(2)判断是否有99.9%的把握认为是否喜爱某种食品与性别有关?(3)用分层抽样的方法在喜爱某种食品的学生中抽6人,现从这6名学生中随机抽取2人,求恰好有1名男生喜爱某种食品的概率.附:χ2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.19.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值为代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8≤Z≤212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间[187.8,212.2]的产品件数,利用①的结果,求E(X).附:√150≈12.2.若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.683,P(μ-2σ≤Z≤μ+2σ)≈0.954.20.(12分)(2021四川自贡模拟)在一次产品质量抽查中,发现某箱5件产品中有2件次品.(1)从该箱产品中随机抽取1件产品,求抽到次品的概率;(2)从该箱产品中依次不放回随机抽取2件产品,求抽出的2件产品中有次品的概率P;(3)若重复进行(2)的试验10次,则出现次品次数的期望是10P,请问上述结论是否正确?请简要说明理由.21.(12分)(2021新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.22.(12分)小明在某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前54单没有奖励,超过54单的部分每单奖励20元.(1)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式.(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的频率分布直方图,其中当某天的派送量指标在m-15,m 5(m=1,2,3,4,5)时,日平均派送量为50+2m单,若将频率视为概率,回答下列问题:①估计这100天中的派送量指标的平均数(同一组中的数据用该组区间的中点值为代表);②根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出甲、乙两种方案的日薪X的分布列及数学期望.请利用数学期望帮助小明分析他选择哪种薪酬方案比较合适?并说明你的理由.参考答案第四章测评(二)1.D 结合题中散点图,由图象的大致走向判断,此函数应该是对数函数模型,故应该选用的函数模型为y=a+b ln x.2.B 在4个不同的回归模型中,模型2的相关系数r=0.945最大,所以拟合效果最好.故选B.3.D 由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错误;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错误;对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错误;对任意正数t ,P (X ≤t )≥P (Y ≤t ),故D 正确.故选D.4.B 甲、乙两人各进行1次射击,两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是C 21×0.7×0.3=0.42. 故选B.5.D 将(1,0.2),(2,0.39),(3,0.78)代入y=0.2x ,当x=3时,y=0.6,和0.78相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=0.1x 2+0.1x ,当x=2时,y=0.6,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=0.2+log 4x ,当x=2时,y=0.7,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入y=2x 10,当x=1时,y=0.2,当x=2时,y=0.4,与0.39相差0.01,当x=3时,y=0.8,和0.78相差0.02.综合以上分析,选用函数关系y=2x 10较为接近. 故选D.6.A 由离散型随机变量X 的分布列得0.2+0.1+0.1+0.3+m=1,解得m=0.3,因为随机变量Y=X-2,所以P (Y=2)=P (X=4)=0.3.故选A.7.C 根据题意,设甲去博物馆为事件A ,乙去博物馆为事件B ,则P (A )=0.8,P (B )=0.7,则P (A )=0.2,P (B )=0.3,两人都不去博物馆的概率P (AB )=0.2×0.3=0.06,则甲乙两人至少有一个去博物馆的概率P=1-P (AB )=0.94.故选C.8.D 由题意可得E (ξ)=-12+b=-a ,D (ξ)=(-1+a )2×12+(0+a )2×a+(1+a )2×b=-a+122+54.当a 在0,12内增大时,E (ξ)减小,D (ξ)减小.故选D.9.ABC 由于回归直线方程中x 的系数为0.85>0,因此y 与x 正相关,故A 正确;根据相关系数r=0.9962接近1,故B 正确;由回归直线方程中系数的意义可得身高x 每增加1cm,其体重约增加0.85kg,故C 正确;当某女生的身高为160cm 时,其体重估计值是50.29kg,而不是确定值,故D 错误.故选ABC. 10.AC 因为χ2的值为9,且P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,因为9>6.635,但9<10.828,所以有99%的把握认为“光盘行动”的认可情况与年龄有关,或者说,在犯错误的概率不超过1%的前提下,认为“光盘行动”的认可情况与年龄有关,所以选项C 正确,选项D 错误;由表可知认可“光盘行动”的人数为60人,所以在该餐厅用餐的客人中认可“光盘行动”的比例约为6090×100%≈66.7%,故选项A 正确,选项B 错误.故选AC.11.ACD 由已知得P (甲)=16,P (乙)=16, P (丙)=56×6=536,P (丁)=66×6=16,P (甲丙)=0≠P (甲)P (丙),P (甲丁)=16×6=136,P (乙丙)=16×6=136≠P (乙)P (丙),P (丙丁)=0≠P (丙)P (丁).由于P (甲丁)=P (甲)·P (丁)=136,根据相互独立事件的性质,知事件甲与丁相互独立,故B 正确,A,C,D 错误.12.BD “所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事件,A 错误; 线路一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39分钟,线路二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40分钟,所以线路一比线路二更节省时间,B 正确;线路一所需时间小于45分钟的概率为0.7,线路二所需时间小于45分钟的概率为0.8,小张应该选线路二,故C 错误;所需时间之和大于100分钟,则线路一、线路二的时间可以为(50,60),(60,50)和(60,60)三种情况, 概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,故D 正确.故选BD.13.48 ∵x =15×(0+1+2+3+4)=2,y =15×(10+15+20+30+35)=22, ∴a ^=22-6.5×2=9,则y ^=6.5x+9,取x=6,得y ^=6.5×6+9=48.14.12 记事件A :第一次取得白球, 事件B :第二次取得白球.则P (B|A )=P(AB)P(A)=3×25×435=12.15.9 6 ∵随机变量ξ~B 6,12,∴E (ξ)=6×12=3,D (ξ)=6×12×12=32.则E (2ξ+3)=2E (ξ)+3=9,D (2ξ+3)=22D (ξ)=6.16.[2,3) 由随机变量ξ的分布列,结合P (ξ≤x )=34,得P (ξ≤x )=P (ξ=-2)+P (ξ=0)+P (ξ=2)=14+14+14=34,故实数x 的取值范围是[2,3). 17.解(1)由散点图可知,模型①效果更好.(2)∵t i =x i 2,∴y ^=b ^t+a ^,∵b ^=∑i=18(t i -t)(y i -y)∑i=18(t i-t)2=686.83570≈0.19,∴a ^=y −b ^t =5-0.19×25.5≈0.16,∴y ^=0.19x 2+0.16.(3)由(2)可知,令x=10,则y ^=0.19×100+0.16=19.16.预测该短视频发布后第10天的点击量是19.16万次.18.解(1)完成列联表如下:(2)由(1)得χ2=100×(20×10-30×40)250×50×60×40=503≈16.667>10.828,所以有99.9%的把握认为是否喜爱某种食品与性别有关.(3)用分层抽样的方法在喜爱某种食品的学生中抽6人,则其中男生有20×660=2(人),女生有4人.则从这6名学生中随机抽取2人有C 62=15(种)结果,其中恰好有1名男生喜爱某种食品有C 21C 41=8(种)结果,故所求的概率P=815.19.解(1)这500件产品质量指标值的样本平均数x 和样本方差s 2分别为 x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N (200,150),因为σ=√150≈12.2,从而P (187.8≤Z ≤212.2)=P (200-12.2≤Z ≤200+12.2)≈0.683.②由①知,一件产品的质量指标值位于区间[187.8,212.2]的概率约为0.683,依题意知X~B (100,0.683),所以E (X )=100×0.683=68.3.20.解(1)从该箱产品中随机抽取1件产品,抽到次品的概率为25.(2)从该箱产品中依次不放回随机抽取2件产品,抽出的2件产品中有次品的概率P=1-35×24=710.(3)正确.若重复进行(2)的试验10次,则出现次品的次数X~B 10,710,所以出现次品的次数E (X )=10×710=7=10P.21.解(1)X=0,20,100. P (X=0)=1-0.8=0.2=15,P (X=20)=0.8×(1-0.6)=45×25=825,P (X=100)=0.8×0.6=45×35=1225.所以X 的分布列为(2)若小明先回答A 类问题,期望为E (X ).则E (X )=0×15+20×825+100×1225=2725.若小明先回答B类问题,Y为小明的累计得分, Y=0,80,100,P(Y=0)=1-0.6=0.4=25,P(Y=80)=0.6×(1-0.8)=35×15=325,P(Y=100)=0.6×0.8=35×45=1225.E(Y)=0×25+80×325+100×1225=2885.因为E(X)<E(Y),所以小明应选择先回答B类问题.22.解(1)甲方案中派送员日薪y与送单数n的函数关系式为y=100+n,n∈N,乙方案中派送员日薪y与送单数n的函数关系式为y={140,n≤54,n∈N,20n-940,n≥55,n∈N.(2)①(0.1×1+0.3×1.5+0.5×1+0.7×1+0.9×0.5)×0.2=0.44.②X甲的分布列为所以E(X甲)=152×0.2+154×0.3+156×0.2+158×0.2+160×0.1=155.4. X乙的分布列为所以E(X乙)=140×0.5+180×0.2+220×0.2+260×0.1=176.由以上的计算结果可以看出,E(X甲)<E(X乙),即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.。
《应用概率统计》综合作业四一、填空题(每小题2分,共28分)1.一元线性回归方程,bx a y+=ˆ中x 是 自 变量,y 是 因 变量. 2.回归系数b ˆ==xy xxxyl l l 则, ;=xx l.3.方程x b a y ˆˆ~+=,y 称为 估计值 ,y ~称为 一元线性回归方程 .4.相关系数是表示 随机变量Y 与自变量X 之间相关程度的一个数字特征 .5.相关系数r =;与回归系数bˆ的关系 .6.回归平方和U =或______________,反映了回归值),...,2,1(~n i y i = _的分散程度_____________. 7.剩余平方和Q = 或 ;反映了观测值),...,2,1(~n i y i =的 偏离经验回归直线的程度 . 8.设0ˆˆ~x b a y +=,0y 的1-α置信区间为()(~00x y δ-,)(~00x y δ+)则 0(x δ)=_____ ,其中s =.9.根据因素A 的k 个不同水平,...,21A A k A ,的k 组观测数据来检验因素A 对总体的影响是否显著,检验假设K H μμμ=== 210:,如果αF F >时,则在水平α下__拒绝假设Ho____________,认为___因素A 对总体有显著影响___________________;如果αF F <时,则在水平α下___接受Ho____________,认为_____因素A 对总体的影响不显著________________. 10.如果因素A 的k 个不同水平对总体的影响不大,F =E A S S;反之 .11.正交表是一系列规格化的表格,每一个表都有一个记号,如)2(78L ,其中L 表示__正交表______,8是正交表的____行_________,表示____有8横行______________;7是正交表的______列______,表示___有3纵列__________________;2是___数字种类_____________,表示此表可以安排__2种数字_________________.12.正交表中,每列中数字出现的次数____相等________;如)2(39L 表每列中数字___2_____均出现_____3 _______.13.正交表中,任取2列数字的搭配是__次齐全而且均衡______,如)2(78L 表里每两列中__________________第七横行_____________________各出现2次.14.)3,2,1(31==∑=i x K jij A i =____________________________________.二、选择题(每小题2分,共12分) 1.离差平方和xx l =( C ).A 、 ∑∑==-n i i ni x n x 1212)(1 B 、∑∑==-ni i ni y n y 1212)(1 C 、∑=--ni i ibx a y12)( D 、∑=--ni i i y y x x 1))((2.考查变量X 与变量Y 相关关系,试验得观测数据(i x ,i y ) ,i=1,2,…,n 则∑∑∑===-nin i ni i i i i y x ny x 111))((1( D ).A 、称为X 的离差平方和B 、称为Y 的离差平方和C 、称为X 和Y 的离差乘积和D 、称为X 和Y 的离差平方和 3.当050r ⋅<|r|≤010r ⋅时,则变量Y 为X 的线性相关关系( B ). A 、不显著 B 、 显著 C 、特别显著 D 、特别不显著 4.下列结论正确的是( B ).A 、相关系数r 越大,Y 为X 之间线性相关关系越显著B 、当r>0时,bˆ>0,称Y 与X 为正相关,表明Y 为X 之间线性相关程度密切 C 、当r>0时,bˆ<0, 称Y 与X 为负相关,表明Y 为X 之间线性相关程度不密切 D 、当r=0时,Y 与X 之间不存在线性关系5.如果认为因素A 对总体的影响特别显著,则( D ). A 、05,0F F ≤ B 、F F <05.0 C 、01.005.0F F F << D 、F F <01.06.单因素方差分析,组间平方和A S =( C ). A 、P R - B 、Q R - C 、R Q - D 、P Q -三、(30分)某地区以家庭为单位,调查某种商品的年需求量与商品价格之间的关系,其一组调查数据如下表:试对该种商品的年需求量与商品价格之间的关系作回归分析并作散点图.四、(30分)某厂为了探索用400度真空泵代替600度真空泵生产合格的某种化工产品,用正交表安排试验,选用的因素水平如下表:因素水平A苯酐BpH值C丁醇加法1 2 0.150.2066.51次2次如果选用L4(23)正交表,试安排试验方案.解:在进行方差分析时,要进行大量的计算,为方便计算和减少误差,可以将观测值加上或减去一个常数(这个常数应接近总平均数),必要时还可以再乘以一个常数,使得变换后的数据比较简单,便于计算.这样做,不会影响方差分析的结果.此题数据值较大,计算起来比较困难,所以将表中数据减去处1640,再乘以0.1,列表计算.。
概率论与数理统计(第二版.刘建亚)习题解答——第四章4-1 解:()10.2520.430.240.150.05 2.3E X4-2 解: 由22()()[()]D X E X E X 得∵ D(X 1)<D(X2),用甲法测定的精度高。
4-3 解:E(X)=0.3003,E(X 2)=0.4086,D(X)=0.3184,[D(X)]1/2=0.5643。
4-4 解:*()[()][()()]0()()()E X E E X E X E X E X D X D X D X2*222211()()[()]()[()]()1()()()D X E X E X E X EE X E X D X D X D X D X4-5 解:121221122221220022()()01()()11sin 1112sin (1cos )21()()[()]2E X xf x dx dx x E X x f x dx dxdxxx xt tdxt dxD XE X E X4-6 解:2220201()()021()[()](0)22222x x x x x x x E X xf x dx xe dx D X E X E X x e dx x e dx x exe dxxee dx ; 4-7 解:令 1a p a,则 111p a,1p ap;11111()()(1)(1)11(1)()(1)(1)111(1)1(1)11kk kk k k k k kk k aE X kP X k k k p p p p kp a a dd d p p p p p p p p p dpdp dp p d d p p p p dp p dp p21(1)(1)1p p p ap p22210121112112122221()()(1)[(1)]11(1)(1)(1)()(1)kk k k k k k k kk k k k kk aE X k P X k kp p kk k p a a dp pk k p kpp p pp kp dpd p p p a dp 22222223(1)12(1)22(1)1d p a p p dp pp p p aaa a p p22222()()[()]2D X E X E X a aa a a4-8 证明:设X 为连续型随机变量,其概率密度函数为)(x f 。
练习4—2
1.填空题
(1)设X 服从参数为λ的指数分布,现从中随机抽取10个样品,根据测得结果计算10127i i x
==∑,那么λ的矩估计值为 .
(2)设12n X X X ,
,,是总体X 的样本,则方差2σ的矩估计量为 . (3)如果2(,)X N μσ,12n X X X ,
,,为一个样本,则未知参数μ的极大似然估计量为μ= .
(4)设12n X X X ,
,,是取自总体2(0,)X N σ的样本,则当常数C = 时, 1
211()n i i i C X X -+=-∑
为2
σ的无偏估计.
2.选择题 (1)设12n X X X ,
,,是取自总体2(0,)X N σ的样本,可作为2σ的无偏估计的是
( ) ()A 211n i i X n =∑ ()B 21
11n i i X n =-∑ ()C 11n i i X n =∑ ()D 1
11n
i i X n =-∑ (2)设总体X 的二阶矩存在,12n X X X ,
,,是样本,记 11n i i X X n ==∑,221
1()n n i i S X X n ==-∑, 则2
EX 的矩估计量是 ( ) ()A X ()B 2
n
S ()C 21n n S n - ()D 211n i i X n =∑ (3)设θ是未知参数θ的一个估计量,若E θθ≠,则θ是θ的 ( )
()A 极大似然估计 ()B 矩估计 ()C 有效估计 ()D 有偏估计
3.设总体X 服从泊松分布()P λ,其中λ是未知参数,如果12n X X X ,
,,是来自该总体的样本,求参数λ的矩估计量和极大似然估计量.
4.设T 为电子元件的失效时间(h ),其密度函数为
0()000()0t t e t t f t ββββ--⎧ <<<⎪ =⎨ ⎪⎩其它,,,,,
. 假定有n 个元件进行测试,记录其失效时间为12n T T T ,
,,. (1)当0t 为已知时,求β的极大似然估计量;
(2)当β为已知时,求0t 的极大似然估计量.
5.设总体X 的密度函数为
10()0x f x ββ
β⎧<<⎪ =⎨⎪⎩
其它,,,,. 1.31.61.72.20.31.1 ,,,,,是来自这个总体的一组样本观测值,
求参数β的矩估计值和极大似然估计值.
6.设12n X X X ,
,,是来自参数为λ的泊松分布的一个简单随机样本,试证明样本均值11n i i X X n ==∑和样本方差221
1()1n i i S X X n ==--∑都是λ的无偏估计量,并且对任一值201(1)X S αααα≤≤+-(),也是λ的无偏估计量.
7.设总体X 的期望()E X ,方差()D X 都存在,12,X X 是来自总体的一个随机样本,试证明统计量
11212212123121213(,),44
12(,),33
35(,),88X X X X X X X X X X X X ϕϕϕ=
+=+=+ 都是期望()E X 的无偏估计量,并说明哪个更有效?。