江西省临川一中2013-2014年九年级下期中数学试卷及答案
- 格式:doc
- 大小:409.00 KB
- 文档页数:7
江西省2013年中等学校招生考试数学答案解析一、选择题 1.【答案】B【解析】∵1(1)1-⨯-=,∴1-的倒数是1- 故选:B .【提示】根据倒数的定义,得出1(1)1-⨯-=,即可得出答案. 【考点】倒数 2.【答案】D【解析】A .325a a a +=无法运用合并同类项计算,故此选项错误; B .222(3)96a b a ab b -=-+,故此选项错误; C .624a b a a b ÷=,故此选项错误; D .3226()ab a b -=,故此选项正确. 故选:D .【提示】分别根据合并同类项法则以及完全平方公式和整式的除法以及积的乘方分别计算得出即可. 【考点】完全平方公式,合并同类项,幂的乘方与积的乘方,整式的除法 3.【答案】A【解析】把数据从小到大排列:45,163,163,165,227,342,位置处于中间的数是163和165,故中位数是(163165)2164+÷=,163出现了两次,故众数是163; 故答案为:A .【提示】根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案. 【考点】众数,中位数 4.【答案】C【解析】∵根据反比例函数的对称性可知,要使线段AB 的长度取最小值,则直线2y x a =+-经过原点,∴20a -=,解得2a = 故选:C .【提示】当直线2y x a =+-经过原点时,线段AB 的长度取最小值,依此可得关于a 的方程,解方程即可求得a 的值.【考点】反比例函数与一次函数的交点问题 5.【答案】C【解析】从几何体的左边看可得故选:C .【提示】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】简单组合体的三视图 6.【答案】D【解析】A .二次函数2(0)y ax bx c a =++≠的图象与x 轴有两个交点无法确定a 的正负情况,故本选项错误;B .∵12x x <,∴240b ac =->△,故本选项错误;C .若0a >,则102x x x <<,若0a <,则012x x x <<或120x x x <<,故本选项错误;D .若0a >,则010x x ->,020x x -<,所以,0102))0((x x x x --<,∴0102)(0)(a x x x x --<,若0a <,则01()x x -与02()x x -同号,∴0102)(0)(a x x x x --<,综上所述,0102)(0)(a x x x x --<正确,故本选项正确. 故选D .【提示】根据抛物线与x 轴有两个不同的交点,根的判别式0>△,再分0a >和0a <两种情况对C 、D 选项讨论即可得解.【考点】抛物线与x 轴的交点 二、填空题7.【答案】(2)(2)x x +- 【解析】24(2)(2)x x x -=+-【提示】直接利用平方差公式进行因式分解即可. 【考点】因式分解—运用公式法 8.【答案】65︒【解析】∵1155∠=︒,∴18015525EDC ∠=︒-︒=︒,∵DE BC ∥,∴25C EDC ∠=∠=︒,∵ABC △中,90A ∠=︒,25C ∠=︒,∴180902565B ∠=︒-︒-︒=︒.,,(21)n +++∵ABCD 与DCFE 的周长相等,180130252︒-︒==︒=25°由,ABCD 与DCFE 的周长相等,【考点】平行四边形的性质 【答案】2,3,4设这四点都在M 上.点AM 、AB 、MB ︒,∴AMB ∠2,∴AMO ∠故答案是:2,3,4如图所示:.(2)如图所示:CT就是AB上的高.(2)设甲、乙、丙三人的礼物分别记为a、b、c,根据题意画出树状图如下:2答:雨刮杆AB 扫过的最大面积为1392πcm是O 的切线;都是O 切线,∴24(4)x =-(舍去)或x =即90DME ∠=︒,∴DME △为等腰直角三角形.(2)抛物线22(4)4y x =--+,令20y =,即2(4)40x --+=,解得2x =或6x =∵1)(2,0A ,∴2)(6,0A . 由题意,当3n =时,第3条抛物线2333()y x a a =--+经过点2)(6,0A ,∴233(6)0a a =--+,解得34a =或39a =∵24a =,且已知32a a >,∴39a =,∴23(9)9y x =--+∴3y 的顶点坐标为(9,9).由1y 的顶点坐标(1,1),2y 的顶点坐标(4,4),3y 的顶点坐标(9,9),依此类推,n y 的顶点坐标为22(,)n n .∵所有抛物线顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y x =.(3)①∵010,0),0)((2A A ,,∴012A A =222)(n y x n n =--+,令0n y =,即222)(0x n n --+=, 解得2x n n =+或2x n n =-,∴21,)(0n A n n --,20(,)n A n n +,即221()()2n n A A n n n n n -=+--=. ②存在.设过点(2,0)的直线解析式为y kx b =+,则有:02k b =+,得2b k =-,∴2y kx k =-.设直线2y kx k =-与抛物线222)(n y x n n =--+交于1122,),()(E x y F x y ,两点,联立两式得:222)2(kx k x n n -=--+,整理得:2242)(220x k n x n n k +-+--=,∴242121222x x n k x x n n k +=-=--,.过点F 作FG x ⊥轴,过点E 作EG FG ⊥于点G ,则21EG x x =-,][22222222121121221[))])(((2(())FG y y x n n x n n x x n x x k x x =-=--+---+=+--=-.在Rt EFG △中,由勾股定理得:222EF EG FG =+,即:22222222121211212(((1)()[)])[()](1)4EF x x k x x k x x k x x x x=-+-=+-=++-,将2122x x n k +=-,412x n n =-22(1)k k -+∴存在满足条件的直线,该直线的解析式为2412x x n n =-22(1)k k -+。
临川一中初三数学试卷卷面满分:120分 考试时间:120分钟一、选择题:(本大题共6题,每题3分,共18分)1.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为( )A .2.7×105B .2.7×106C .2.7×107D .2.7×1082.李老师将6份奖品分别放入6个相同礼盒(不透明)中,准备奖给小英等6位获得“文明守纪标兵”称号的同学.这些奖品中有3份是学习机,2份是科普读物,1份是乒乓球拍,小英同学从中随机抽取1份奖品,恰好抽到科普读物的概率是( ).A .B .C .D . 3.如图所示的几何体的左视图是 ( ) .4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C , 连接BC ,若∠ABC=120°,AB=3,则的长为( )A .3πB .32πC .πD .2π5.如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在函数y=(x >0)的图象上,当m >1时,过点P 分别作x 轴、y 轴的垂线,垂足为点A ,B ;过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D .QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积( )A .减小B .增大C .先减小后增大D .先增大后减小6. 如图,一张三角形纸片ABC ,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A 落在C 处;将纸片展平 做第二次折叠,使点B 落在C 处;再将纸片展平做第三次折叠, 使点A 落在B 处.这三次折叠的折痕长依次记为a ,b ,c ,则 a ,b ,c 的大小关系是( )A .c >a >bB .b >a >cC .c >b >aD .b >c >a 二、填空题:(本大题共6题,每题3分,满分18分)7.计算=⎪⎭⎫ ⎝⎛-----2212218_________________.8. 一个扇形的面积是12πcm 2,圆心角是60°,则此扇形的半径是__________cm .第 1 页 共 8 页9.如图,将△ABC 绕点A 按逆时针方向旋转100°,得到 △AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的 大小是__________度.10.已知关于x 的一元二次方程()013122=-++-k x x k有一根为0,则k =_______.11.如图,在平面直角坐标系中,直线y=﹣x+2分别交 x 轴、y 轴于A 、B 两点,点P (1,m )在△AOB 的形内 (不包含边界),则m 的值可能是__________.(填一个即可) 12.如图,在⊙O 上有定点C 和动点P,分别位于直径AB 的两侧,过点C 作CP 的垂线,与PB 的延长线交于点Q,已知⊙O 半径为25,tan ∠ABC=43,则线段CQ 长的 可能整数值为_______________ .三、(本大题共5题,每题6分,共30分) 13.(本大题共2小题,每小题3分) (1)分解因式:22242x xy y -+(2)解不等式组,14.先化简,再求值:()()()[]() ,222222xy y x xy xy ÷---+其中251,10-==y x . 15.如图,点A ,B 在数轴上,它们所对应的数分别是和,且点A 到原点的距离比B 到原点的距离多3,求x 的值.16.应用无刻度的直尺画图:在下面的三个图中,以OA 为边,在正方形网格内作∠AOB=α,B 点为格点(每个小正方形的顶点)使sin α的值分别为:,和.17. 2017年3月抚州市某道路改造工程全面开启,经过某十字路口的汽车无法继续直行,只可左转或右转,但电动车不受直行限制,现有一辆汽车和一辆电动车同时到达该路口:(1)请用“树状图”或“列表法”列举出汽车和电动车行驶方向所有可能的结果;(2)求汽车和电动车都向左转的概率.四、解答题:(本大题共3题,每题8分共24分)18.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:200请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?19.如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与BC的长度之和等于OA的长度.(1)求∠CBO的度数;(2)求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.7)20. 2016年的一个星期日“半程马拉松竞赛”在浙江某地举行,某运动员从起点休闲广场西门出发,途经紫金大桥,沿比赛路线跑回终点休闲广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?五.(本大题共2小题,每题9分共18分)21 . 如图,平行四边形ABCD 的一边AD 与⊙O 相切于点A ,另两边AB 、BC 是⊙O 的弦,连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP =∠(1)证明:AC =CD(2) 判断直线PC 与⊙O 的位置关系,并说明理由; (3)若AB =103,BC =6,求sin ∠APC 的值.22.已知抛物线y=x 2+bx+c ,点A n (a n ,﹣4)为抛物线的顶点,且a 1=1,a n+1=a n +1(n >0).以A 1为顶点的抛物线记为C 1,以A 2为顶点的抛物线记为C 2,…….…以A n 为顶点的抛物线记为C n .(1)求C 1抛物线的解析式;(2)C 1与x 轴交于点B 、C 两点(B 在C 点的右侧),与y 轴交于点D.抛物线上是否存在一点P ,使△POB 与△POD 全等?若存在,求出点P 的坐标;若不存在,请说明理由; (3)C 2017与x 轴交于B 、C 两点,直线x=2016与C 2017、直线A 2017B 、x 轴分别交于D 、E 、F 点,判断以线段A 2017B 为直径的圆与直线x=2016的位置关系?并说明理由. 六.(本大题共1小题,共12分)23.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形” (1)概念理解:请你根据上述定义举一个等邻角四边形的例子; (2)问题探究;如图1,在等邻角四边形ABCD 中,∠DAB=∠ABC ,AD ,BC 的中垂线恰好交于AB 边上一点P ,连结AC ,BD ,试探究AC 与BD 的数量关系,并说明理由; (3)应用拓展;如图2,在Rt △ABC 与Rt △ABD 中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC )得到Rt △AB ′D ′(如图3),当凸四边形AD ′BC 为等邻角四边形时,求出它的面积.25115.16.17.四、解答题:(本大题共3题,每题8分共24分)18.(1)请把图1中的条形统计图补充完整;(2)a的值为___________,圆心角θ的度数为_________度;(3)19. 20.五.(本大题共2小题,每题9分共18分) 21.22.六.(本大题共1小题,共12分)23.。
初中地理学习材料灿若寒星****编排整理临川一中2014—2015学年度下学期期中考试初三地理试卷卷面满分:30分考试时间:生地合卷60分钟命题人:余美文、周丽娥一、选择题(本大题包括15小题,每小题1分,共15分)1、读右图经纬网图,下列叙述正确的是()A、甲、乙两图中,比例尺较大的是图甲B、A、B均在南半球,西半球C、B地的经纬度为(23.5°S,126°E)D、当太阳直射B地时,抚州市学生正午的身影一年中最短读“我国东南沿海某地等高线地形图”,回答2~3题。
2、图中河流 的大致流向是()A、自东向西B、自西北向东南C、自西向东D、自西南向东北3、有一地理兴趣小组判读时得出以下结论,请你找出说法错误的一项()A、图中①、②、③处都有可能发育成河流B、村庄甲及附近地区若有大片农田,最有可能种植的粮食作物是水稻C、B处、C处地形部位的名称分别为鞍部、陡崖D、村庄甲位于水电站乙的东北方向读图7“我国部分地区气温年较差分布图”,完成4—5题。
4、图中等温差线受山脉地形的影响,在①区域发生弯曲,①处山脉是()A、太行山脉B、长白山脉C、秦岭D、大兴安岭5、②地区是我国重要的粮食生产基地,该地区的农作物只能一年一熟.主要影响因素是()A、热量B、降水C、地形D、土壤6、以下省级行政区中,年降水量最多的省和我国夏季平均气温最低的省分别是()A、②①B、③④C、②④D、①③读甲、乙两图,完成7~8题。
7、甲、乙两地是我国重要工业基地,与乙地相比,甲地发展工业的突出优势是()A、煤、铁等矿产分布集中B、多港湾,海上运输便利C、邻近港澳,很多地方是“侨乡”D、高等院校众多,科技智力资源丰富8、关于乙图A城市的说法,不正确...的是()A、京沪、沪杭两条铁路在此交会B、位于长江入海口,是全国最大港口C、是我国最大的城市D、拥有中关村高新技术产业区9、台湾岛之所以被称为“东方甜岛”,是因为该岛()A、盛产甘蔗B、盛产香蕉C、盛产水稻D、盛产海盐10、高技术产业的特点是()A、消耗能源B、产品更新换代快C、环境污染严重D、生产成本比较高读图,回答 11-12题。
2015-2016学年江西省抚州市临川一中九年级(下)期中数学试卷一、选择题:(本大题共6题,每题3分,共18分)1.下列计算正确的是()A.﹣2+1=﹣1 B.﹣2﹣2=0 C.(﹣2)2=﹣4 D.﹣22=42.如图,在正方形网格中,∠1、∠2、∠3的大小关系()A.∠1=∠1=∠3 B.∠1<∠2<∠3 C.∠1=∠2>∠3 D.∠1<∠2=∠33.如图放置的几何体的左视图是()A.B.C.D.4.现有1角、5角硬币各10枚,从中取出16枚,共计4元,问1角、5角硬币各取多少枚?设1角、5角硬币各取x枚、y枚,可列方程()A.B.C.D.5.如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.4 B.6 C.8 D.96.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题:(本大题共6题,每题3分,满分18分)7.分解因式:2x2﹣4xy+2y2= .8.已知x=0是方程x2+bx+b﹣3=0的一个根,那么此方程的另一个根为.9.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.10.如图,在△ABC中,∠C=90°,∠ABC=30°,将△ABC沿射线AB方向平移到A1B1C1的位置,A1是线段AB的中点,连接AC1,则tan∠A1AC1的值是.11.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是.12.在Rt△ABC纸片中,∠ACB=90°,AC=6,BC=8,P是AB边上一点,连接CP.沿CP把Rt△ABC纸片裁开,要使△ACP是等腰三角形,那么AP的长度是.三、(本大题共5题,每小题6分,共30分)13.解不等式组:.14.先化简,再求值:(a+b)2+(a﹣b)(2a+b)﹣3a2,其中.15.先阅读下面八年级师生的对话内容,再解答问题.小明:“听说下周会进行为期两天的期中考试.”刘老师:“是的,要考语文、数学、英语、物理,但具体星期几不清楚.”小宇:“我估计是星期四、星期五.”(1)求小宇猜对的概率;(2)若考试已定在星期四、星期五进行,但各科考试顺序没定,请用列举法求恰好在同一天考语文、数学的概率.(温馨提示:一周只上五天课,另考试时每半天考一科)16.下面两个图中,点A、B、C均在⊙O上,∠C=40°,请根据下列条件,仅用无刻度的直尺各画一个直角三角形,使其一个顶点为A,且一个内角度数为40°.(1)在图1中,点O在∠C外部;(2)在图2中,点O在∠C内部且点D在弦AB上.17.如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)四、解答题:(本大题共4题,每小题8分共32分)18.平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.(1)求菱形ABCD的边长;(2)求双曲线的解析式.19.3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计.绘制统计图如图(未完成),解答下列问题:(1)若A组的频数比B组小24,则频数分布直方图中的a= b= ;(2)扇形统计图中,D部分所对的圆心角n= ,并补全频数分布直方图(在直方图上标相对应的频数);(3)若成绩在80分以上为优秀,全校共有2000名学生,请估计成绩优秀的学生有多少名?20.小慧和小聪沿图1中的景区公路游览.小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB、GH的交点B的坐标,并说明它的实际意义.(3)如果小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?21.如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).五.(本大题共1题,每小题10分,共10分)22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C (0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F 为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.六.(本大题共1题,共12分)23.如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE 与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).2015-2016学年江西省抚州市临川一中九年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,共18分)1.下列计算正确的是()A.﹣2+1=﹣1 B.﹣2﹣2=0 C.(﹣2)2=﹣4 D.﹣22=4【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】根据有理数的加减法、有理数的乘方,即可解答.【解答】解:A、﹣2+1=﹣1,正确;B、﹣2﹣2=﹣4,故错误;C、(﹣2)2=4,故错误;D、﹣22=﹣4,故错误;故选:A.2.如图,在正方形网格中,∠1、∠2、∠3的大小关系()A.∠1=∠1=∠3 B.∠1<∠2<∠3 C.∠1=∠2>∠3 D.∠1<∠2=∠3【考点】锐角三角函数的增减性;平行线的性质.【分析】由平行线的性质可知:∠CBD=∠BDE,∠EDF=∠DFG,然后根据锐角三角形函数的定义可知:tan∠ABC=,tan∠EDF=,tan∠BDE=tan∠GFH=,从而可判定出∠ABC<∠EDF,∠BDE=∠GFH.然后即可比较它们的大小.【解答】解:如图所示:根据图形可知:∠CBD=∠BDE,tan∠ABC=,tan∠EDF=,∴∠ABC<∠EDF∴∠ABC+∠CBD<∠EDF+∠BDE,即∠1<∠2.根据图形可知:∠EDF=∠DFG,tan∠BDE=,tan∠GFH=,∴∠BDE=∠GFH.∴∠EDF+∠BDE=∠DFG+∠GFH,即:∠2=∠3.故选:D.3.如图放置的几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选:C.4.现有1角、5角硬币各10枚,从中取出16枚,共计4元,问1角、5角硬币各取多少枚?设1角、5角硬币各取x枚、y枚,可列方程()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设1角、5角硬币各取x枚、y枚,等量关系为:1角硬币枚数+5角硬币枚数=16,1角硬币,钱数+5角硬币钱数=4元,依此列出方程组即可.【解答】解:设1角、5角硬币各取x枚、y枚,由题意得.故选D.5.如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.4 B.6 C.8 D.9【考点】轴对称-最短路线问题;矩形的性质.【分析】先作点E关于直线CD的对称点E′,连接AE′交CD于点F,再根据△CEF∽△BEA 即可求出CF的长,进而得出DF的长.【解答】解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=9,BC=12,点E是BC中点,∴BE=CE=CE′=6,∵AB⊥BC,CD⊥BC,∴CD∥AB,∴=,即=,解得CF=3,∴DF=CD﹣CF=9﹣3=6.故选B.6.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;二次函数与不等式(组).【分析】由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac >0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.二、填空题:(本大题共6题,每题3分,满分18分)7.分解因式:2x2﹣4xy+2y2= 2(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2,=2(x2﹣2xy+y2),=2(x﹣y)2.故答案为:2(x﹣y)2.8.已知x=0是方程x2+bx+b﹣3=0的一个根,那么此方程的另一个根为﹣3 .【考点】根与系数的关系.【分析】根据方程的解的定义求出b的值,根据根与系数的关系列式计算即可.【解答】解:∵x=0是方程x2+bx+b﹣3=0的一个根,∴b﹣3=0,解得,b=3设方程的另一个根为a,则a+0=﹣3,解得,a=﹣3,故答案为:﹣3.9.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.10.如图,在△ABC中,∠C=90°,∠ABC=30°,将△ABC沿射线AB方向平移到A1B1C1的位置,A1是线段AB的中点,连接AC1,则tan∠A1AC1的值是.【考点】平移的性质;解直角三角形.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=AB,根据平移的性质可得AC=A1C1,然后求出AA1=A1C1,然后根据等边对等角可得∠A1AC1=∠A1C1A,再求出∠A1AC1=30°,然后根据锐角三角函数求解即可.【解答】解:∵∠C=90°,∠ABC=30°,∴AC=AB,∵△ABC沿射线AB方向平移得到A1B1C1,∴AC=A1C1,∵A1是线段AB的中点,∴AA1=AB,∴AA1=A1C1,∴∠A1AC1=∠A1C1A,∵∠B1A1C1=∠BAC=90°﹣30°=60°,∴∠A1AC1=×60°=30°,∴tan∠A1AC1=tan30°=.故答案为:.11.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是900 .【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】根据已知数据即可得出,最下面一行数字变化规律,进而得出答案.【解答】解:根据下面一行数字变化规律为:1×4=4,4×9=36,9×16=144,16×25=400,25×36=a=900,故答案为:900.12.在Rt△ABC纸片中,∠ACB=90°,AC=6,BC=8,P是AB边上一点,连接CP.沿CP把Rt△ABC纸片裁开,要使△ACP是等腰三角形,那么AP的长度是6,5或.【考点】三角形中位线定理;等腰三角形的性质;勾股定理.【分析】此题要分三种情况进行讨论:AP″=AC=6时,△ACP″是等腰三角形;CP=AP时,△ACP是等腰三角形;CP′=AC时,△ACP′是等腰三角形,分别计算出AP的长度.【解答】解:①如图:A P″=AC=6时,△ACP″是等腰三角形;②CP=AP时,△ACP是等腰三角形;过P作PE⊥AC,∵CP=AP,∴AE=AC=3,∵∠ACB=90°,∴PE∥CB,∴PE=CB=4,∴AP==5;③CP′=AC时,△ACP′是等腰三角形,过C作CF⊥AB,∴AP′=2AF,∵AC=6,∴CP′=6,∵∠ACB=90°,AC=6,BC=8,∴AB=10,∴cosA==,∴=,∴AF=×6=,∴AP′=,故答案为:6,5或.三、(本大题共5题,每小题6分,共30分)13.解不等式组:.【考点】解一元一次不等式组.【分析】根据解不等式组的方法可以求出题目中不等式组的解集.【解答】解:,由①得:x≤﹣2,由②得:x>﹣3,所以原不等式组的解集为:﹣3<x≤﹣2.14.先化简,再求值:(a+b)2+(a﹣b)(2a+b)﹣3a2,其中.【考点】整式的混合运算—化简求值.【分析】将原式第一项利用完全平方公式展开,第二项利用多项式乘以多项式的法则计算,合并后得到最简结果,将a与b的值代入化简后的式子中,利用平方差公式计算,即可得到原式的值.【解答】解:原式=a2+2ab+b2+(a﹣b)(2a+b)﹣3a2=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2=ab,当a=2﹣,b=+2时,原式=(2﹣)(+2)=22﹣()2=4﹣3=1.15.先阅读下面八年级师生的对话内容,再解答问题.小明:“听说下周会进行为期两天的期中考试.”刘老师:“是的,要考语文、数学、英语、物理,但具体星期几不清楚.”小宇:“我估计是星期四、星期五.”(1)求小宇猜对的概率;(2)若考试已定在星期四、星期五进行,但各科考试顺序没定,请用列举法求恰好在同一天考语文、数学的概率.(温馨提示:一周只上五天课,另考试时每半天考一科)【考点】列表法与树状图法;概率公式.【分析】(1)由可能的情况有:星期一、星期二,星期二、星期三;星期三、星期四;星期四、星期五;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好在同一天考语文、数学的情况,再利用概率公式即可求得答案.【解答】解:(1)∵可能的情况有:星期一、星期二,星期二、星期三;星期三、星期四;星期四、星期五;∴P(猜对)=.(2)画树状图得:∵共有12种等可能的结果,恰好在同一天考语文、数学的有2种情况,∴P(恰好同一天考语文、数学)=.16.下面两个图中,点A、B、C均在⊙O上,∠C=40°,请根据下列条件,仅用无刻度的直尺各画一个直角三角形,使其一个顶点为A,且一个内角度数为40°.(1)在图1中,点O在∠C外部;(2)在图2中,点O在∠C内部且点D在弦AB上.【考点】作图—复杂作图.【分析】(1)过点A作直径AD,连结BD,根据圆周角定理得到∠D=∠C=40°,∠ABD=90°,从而可判断△ABD满足条件;(2)延长CD交圆于点E,过点E作直径EF,连结AF,根据圆周角定理得到∠F=∠C=40°,∠EAF=90°,从而可判断△AEF满足条件.【解答】解:(1)如图1,△ABD为所作;(2)如图2,△AEF为所作.17.如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】首先过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,再利用坡度的定义以及勾股定理得出EF、FC的长,求出AB的长即可.【解答】解:过点E作EF⊥BC于点F,过点E作EN⊥AB于点N,∵建筑物AB后有一座假山,其坡度为i=1:,∴设EF=x,则FC=x,∵CE=20米,∴x2+(x)2=400,解得:x=10,则FC=10m,∵BC=25m,∴BF=NE=(25+10)m,∴AB=AN+BN=NE+EF=10+25+10=(35+10)m,答:建筑物AB的高为(35+10)m.四、解答题:(本大题共4题,每小题8分共32分)18.平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.(1)求菱形ABCD的边长;(2)求双曲线的解析式.【考点】菱形的性质;待定系数法求反比例函数解析式.【分析】(1)过点C作CE⊥AB于点E,设菱形的边长为x,则BC=AB=x,BE=10﹣2﹣x,在Rt△BEC中,利用勾股定理建立关于x的方程,解方程求出x的值即可;(2)设双曲线的解析式为y=,过点D作DF⊥AB于点F,分别求出OF,DF的长,则点D的坐标可知,代入双曲线的解析式求出k的值即可.【解答】解:(1)设菱形的边长为x,则BC=AB=x,BE=10﹣2﹣x,∵点C(10,4),∴CE=4,在Rt△BEC中,由勾股定理可得:BC2=BE2+CE2,即x2=(10﹣2﹣x)2+42,解得:x=5,∴菱形ABCD的边长为5;(2)设双曲线的解析式为y=,过点D作DF⊥AB于点F,∵DC∥AB,点C(10,4),∴DF=4,∵AB=5,∴OF=OE﹣EF=10﹣5=5,∴点D(5,4),∴k=20,∴.19.3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计.绘制统计图如图(未完成),解答下列问题:(1)若A组的频数比B组小24,则频数分布直方图中的a= 16 b= 40 ;(2)扇形统计图中,D部分所对的圆心角n= 126°,并补全频数分布直方图(在直方图上标相对应的频数);(3)若成绩在80分以上为优秀,全校共有2000名学生,请估计成绩优秀的学生有多少名?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,然后计算出C和E组的频数后补全频数分布直方图;(3)利用样本根总体,用2000乘以D组和E组的频率和即可.【解答】解:(1)调查的总人数为24÷(20%﹣8%)=200,所以a=200×8%=16,b=200×20%=40;(2)D部分所对的圆心角=360°×=126°,即n=126,故答案为16,40,126;C组的频数为200×25%=50,E组的频数为200﹣16﹣40﹣50﹣70=24,补全频数分布直方图为:(3)2000×=940,所以估计成绩优秀的学生有940人.20.小慧和小聪沿图1中的景区公路游览.小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB、GH的交点B的坐标,并说明它的实际意义.(3)如果小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?【考点】一次函数的应用.【分析】(1)根据时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)利用得到待定系数法求GH的解析式,当s=30时,求出t的值,即可确定点B的坐标;(3)根据50÷30=(小时)=1小时40分钟,确定当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣)=50,解得:x=1,10+1=11点,即可解答.【解答】解:(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G的坐标为(0.5,50),设GH的解析式为s=kt+b,把G(0.5,50),H(3,0)代入得;,解得:,∴s=﹣20t+60,当s=30时,t=1.5,∴B点的坐标为(1.5,30),点B的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km.(3)50÷30=(小时)=1小时40分钟,12﹣,∴当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣)=50,解得:x=1,10+1=11=11点,∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧.21.如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).【考点】圆的综合题;等边三角形的性质;勾股定理;切线的性质;相似三角形的判定与性质;特殊角的三角函数值.【分析】(1)连接OA,如下图1,根据条件可求出AB,然后AC的高BH,求出BH就可以求出△ABC的面积.(2)如下图2,首先考虑临界位置:当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;当线段AB所在的直线与圆O相切时,线段AB与圆O只有一个公共点,此时α=60°.从而定出α的范围.(3)连接MQ,如下图3,易证AO∥MQ,从而得到△PNO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、ON,进而求出PN、NM、AM、CM的值.【解答】解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB•sin∠HAB=×=.∴S△ABC=AC•BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PNO=90°.∴∠PNO=∠PMQ.∴ON∥MQ.∴△PNO∽△PMQ.∴==∵PO=OQ=PQ.∴PN=PM,ON=MQ.同理:MQ=AO,BM=AB.∵AO=1,∴MQ=.∴ON=.∵∠PNO=90°,PO=1,ON=,∴PN=.∴PM=.∴NM=.∵∠ANM=90°,AN=A0﹣ON=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.五.(本大题共1题,每小题10分,共10分)22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C (0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F 为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P 点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).六.(本大题共1题,共12分)23.如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE 与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).【考点】相似形综合题;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质;平行线分线段成比例;相似三角形的判定与性质;锐角三角函数的定义.【分析】(1)运用等腰三角形的性质及三角形的外角性质就可解决问题.(2)过点E作EG∥AC,交AB于点G,如图1,要证BE=CE,只需证BG=AG,由DF=FE可证到DA=AG,只需证到DA=BG即DG=AB,也即DG=AC即可.只需证明△DCA≌△△EDG即可解决问题.(3)过点A作AH⊥BC,垂足为H,如图2,可求出BC=2cosα.过点E作EG∥AC,交AB的延长线于点G,易证△DCA≌△△EDG,则有DA=EG,CA=DG=1.易证△ADF∽△GDE,则有.由DF=kFE可得DE=EF﹣DF=(1﹣k)EF.从而可以求得AD=,即GE=.易证△ABC∽△GBE,则有,从而可以求出BE.【解答】解:(1)∠DCA=∠BDE.证明:∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE.∴∠BDE=∠DEC﹣∠DBC=∠DCE﹣∠ACB=∠DCA.(2)过点E作EG∥AC,交AB于点G,如图1,则有∠DAC=∠DGE.在△DCA和△EDG中,∴△DCA≌△EDG(AAS).∴DA=EG,CA=DG.∴DG=AB.∴DA=BG.∵AF∥EG,DF=EF,∴DA=AG.∴AG=BG.∵EG∥AC,∴BE=EC.(3)过点E作EG∥AC,交AB的延长线于点G,如图2,∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE.∴∠BDE=∠DBC﹣∠DEC=∠ACB﹣∠DCE=∠DCA.∵AC∥EG,∴∠DAC=∠DGE.在△DCA和△EDG中,∴△DCA≌△EDG(AAS).∴DA=EG,CA=DG∴DG=AB=1.∵AF∥EG,∴△ADF∽△GDE.∴.∵DF=kFE,∴DE=EF﹣DF=(1﹣k)EF.∴.∴AD=.∴GE=AD=.过点A作AH⊥BC,垂足为H,如图2,∵AB=AC,AH⊥BC,∴BH=CH.∴BC=2BH.∵AB=1,∠ABC=α,∴BH=AB•cos∠ABH=cosα.∴BC=2cosα.∵AC∥EG,∴△ABC∽△GBE.∴.∴.∴BE=.∴BE的长为.。
江西省2013年中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.3.(3分)(2013•江西)下列数据是2013年3月7日6点公布的中国六大城市的空气污染4.(3分)(2013•江西)如图,直线y=x+a﹣2与双曲线y=交于A、B两点,则当线段AB 的长度取最小值时,a的值为()5.(3分)(2013•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()B解:从几何体的左边看可得6.(3分)(2013•江西)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2013•江西)分解因式:x2﹣4=(x+2)(x﹣2).8.(3分)(2013•江西)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.9.(3分)(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.故答案为:10.(3分)(2013•江西)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE 和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为2.×,,×2..11.(3分)(2013•江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为(n+1)2(用含n的代数式表示).=12.(3分)(2013•江西)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程x2﹣5x+6=0(答案不唯一).13.(3分)(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.DAE==2514.(3分)(2013•江西)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.ACB=∠三、(本大题共2小题,每小题5分,共10分)15.(5分)(2013•江西)解不等式组,并将解集在数轴上表示出来.,16.(5分)(2013•江西)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.四、(本大题共2小题,每小题6分,共12分)17.(6分)(2013•江西)先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.÷÷+1×+1+1,.18.(6分)(2013•江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A、乙抽到一件礼物B、乙恰好抽到自己带来的礼物C、乙没有抽到自己带来的礼物D、只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.=五、(本大题共2小题,每小题8分,共16分)19.(8分)(2013•江西)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.y=20.(8分)(2013•江西)生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)×××××÷六、(本大题共2小题,每小题9分,共18分)21.(9分)(2013•江西)如图1,一辆汽车的背面,有一种特殊性状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学记算器)OA=5=5=2≈π22.(9分)(2013•江西)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y 轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.,﹣x=,,的坐标是(,﹣)的坐标代入得:﹣k+2七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.AG=GC=GE= ABAB ACDF=ACAC MG=AB24.(12分)(2013•江西)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x ﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(9,9);依此类推第n条抛物线y n的顶点坐标为(n2,n2);所有抛物线的顶点坐标满足的函数关系式是y=x;(3)探究下列结论:①若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.。
2013年江西省中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.(3分)(2013•南昌)﹣1的倒数是()A.1B.﹣1 C.±1 D.02.(3分)(2013•江西)下列计算正确的是()A.a3+a2=a5B.(3a﹣b)2=9a2﹣C.a6b÷a2=a3b D.(﹣ab3)2=a2b6b23.(3分)(2013•南昌)下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是()A.164和163 B.105和163 C.105和164 D.163和164 4.(3分)(2013•南昌)如图,直线y=x+a﹣2与双曲线y=交于A、B两点,则当线段AB 的长度取最小值时,a的值为()A.0B.1C.2D.55.(3分)(2013•南昌)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.6.(3分)(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0 C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<0二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2013•江西)分解因式:x2﹣4=_________.8.(3分)(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为_________.9.(3分)(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y人,请列出满足题意的方程组_________.10.(3分)(2013•江西)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE 和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为_________.11.(3分)(2013•南昌)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为_________(用含n的代数式表示).12.(3分)(2013•南昌)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程_________.13.(3分)(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_________.14.(3分)(2013•南昌)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是_________.三、(本大题共2小题,每小题5分,共10分)15.(5分)(2013•江西)解不等式组,并将解集在数轴上表示出来.16.(5分)(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.四、(本大题共2小题,每小题6分,共12分)17.(6分)(2013•南昌)先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.18.(6分)(2013•南昌)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A、乙抽到一件礼物B、乙恰好抽到自己带来的礼物C、乙没有抽到自己带来的礼物D、只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.五、(本大题共2小题,每小题8分,共16分)19.(8分)(2013•南昌)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.20.(8分)(2013•南昌)生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)六、(本大题共2小题,每小题9分,共18分)21.(9分)(2013•南昌)如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学记算器)22.(9分)(2013•江西)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y 轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是_________(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:_________.24.(12分)(2013•南昌)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x ﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(_________,_________);依此类推第n条抛物线y n的顶点坐标为(_________,_________);所有抛物线的顶点坐标满足的函数关系式是_________;(3)探究下列结论:①若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.2013年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.(3分)(2013•南昌)﹣1的倒数是()A.1B.﹣1 C.±1 D.0考点:倒数.分析:根据倒数的定义,得出﹣1×(﹣1)=1,即可得出答案.解答:解:∵﹣1×(﹣1)=1,∴﹣1的倒数是﹣1.故选:B.点评:此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2013•江西)下列计算正确的是()C.a6b÷a2=a3b D.(﹣ab3)2=a2b6 A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;整式的除法.分析:分别根据合并同类项法则以及完全平方公式和整式的除法以及积的乘方分别计算得出即可.解答:解:A、a3+a2=a5无法运用合并同类项计算,故此选项错误;B、(3a﹣b)2=9a2﹣6ab+b2,故此选项错误;C、a6b÷a2=a4b,故此选项错误;D、(﹣ab3)2=a2b6,故此选项正确.故选:D.点评:此题主要考查了完全平方公式以及积的乘方和整式的除法等知识,熟练掌握运算法则是解题关键.3.(3分)(2013•南昌)下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是()A.164和163 B.105和163 C.105和164 D.163和164考点:众数;中位数.分析:根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.解答:解:把数据从小到大排列:45,163,163,165,227,342,位置处于中间的数是163和165,故中位数是(163+165)÷2=164,163出现了两次,故众数是163;故答案为:A.点评:此题主要考查了众数和中位数,关键是掌握两种数的定义.4.(3分)(2013•南昌)如图,直线y=x+a﹣2与双曲线y=交于A、B两点,则当线段AB 的长度取最小值时,a的值为()A.0B.1C.2D.5考点:反比例函数与一次函数的交点问题.分析:当直线y=x+a﹣2经过原点时,线段AB的长度取最小值,依此可得关于a的方程,解方程即可求得a的值.解答:解:∵根据反比例函数的对称性可知要使线段AB的长度取最小值,则直线y=x+a﹣2经过原点,∴a﹣2=0,解得a=2.故选C.点评:考查了反比例函数与一次函数的交点问题,本题的关键是理解当直线y=x+a﹣2经过原点时,线段AB的长度取最小值.5.(3分)(2013•南昌)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.考点:简单组合体的三视图.专题:压轴题.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的左边看可得.故选:C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(3分)(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0 C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<0考点:抛物线与x轴的交点.专题:压轴题.分析:根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.解答:解:A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2﹣4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0﹣x1>0,x0﹣x2<0,所以,(x0﹣x1)(x0﹣x2)<0,∴a(x0﹣x1)(x0﹣x2)<0,若a<0,则(x0﹣x1)与(x0﹣x2)同号,∴a(x0﹣x1)(x0﹣x2)<0,综上所述,a(x0﹣x1)(x0﹣x2)<0正确,故本选项正确.故选D.点评:本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,C、D选项要注意分情况讨论.二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)(2013•江西)分解因式:x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法.专题:压轴题.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.8.(3分)(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.考点:平行线的性质;直角三角形的性质.专题:探究型.分析:先根据平角的定义求出∠EDC的度数,再由平行线的性质得出∠C的度数,根据三角形内角和定理即可求出∠B的度数.解答:解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.9.(3分)(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.考点:由实际问题抽象出二元一次方程组.分析:根据关键语句“单位组织34人分别到井冈山和瑞金进行革命传统教育”可得方程x+y=34,“到井冈山的人数是到瑞金的人数的2倍多1人”可得x=2y+1,联立两个方程即可.解答:解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:,故答案为:.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.10.(3分)(2013•江西)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE 和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为2.考点:矩形的性质.分析:根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.解答:解:∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,∴矩形绕中心旋转180°阴影部分恰好能够与空白部分重合,∴阴影部分的面积等于空白部分的面积,∴阴影部分的面积=×矩形的面积,∵AB=2,BC=2,∴阴影部分的面积=×2×2=2.故答案为:2.点评:本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.11.(3分)(2013•南昌)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为(n+1)2(用含n的代数式表示).考点:规律型:图形的变化类.专题:规律型.分析:观察不难发现,点的个数依次为连续奇数的和,写出第n个图形中点的个数的表达式,再根据求和公式列式计算即可得解.解答:解:第1个图形中点的个数为:1+3=4,第2个图形中点的个数为:1+3+5=9,第3个图形中点的个数为:1+3+5+7=16,…,第n个图形中点的个数为:1+3+5+…+(2n+1)==(n+1)2.故答案为:(n+1)2.点评:本题是对图形变化规律的考查,比较简单,观察出点的个数是连续奇数的和是解题的关键,还要注意求和公式的利用.12.(3分)(2013•南昌)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程x2﹣5x+6=0(答案不唯一).考点:根与系数的关系.专题:压轴题;开放型.分析:根据S△ABC=3,得出两根之积,进而根据根与系数的关系写出一个符合要求的一元二次方程即可.解答:解:∵一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,∴一元二次方程的两个根的乘积为:3×2=6,∴此方程可以为:x2﹣5x+6=0,故答案为:x2﹣5x+6=0(答案不唯一).点评:此题主要考查了根与系数的关系以及直角三角形的面积,根据已知得出两根之积进而得出答案是解题关键.13.(3分)(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.考点:平行四边形的性质.专题:压轴题.分析:由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.解答:解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.点评:本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.14.(3分)(2013•南昌)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.考点:垂径定理;等边三角形的判定与性质.专题:压轴题.分析:分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.解答:解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.点评:本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角、弧、弦间的关系.三、(本大题共2小题,每小题5分,共10分)15.(5分)(2013•江西)解不等式组,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:压轴题.分析:首先分别解出两个不等式的解集,再根据:大小小大取中间确定不等式组的解集即可.解答:解:,由①得:x≥﹣1,由②得:x<3,故不等式组的解集为:﹣1≤x<3.如图所示:.点评:此题主要考查了解一元一次不等式组,关键是正确解出两个不等式,掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.(5分)(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.考点:作图—复杂作图.专题:压轴题.分析:(1)根据圆周角定理:直径所对的圆周角是90°画图即可;(2)与(1)类似,利用圆周角定理画图.解答:解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.点评:此题主要考查了复杂作图,关键是掌握三角形的三条高交于一点,直径所对的圆周角是90°.四、(本大题共2小题,每小题6分,共12分)17.(6分)(2013•南昌)先化简,再求值:÷+1,在0,1,2三个数中选一个合适的,代入求值.考点:分式的化简求值.专题:压轴题.分析:首先将原式能分解因式的分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,最后根据分式的性质,选出有意义的x的值,即可得到原式的值.解答:解:÷+1=÷+1=×+1=+1=,当x=0或2时,分式无意义,故x只能等于1,原式=.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.18.(6分)(2013•南昌)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A、乙抽到一件礼物B、乙恰好抽到自己带来的礼物C、乙没有抽到自己带来的礼物D、只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.考点:列表法与树状图法;随机事件.专题:压轴题;图表型.分析:(1)根据必然事件、随机事件的定义对各选项分析判断后利用排除法求解;(2)画出树状图,然后根据概率公式列式进行计算即可得解.解答:解:(1)A、乙抽到一件礼物是必然事件;B、乙恰好抽到自己带来的礼物是随机事件;C、乙没有抽到自己带来的礼物是随机事件;D、只有乙抽到自己带来的礼物是随机事件;故选A;(2)设甲、乙、丙三人的礼物分别记为a、b、c,根据题意画出树状图如下:一共有6种等可能的情况,三人抽到的礼物分别为(abc)、(acb)、(bac)、(bca)、(cab)、(cba),3人抽到的都不是自己带来的礼物的情况有(bca)、(cab)有2种,所以,P(A)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题8分,共16分)19.(8分)(2013•南昌)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.专题:压轴题.分析:(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.解答:解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6,即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=.点评:本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.20.(8分)(2013•南昌)生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)考点:条形统计图;用样本估计总体;扇形统计图.专题:压轴题.分析:(1)根据扇形统计图和条形统计图中B所代表的数据求出总人数,即可得出C代表的人数;(2)根据(1)中所求,得出浪费掉的总量进而得出平均数;(3)根据每次会议人数约在40至60人之间可以为50人,利用(2)中所求,进而求出总数.解答:解:(1)参加这次会议的人数:25÷50%=50,D所在扇形的圆心角:360°××100%=36°,C的人数:50﹣25﹣10﹣5=10,如图所示:(2)(500××25+500××10+500×5)÷50≈183(毫升);(3)183×60×÷500≈1098(瓶),答:浪费的矿泉水(500ml/瓶)约有1098瓶.点评:此题主要考查了条形统计图与扇形统计图的综合应用,根据图象得出正确信息是解题关键.六、(本大题共2小题,每小题9分,共18分)21.(9分)(2013•南昌)如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学记算器)考点:解直角三角形的应用;扇形面积的计算.专题:压轴题.分析:(1)根据平行线的性质得出雨刮杆AB旋转的最大角度,再利用锐角三角函数关系和勾股定理求出EO,AE,BO的长即可;(2)根据雨刮杆AB扫过的最大面积即为以BO为半径的半圆,进而得出答案即可.解答:解:(1)如图所示:A点转到C点,B点转到D点,启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,故雨刮杆AB旋转的最大角度为:180°,过点O作OE⊥BA,交BA延长线于点E,连接BO,∵∠OAB=120°,∴∠OAE=60°,∴∠EOA=30°,∵OA长为10cm,∴EA=OA=5(cm),∴EO==5(cm),∵AB长为48cm,∴EB=48+5=53(cm),∴BO===2≈53.70(cm);答:雨刮杆AB旋转的最大角度为180°,O、B两点之间的距离约为53.70cm;(2)∵雨刮杆AB旋转180°得到CD,即△OCD与△OAB关于点O中心对称,∴△BAO≌△DCO,∴S△BAO=S△DCO,∴雨刮杆AB扫过的最大面积S=π(OB2﹣OA2)=1392π(cm2).答:雨刮杆AB扫过的最大面积为1392πcm2.点评:此题主要考查了解直角三角形的应用以及勾股定理和扇形面积求法、勾股定理等知识,利用平行线的性质得出旋转的最大角是解题关键.22.(9分)(2013•江西)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y 轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)OB=OA=2,推出AP∥x轴,推出AP⊥OA,根据切线的判定推出即可;(2)根据切线长定理求出PA=PB=4,根据勾股定理得出x2+y2=22,42=(x﹣4)2+(y﹣2)2,求出x=0,y=2(舍去)或x=,y=﹣,即可得出B的坐标;(3)求出A(0,2),设直线AB的解析式是y=kx+2,把B的坐标代入求出k即可.解答:(1)证明:∵以点O为圆心,半径为2的圆与y轴交点A,∴OA=2,∵P(4,2),∴AP∥x轴,∵y轴⊥x轴,∴AP⊥OA,∵OA为半径,∴PA是⊙O的切线;(2)解:设B(x,y),∵OB=2,∴x2+y2=22,①∵P(4,2),PA和PB都是⊙O切线,∴PA=PB=4,∴42=(x﹣4)2+(y﹣2)2,②,解由①②组成的方程组得:x=0,y=2(舍去)或x=,y=﹣,∴B的坐标是(,﹣);(3)解:∵OA=2,∴A(0,2),∴设直线AB的解析式是y=kx+2,把B的坐标代入得:﹣=k+2,k=﹣2,即直线AB的解析式是y=﹣2x+2.点评:本题考查了切线长定理,切线的性质和判定,勾股定理,用待定系数法求一次函数的解析式等知识点的应用,主要考查学生综合运用性质进行计算的能力.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(10分)(2013•江西)某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:。
江西省年中等学校招生考试数学试卷解析说明:.本卷共有七个大题,个小题,全卷满分分,考试时间分钟。
.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(本大题共个小题,每小题分,共分)每小题只有一个正确选项..-的倒数是()...-.±.【答案】.【考点解剖】本题考查了实数的运算性质,要知道什么是倒数.【解题思路】根据倒数的定义,求一个数的倒数,就是用除以这个数,所以-的倒数为,选.【解答过程】∵,∴选.【方法规律】根据定义直接计算.【关键词】实数倒数.下列计算正确的是()...(-)-.÷.(-)【答案】.【考点解剖】本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】根据法则直接计算.【解答过程】.与不是同类项,不能相加(合并),与相乘才得;.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为;.两个单项式相除,系数与系数相除,相同的字母相除(同底数幂相除,底数不变,指数相减),正确的结果为;.考查幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选.【方法规律】熟记法则,依法操作.【关键词】单项式多项式幂的运算.下列数据是年月日点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()..和.和.和.和【答案】.【考点解剖】本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】根据中位数、众数的定义直接计算.【解答过程】根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以、、、、、的中位数是和的平均数,众数为,选.【方法规律】熟知基本概念,直接计算.【关键词】统计初步中位数众数.如图,直线-与双曲线交于,两点,则当线段的长度取最小值时,的值为().....【答案】.【考点解剖】本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】反比例函数图象既是轴对称图形又是中心对称图形,只有当、、三点共线时,才会有线段的长度最小,(当直线的表达式中的比例系数不为时,也有同样的结论).【解答过程】把原点(,)代入中,得.选..【方法规律】要求的值,必须知道、的值(即一点的坐标)由图形的对称性可直观判断出直线过原点(,)时,线段才最小,把原点的坐标代入解析式中即可求出的值.【关键词】反比例函数一次函数双曲线线段最小.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().【答案】.【考点解剖】本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.【解题思路】可用排除法,、两选项有迷惑性,是主视图,不是什么视图,少了上面的一部分,正确答案为.【解答过程】略.【方法规律】先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.【关键词】三视图坐凳.若二次涵数(≠)的图象与轴有两个交点,坐标分别为(,),(,),且<,图象上有一点 (,)在轴下方,则下列判断正确的是()..> .-≥.<< .(-)( -)<【答案】.【考点解剖】本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.【解题思路】抛物线与轴有不同的两个交点,则,与矛盾,可排除选项;剩下、、不能直接作出正误判断,我们分><两种情况画出两个草图来分析(见下图).由图可知的符号不能确定(可正可负,即抛物线的开口可向上,也右向下),所以的大小就无法确定;在图中,>且有,则的值为负;在图中,<且有,则的值也为负.所以正确选项为.【解答过程】略.【方法规律】先排除错误的,剩下的再画图分析(数形结合)【关键词】二次函数结论正误判断二、填空题(本大题共小题,每小题分,共分).分解因式-.【答案】()(-).【考点解剖】本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.【解题思路】直接套用公式即.【解答过程】.【方法规律】先观察式子的特点,正确选用恰当的分解方法.【关键词】平方差公式因式分解.如图△中,∠°点在边上,∥,若∠°,则∠的度数为.【答案】°.【考点解剖】本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较为简单,但有些考生很简单的计算都会出错,如犯之类的错误.【解题思路】由,可求得,最后求.【解答过程】∵∠°, ∴∠°.又∵∥,∴∠∠°,在△中,∠°,∴∠∠°,∴∠°.【方法规律】一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形内角和定理、两直线平行,内错角相等,等量代换等知识和方法.【关键词】邻补角内错角互余互补.某单位组织人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的倍多人,求到两地的人数各是多少?设到井冈山的人数为人,到瑞金的人数为人,请列出满足题意的方程组是.【答案】.【考点解剖】本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.【解题思路】这里有两个等量关系:井冈山人数瑞金人数,井冈山人数瑞金人数×.所以所列方程组为.【解答过程】略.【方法规律】抓住关键词,找出等量关系【关键词】列二元一次方程组.如图,矩形中,点、分别是、的中点,连接和,分别取、的中点、,连接,,,若,,则图中阴影部分的面积为.【答案】.【考点解剖】本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.【解题思路】△与△全等,面积也相等,口与口的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.【解答过程】,即阴影部分的面积为.【方法规律】仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】矩形的面积二次根式的运算整体思想.观察下列图形中点的个数,若按其规律再画下去,可以得到第个图形中所有的个数为(用含的代数式表示).【答案】().【考点解剖】本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示.【解答过程】略.【方法规律】由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】找规律连续奇数的和.若一个一元二次方程的两个根分别是△的两条直角边长,且△,请写出一个..符合题意的一元二次方程.【答案】-.【考点解剖】本题是道结论开放的题(答案不唯一),已知直角三角形的面积为(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为、的直角三角形的面积就是,以、为根的一元二次方程为;也可以以、为直角边长,得方程为.(求作一元二次方程,属“一元二次方程根与系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)【解题思路】先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】略.【方法规律】求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.【关键词】直角三角形根求作方程.如图,□与□的周长相等,且∠°,∠°,则∠的度数为.【答案】°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边,则有,即△为等腰三角形,顶角∠∠°°°,∴∠°.【解答过程】∵□与□的周长相等,且有公共边,∴, ∠∠°°°.∴∠.【方法规律】先要明确∠的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠°转化为∠°,∠°转化为∠°,从而求得∠∠°.【关键词】平行四边形等腰三角形周长求角度.平面内有四个点、、、,其中∠°,∠°,,则满足题意的长度为整数的值可以是.【答案】,,.【考点解剖】本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.【解题思路】由∠°,画出一个顶角为°、腰长为的等腰三角形,由与互补,是的一半,点是动点想到构造圆来解决此题.【解答过程】【方法规律】构造恰当的图形是解决此类问题的关键.【关键词】圆整数值三、(本大题共小题,每小题分,共分).解不等式组并将解集在数轴上表示出来.【答案】解:由≥得≥-,由-得<,∴不等式组的解集为-≤<.解集在数轴上表示如下:【考点解剖】本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.【解答过程】【方法规律】要保证运算的准确度与速度,注意细节(不要搞错符号).【关键词】不等式组数轴.如图是半圆的直径,图中,点在半圆外;图中,点在半圆内,请仅用无刻度...的直尺按要求画图.()在图中,画出△的三条高的交点;()在图中,画出△中边上的高.【答案】()如图,点就是所求作的点;()如图,为边上的高.【考点解剖】本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题()是要作点,题()是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】图点在圆外,要画三角形的高,就是要过点作的垂线,过点作的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造度角,显然由圆的直径就应联想到“直径所对的圆周角为度”.设与圆的交点为, 连接,就得到边上的高;同理设与圆的交点为, 连接,就得到边上的高,则与的交点就是△的三条高的交点;题()是题()的拓展、升华,三角形的三条高相交于一点,受题()的启发,我们能够作出△的三条高的交点,再作射线与交于点,则就是所求作的边上的高.【解答过程】略.【方法规律】认真分析揣摩所给图形的信息,结合题目要求思考.【关键词】创新作图圆三角形的高四、(本大题共小题,每小题分,共分).先化简,再求值:,在,,,三个数中选一个合适的,代入求值.【答案】解:原式·.当时,原式.【考点解剖】本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.【解题思路】先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到,可通分得,也可将化为求解.【解答过程】略.【方法规律】根据式子的特点选用恰当的解题顺序和解题方法.【关键词】分式化简求值.甲、乙、丙人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将件礼物放在一起,每人从中随机抽取一件.()下列事件是必然事件的是()..乙抽到一件礼物.乙恰好抽到自己带来的礼物.乙没有抽到自己带来的礼物.只有乙抽到自己带来的礼物()甲、乙、丙人抽到的都不是自己带来的礼物(记为事件),请列出事件的所有可能的结果,并求事件的概率.【答案】().()依题意画树状图如下:从上图可知,所有等可能结果共有种,其中第、种结果符合,∴().【考点解剖】本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.【解题思路】()是选择题,根据必然事件的定义可知选;()三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为种,其中只有第、种结果符合,∴();也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴().【解答过程】略.【方法规律】要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.【关键词】必然事件概率抽取礼物五、(本大题共小题,每小题分,共分).如图,在平面直角坐标系中,反比例函数(>)的图象和矩形的第一象限,平行于轴,且,,点的坐标为(,) .()直接写出、、三点的坐标;()若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】()(,),(,),(,).()如图,矩形向下平移后得到矩形,设平移距离为,则′(,-),′(,-)∵点′,点′在的图象上,∴(-)(-),解得,∴点′(,),∴反比例函数的解析式为.【考点解剖】本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】先根据矩形的对边平行且相等的性质得到、、三点的坐标,再从矩形的平移过程发现只有、两点能同时在双曲线上(这是种合情推理,不必证明),把、两点坐标代入中,得到关于、的方程组从而求得的值.【解答过程】略.【方法规律】把线段的长转化为点的坐标,在求的值的时候,由于的值等于点的横坐标与纵坐标之积,所以直接可得方程(-)(-),求出后再由坐标求,实际上也可把、两点坐标代入中,得到关于、的方程组从而直接求得的值.【关键词】矩形反比例函数待定系数法.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:.全部喝完;.喝剩约;.喝剩约一半;.开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:()参加这次会议的有多少人?在图()中所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).()若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升..?()据不完全统计,该单位每年约有此类会议次,每次会议人数约在至人之间,请用()中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(瓶)约有多少瓶.?(可使用科学计算器)【答案】()根据所给扇形统计图可知,喝剩约的人数是总人数的,∴÷,参加这次会议的总人数为人,∵×°°,∴所在扇形圆心角的度数为°,补全条形统计图如下;()根据条形统计图可得平均每人浪费矿泉水量约为:(×××××)÷÷≈毫升;()该单位每年参加此类会议的总人数约为人人,则浪费矿泉水约为×÷瓶.【考点解剖】本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.【解题思路】()由扇形统计图可看出类占了整个圆的一半即(遗憾的是扇形中没有用具体的数字(百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图又知类共人,这样已知部分数的百分比就可以求出总人数,而类有人,已知部分数和总数可以求出类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知总人数和、、类的人数可求出类的人数为人,将条形统计图中补完整;()用总的浪费量除以总人数就得到平均每人的浪费量;()每年开次会,每次会议将有至人参加,这样折中取平均数算一年将有人参加会议,用乘以()中的结果(平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可.【解答过程】略.【方法规律】能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求什么(不要被其它无关信息干扰).【关键词】矿泉水统计初步六、(本大题共小题,每小题分,共分).如图,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线,如图所示,量得连杆长为,雨刮杆长为,∠°.若启动一次刮雨器,雨刮杆正好扫到水平线的位置,如图所示.()求雨刮杆旋转的最大角度及、两点之间的距离;(结果精确到)()求雨刮杆扫过的最大面积.(结果保留π的整数倍)(参考数据:°,°,°,≈,可使用科学计算器)【答案】解:()雨刮杆旋转的最大角度为°.连接,过点作的垂线交的延长线于,∵∠°,∴∠°在△中,∵∠°,,∴∠,∴,∴.∴,在△中,∵,,∴≈;()∵雨刮杆旋转°得到,即△与△关于点中心对称,∴△≌△,∴△△,∴雨刮杆扫过的最大面积π(-)π.【考点解剖】本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).【解题思路】将实际问题转化为数学问题,()旋转的最大角度为°;在△中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠°想到作边上的高,得到一个含°角的△和一个非特殊角的△.在△中,已知∠°,斜边,可求出、的长,进而求得△中的长,再由勾股定理求出斜边的长;()雨刮杆扫过的最大面积就是一个半圆环的面积(以、为半径的半圆面积之差).【解答过程】略.【方法规律】将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】刮雨器三角函数解直角三角形中心对称扇形的面积.如图,在平面直角坐标系中,以点为圆心,半径为的圆与轴交于点,点(,)是⊙外一点,连接,直线与⊙相切于点,交轴于点.()证明是⊙的切线;()求点的坐标;()求直线的解析式.【答案】()证明:依题意可知,(,)∵(,),(,),∴∥轴.∴∠°,且点在⊙上,∴是⊙的切线;()解法一:连接,,作⊥轴于点,⊥轴于点,∵切⊙于点,∴∠°,即∠∠,又∵,∠∠.∴△≌△.∴.(或证△≌△,再得到也可)设,则有,--,在△中,∵,∴(-),解得,……………………分∴-,∵··,即××××,∴.∴,由点在第四象限可知(,);解法二:连接,,作⊥轴于点,⊥轴于点,∵切⊙于点,∴∠°即∠∠.又∵,∠∠,∴△≌△.∴(或证△≌△,再得到也可)设,则有,--,在△中,∵+,∴(-),解得,………………………………分∴-,∵∥轴,∴∠∠,又∵∠∠°,∴△∽△,∴,即.∴,.由点在第四象限可知(,);()设直线的解析式为,由(,),(,),可得;解得∴直线的解析式为-.【考点解剖】本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】()点在圆上,要证是圆的切线,只要证⊥(∠°)即可,由、两点纵坐标相等可得∥轴,所以有∠∠°得∠°;()要求点的坐标,根据坐标的意义,就是要求出点到轴、轴的距离,自然想到构造△,由又是⊙的切线,得△≌△,从而得△为等腰三角形,在△中,,,列出关于的方程可求出、的长,△的三边的长知道了,就可求出高,再求即可求得点的坐标;()已知点、点的坐标用待定系数法可求出直线的解析式.【解答过程】略.【方法规律】从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.【关键词】切线点的坐标待定系数法求解析式七、(本大题共小题,第题分,第题分,共分).某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△中,,分别以和为斜边,向△的外侧作等腰直角三角形,如图所示,其中⊥于点,⊥于点,是的中点,连接和,则下列结论正确的是(填序号即可)①;②;③整个图形是轴对称图形;④∠∠.●数学思考:在任意△中,分别以和为斜边,向△的外侧..作等腰直角三角形,如图所示,是的中点,连接和,则和具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△中,仍分别以和为斜边,向△的内侧作等腰直角三角形,如图所示,是的中点,连接和,试判断△的形状.答:.【答案】解:●操作发现:①②③④●数学思考:答:,⊥,1、;如图,分别取,的中点,,连接,,,,∵是的中点,∴∥,.又∵是等腰△斜边上的中线,∴⊥且,∴.同理可证.∵∥,∴∠+∠°.同理可得∠∠°,∴∠∠.又∵⊥,∴∠°.同理可得∠°,∴∠∠∠∠,即∠∠,又,,∴△≌△(),∴.、⊥;证法一:∵∥,∴∠∠°,又∵△≌△,∴∠∠.∴∠∠∠∠°,其中∠∠∠°,∴∠°.即⊥;证法二:如图,与交于点,∵∥,∴∠∠,又∵∠∠∠,即∠∠°,∵∠∠∠,∴∠°即⊥;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】()由图形的对称性易知①、②、③都正确,④∠∠°也正确;()直觉告诉我们和是垂直且相等的关系,一般由全等证线段相等,受图△≌△的启发,应想到取中点构造全等来证,证⊥就是要证∠°,由△≌△得∠∠, △中四个角相加为°,∠可看成三个角的和,通过变形计算可得∠°.()只要结论,不要过程,在()的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)【关键词】课题学习全等开放探究.已知抛物线抛物线()(为正整数,且<<<…<)与轴的交点为()和(,),当时,第条抛物线()与轴的交点为(,)和(,),其他依此类推.()求的值及抛物线的解析式;()抛物线的顶点坐标为(,);依此类推第条抛物线的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;()探究下列结论:①若用表示第条抛物线被轴截得得线段长,直接写出的值,并求出;②是否存在经过点(,)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.【答案】解:()∵―(―)与轴交于点(,),∴―,∴或.由已知可知>,∴.即―(―)方法一:令代入得:―(―),∴,,∴与轴交于(,),(,)∴,方法二:∵―(―)与轴交于点(,),∴―(―),或,(舍去).∴.又∵抛物线―(―)与轴交于点(,),∴―(―),∴或,∵>,∴(舍去).∴取,抛物线―(―).()(,);(,).详解如下:∵抛物线―(―)令代入得:―(―),∴,.∴与轴交于点(,),(,).又∵抛物线―(―)与轴交于(,),∴―(―)∴或,∵>,∴(舍去),即,∴抛物线的顶点坐标为(,).由抛物线的顶点坐标为(,),的顶点坐标为(,),的顶点坐标为(,),依次类推抛物线的顶点坐标为(,).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:;③∵(,),(,),∴.又∵―(―),令,∴―(―),。
中等学校招生考试数学试题满分120分,考试时间60分钟.一、选择题(本大题共6个小题,每小题3分,共18分)1.-1的倒数是().A.1B.-1C.±1D.02.下列计算正确的是().A.a2+a2=a5B.(3a-b)2=9a2-b2C.a6b÷a2=a3b D.(-ab3)2=a2b63.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数34216316545227163则这组数据的中位数和众数分别是().A.164和163B.105和163C.105和164D.163和16444.如图,直线y=x+a-2与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a的值为(x).A.0B.1C.2D.55.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().6.若二次涵数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有,y0)在x轴下方,则下列判断正确的是().一点M (xA.a>0B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)( x0-x2)<0二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x2-4= .8.如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.10.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取23DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程.13.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°, 则∠DAE 的度数为 .14.平面内有四个点A 、O 、B 、C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足题意的OC 长度为整数的值可以是 .三、(本大题共2小题,每小题5分,共10分)15.解不等式组并将解集在数轴上表示出来.⎩⎨⎧>-+≥+,33)3(2,12x x x16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点; (2)在图2中,画出△ABC 中AB 边上的高.四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:,在0,1,2,三个数中选一个合适的,代入求值.12244222+-÷+-x x x x x x 18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( ).A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物 D .只有乙抽到自己带来的礼物 (2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.五、(本大题共2小题,每小题8分,共16分)19.如图,在平面直角坐标系中,反比例函数(x >0)的图象和矩形ABCD 的第一象限,AD 平行于x xk y =轴,且AB =2,AD =4,点A 的坐标为(2,6) .(1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约;C .喝剩约一半;D .开瓶31但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶不但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(3)据不完全统计,该单位每年约有此类会议60人,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml /瓶)约有多少瓶?(可使用科学计算器)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm ,∠OAB =120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示. (1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍) (参考数据:sin 60°=,cos 60°=,tan 60°=,≈26.851,可使用科学计算器)2321372122.如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点P (4,2)是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C .(1)证明PA 是⊙O 的切线;(2)求点B 的坐标;(3)求直线AB 的解析式.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)1①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.2●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M 是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.24.已知抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.参考答案一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.B2.D3.A4.C5.C6.D二、填空题(本大题共8小题,每小题3分,共24分)7.(x +2)(x -2) 8.65° 9. 10.2 11. (n +1)2 12.x 2-5x +6=0⎩⎨⎧+==+12,34y x y x 6 13.25° 14. 2,3,4三、(本大题共2小题,每小题5分,共10分)15.解:由x +2≥1得x ≥-1,由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3.将解集在数轴上表示为:16.解:在图1中,点P 即为所求;在图2中,CD 即为所求.四、(本大题共2小题,每小题6分,共12分)17.解:原式=·+1x x 2)2(2-)2(2-x x x =12+-x x =.2x当x =1时,原式=.2118.解:(1)A(2)依题意可画树状图(下列两种方式均可):(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲②丙甲乙(按左图)或①(甲乙),(乙丙),(丙甲);②(甲丙),(乙甲),(丙乙)(按右图)∴P (A )== .6231五、(本大题共2小题,每小题8分,共16分)19.解:(1)B (2,4),C (6,4),D (6,6) 如图,矩形ABCD 平移后得到矩形A ′B ′C ′D ′,设平移距离为a ,则A ′(2,6-a ),C ′(6,4-a )∵点A ′,点C ′在y =的图象上,x k ∴2(6-a )=6(4-a ), 解得a =3, ∴点A ′(2,3),∴反比例函数的解析式为.6y x 20.解:(1)根据所给扇形统计图可知,喝剩约的人数是总人数的50%,31∴25÷50%=50,参加这次会议的总人数为50人, ∵×360°=360°,505∴D 所在扇形圆心角的度数为36°, 初全条形统计图如右; (2)根据条形统计图可得平均每人浪费矿泉水量约为:(25××500+10×500×+5×500)÷503121=÷50≈183毫升; 327500(3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.六、(本大题共2小题,每小题9分,共18分)21.解:(1)雨刮杆AB 旋转的最大解度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH 噗,∵∠OAB =120°,∴∠OAE =60°在Rt △OAE 中,∵∠OAE =60°,OA =10,∴sin ∠OAE ==,OA OE 10OE∴OE =5,3∴AE =5∴EB =AE +AB =53,在Rt △OEB 中,∵OE =5,EB =53,3∴OB ===2≈53.70;22BE OE +2884721(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称,∴△BAO ≌△OCD ,∴S △BAO =S △DCO ,(直接证明全等得到面积相等的也给相应的分值) ∴雨刮杆AB 扫过的最大面积S =π(OB 2-OA 2) =1392π2122.解:(1)证明:依题意可知,A (0,2)∵A (0,2),P (4,2),∴AP ∥x 轴,∴∠OAP =90°,且点A 在⊙O 上,∴PA 是⊙O 的切线;(2)解法一:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥x 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP =90°,即∠OBP =∠PEC又∵OB =PE =2,∠OCB =∠PEC∴△OBC ≌△PEC∴OC =PC(或证Rt △OAP ≌△OBP ,再得到OC =PC 也可)设OC =PC =x ,则有OE =AP =4,CE =OE -OC =4-x ,在Rt △PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x )2+22,解得x =,25∴BC =CE =4-=,2523∵OB ·BC =OC ·BD ,即×2×=××BD ,∴BD =21212123212556∴OD ===,22BD OB -25364-58由点B 在第四象限可知B (,);5856-解法二:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥y 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP =90°即∠OBP =∠PEC又∵OB =PE =2,∠OCB =∠PEC∴△OBC ≌△PEC∴OC =PC (或证Rt △OAP ≌△OBP ,再得到OC =PC 也可)设OC =PC =x ,则有OE =AP =4,CE =OE -OC =4-x ,在Rt △PCE 中,∵PC 2=CE 2PE 2,∴x 2=(4-x )2+22,解得x =, 25∴BC =CE =4-=,2523∵BD ∥x 轴,∴∠COB =∠OBD ,又∵∠OBC =∠BDO =90°,∴△OBC ∽△BDO , ∴==,BD OB OD CB BO OC 即==,BD 2BD 23225∴BD =,OD =, 5856由点B 在第四象限可知B (,); 5856-(3)设直线AB 的解析式为y =kx +b ,由A (0,2),B (,),可得; 5856-⎪⎩⎪⎨⎧-=+=5658,2b k b 解得∴直线AB 的解析式为y =-2x +2.⎩⎨⎧-==,2,2k b 七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.解:●操作发现:①②③④ 答:MD =ME ,MD ⊥ME , 先证MD =ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG ,∵M 是BC 的中点,∴MF ∥AC ,MF =AC ,21又∵EG 是等腰Rt △AEC 斜边上的中线,∴EG ⊥AC 且EG =AC ,21∴MF =EG ,同理可证DF =MG ,∵MF ∥AC ,∠MFA =∠BAC =180°同事可得∠MGA +∠BAC =180°,∴∠MFA =∠MGA ,又∵EG⊥AC,∴∠EGA =90°,同理可得∠DFA =90°,∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME,再证MD⊥ME;证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,又∵△DFM≌△MGE,∴∠MEG=∠MDF,∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°,即MD⊥ME;证法二:如图2,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH即∠DHA=∠FDM+90°∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形24.解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1,由已知可知a1>0,∴a1=1,即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去),∴b1=2,又∴抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去),∴取a2=4,抛物线y2=―(x―4)2+4.(2)(9,9);(n2,n2)y=x.详解如下:∵抛物线y2=―(x―4)2+4令y2=0代入得:―(x―4)2+4=0,∴x1=2,x2=6,∴y2与x轴交于点A1(2,0),A2(6,0),又∵抛物线y3=―(x―a3)2+a3与x轴交于A2(6,0),∴―(6―a3)2+a3=0∴a3=4或9,∵a3> a3,∴a3=4(舍去),只取a3=9,招物线y3的顶点坐标为(9,9),∵由y1的顶点坐标为(1,1),y2的顶点坐标为(4,4),抛物线y3的的顶点坐标为(9,9),依次类推抛物线y n的顶点坐标为(n2,n2).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y= x;③∵A0(0,0),A1(2,0),∴A0A1=2,又∵y n=―(x―n2)2+n2,令y n=0,∴―(x―n2)2+n2=0,即x1=n2+n,x2=n2-n,∴A n-1(n2-n,0),A n(n2+n,0),即A n-1A n=( n2+n)-( n2-n)=2 n②存在,是平行于y=x且过A1(2,0)的直线,其表达式为y=x-2.江西省2013年中等学校招生考试数学试卷解析说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。
江西省临川一中2013—2014学年度下学期期中考试初三数学试卷卷面分:120分 考试时间:120分钟 命题人:黄友发 审题人:危少峰一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-23的倒数是( ) A.32 B.- 32 C. -23 D. 232.下列计算中,结果正确的是( )A. (2a)·(3a)=6aB.a 6÷a 2=a 3C.(a 2)3 =a 6D.a 2·a 3=a 63.与如图所示的三视图对应的几何体是( )A .B .C .D .4.中国老龄办公布的《“十一五”期间中国老龄事业发展状况》称,“十一五”期间,中国养老保障制度不断完善。
截至2011年初,全国城镇基本养老保险参保人数为25673 0000人,保留两个有效数字后为( )A 、260000000B 、82.610⨯C 、72610⨯D 、300000000 5.在△ABC 中,∠C=90°,BC=4,sinA=32,那么AC 边的长是( ) A.6 B.25 C.35 D.2136. 某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m (吨)与时间t (小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是( )二、填空题(本大题共8小题,每小题3分,共24分) 7. 分解因式:3mn 2-12m=______ 。
8. x k y -=经过一、三象限,点(-1,y 1)、(2,y 2)在函数xky -=的图象上,则y 1 y 2(填“>”或“=”或“<”)9. 如右图,在菱形ABCD 中,∠ADC=72°,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则∠CPB=.10.函数xx y -=3中自变量x 的取值范围是 .A .8.4小时B .8.6小时C .8.8小时D .9小时11.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,剩该厂四、五月份的月平均增长率为 . 12. 现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 cm .13. 二次函数a ax x y ++=2与x 轴的交点分别是)0,()0,(21x B x A 、,且102121-=-+x x x x ,则抛物线的顶点坐标 .14. 如右图,在Rt △ABC 中,∠C=90°,翻折∠C ,使点C 落在斜边AB 上某一点D 处,折痕为EF (点E 、F 分别在边AC 、BC 上)若以CEF 为顶点的△与以ABC 为顶点的三角形相似且AC=3,BC=4时,则AD 的长为 . 三、(本大题共2小题,每小题5分,共10分)15. 解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥16. 如图(1),在四边形ABCD 内,如果点P 满足APD APB α∠=∠=,且BPC CPD β∠=∠=, 则称点P 为四边形ABCD 的一个半等角点,按要求用直尺画图。
(1)画出正方形ABCD 的一个半等角点P ,且满足αβ≠; (2)画出四边形ABCD 的一个半等角点P ,保留画图痕迹。
四、(本大题共2小题,每小题6分,共12分) 17. 先化简,再求代数式的值.1)1313(2-÷---+a aa a a ,其中︒<<︒-60tan 30sin 2a ,请你取一个合适..的整数作为a 的值代入求值.18. 有3张背面相同的纸牌A ,B ,C ,其正面分别画有三个不同的几何图形(如图). 将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1) 求出两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌可用A ,B ,C 表示). (2) 求摸出两张牌面图形都是中心对称图形的纸牌的概率 .五、(本大题共2小题,每小题8分,共16分)A 正三角形B 圆C平行四边形AA B B CC DD19.如图①,将四边形纸片ABCD 沿两组对边中点连线剪切为四部分,将这四部分镶嵌可得到如图②所示的四边形4321O O O O .(1)试判断四边形4321O O O O 的形状,并证明.(2)若要镶嵌后的平行四边形4321O O O O 为矩形,则四边形ABCD 需要满足什么条件,并证明.20.如图,四边形OABC 是面积为4的正方形,函数y =xk(x >0)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC′、NA′BC .设线段MC′、NA′分别与函数y =xk(x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式.六、(本大题共2小题,每小题9分,共18分)21. 如图,小刚同学在綦江南州广场上观测新华书店楼房墙上的电子屏幕CD ,点A 是小刚的眼睛,测得屏幕下端D 处的仰角为30°,然后他正对屏幕方向前进了6米到达B 处,又测得该屏幕上端C 处的仰角为45°,延长AB 与楼房垂直相交于点E ,测得BE=21米,请你帮小刚求出该屏幕上端与下端之间的距离CD .(结果保留根号)22. 某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?OO 1O 2O 3O 4(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?七、(本大题共2小题,第23题10分,第24题12分,共22分) 23. 如图,已知:∠MAN=︒60,AP 平分∠MAN ,且AP=4。
请探究:(1)如图<1>,若以AP 为直径作O Θ,分别交AM 、AN 于B 、C ,求AB+AC 的长; (2)如图<2>,若以AP 为弦(不是直径),任作O Θ1分别交AM 、AN 于B 1、C 1点,则A B 1+AC 1的长是否不变?请说明理由;(3)如图<3>,若以AP 为弦(不是直径)作O Θ2与AM 切于A 点,交AN 于C 2点,则A C 2的长是多少?请说明理由。
24. 如图,已知抛物线y = ax 2+ bx -3与x 轴交于A 、B 两点,与y 轴交于C 点,经过A 、B 、C 三点的圆的圆心M (1,m )恰好在此抛物线的对称轴上,⊙M 的半径为5.设⊙M 与y 轴交于D ,抛物线的顶点为E .(1)求m 的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin (α-β)的值; (3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCE 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.临川一中数学考试答案一、选择题(本大题共8小题,每小题3分,共24分,)每小题只有一个正确答案.P N M B C A O图<1> O P N M B CA C 1B 1O 1图<2>O PNM BC A C 2O 2图<3>BCBBBC二、填空题(本大题8小题,每小题3分,共24分)7.)2)(2(3-+n n m 8.< 9.72° 10.x<3 11.10℅ 12.2 13. )45,25(-- 14. 1.8或2.5 三、(本大题共2小题,每小题5分,共10分) 15.223≤<x 16.解:(1)所画的点P 在AC 上且不是AC 的中点和AC 的端点.(如图(2))(2)画点B 关于AC 的对称点B ′,延长DB ′交AC 于点P ,点P 为所求四、(本大题共2小题,每小题6分,共12分) 17..化简得:12+a ,当a=2时,值为3218. 解:(1)画树状图得:一共有9种情况,(2)摸出两张牌面图形都是中心对称图形的纸牌的概率是94五、(本大题共2小题,每小题8分,共16分)19.(1)平行四边形,证明略(2)对角线AC=BD 时,密铺后的平行四边形为矩形. 密铺后的平行四边形成为矩形,必须四个内角均为直角. 如解答图所示,连接EF 、FG 、GH 、HE ,设EG 与HF 交于点O , 连接AC 、BD ,由中位线定理得:EF ∥AC ∥GH ,且EF=GH=21AC , EH ∥BD ∥FG ,且EH=FG=21BD ,∵AC=BD ,∴中点四边形EFGH 为菱形.∴EG ⊥HF . 20.(1)k=4 (2) 直线EF 的解析式为y=-x+5 六、(本大题共2小题,每小题9分,共18分) 21. 解:∵∠CBE =45° CE ⊥AE ∴CE =BE =21 AE =21+6=27 在Rt △ADE 中,∠DAE =30° ∴DE =AE×tan 30°=27×33=93 ∴CD =CE -DE =21-93 ∴该屏幕上端与下端之间的距离CD =21-93 (米).22. (1)24÷30%=80(名),答:这次调查一共抽取了80名学生; (2)80×20%=16(名), 补全条形统计图,如图所示; (3)根据题意得:360°×︒=1178026在扇形统计图中,“公交车”部分所对应的圆心角为117°;(4)根据题意得:1600×2008010=(名), 答:估计该校乘坐私家车上学的学生约有200名.七、(本大题共2小题,第23题10分,第24题12分,共22分)23.(1)连接PB 、PC分分中和在、理由:连接分的长度不变)(分平分分的直径,为834AC AB C C AC B B -AB AC AB CC B B 7CC R R PCPB 90CP C ABP PC PB PC PB 30AP C AP B PCC PBB PC PB 5AC AB 2434AC AB 3223430cos AP AC AB MAN AP 290ACP ABP O 111111111111111111111⋯⋯⋯⋯=+=++=+∴=∴⋯⋯⋯⋯⋯⋯⋯⋯∆⋯⋯∆∴=∴︒=∠=∠=∴=∴︒=∠=∠∆∆⋯⋯⋯⋯⋯⋯+⋯⋯⋯⋯⋯⋯=+∴=⨯=︒==∴∠⋯⋯⋯⋯︒=∠=∠∴ΘP t PBB t AP分,即分为等腰三角形点,切于与则、,连接于并延长交)连接(1234CC AC AC 32CC AC AC PC 90ACP 10APC CAP P AC PAC D 30CAP BAP D 90BAP PAD A AM O 90PAD D 90APD PC PD D O AO 322222222222⋯⋯⋯⋯⋯⋯⋯⋯=+=∴==∴⊥︒=∠⋯⋯⋯⋯∴∠=∠∴∠=∠︒=∠=∠=∠∴︒=∠+∠∴Θ︒=∠+∠︒=∠∴Θ24. 解:(1)由题意可知C (0,-3),, ≌∴抛物线的解析式为y=ax2-2ax-3(a>0),过M作MN⊥y轴于N,连结CM,则MN=1,,∴CN=2,于是m=-1.同理可求得B(3,0),∴a×32-2-2a×3-3=0,得a=1,∴抛物线的解析式为y=x2-2x-3;(2)由(1)得A(-1,0),E(1,-4),D(0,1),∴在Rt△BCE中,,,∴,∴,即,∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=b,因此sin(a-b)=sin(∠DBC-∠OBD)=sin∠OBC=;(3)显然Rt△COA∽Rt△BCE,此时点P1(0,0),过A作AP2⊥AC交y正半轴于P2,由Rt△CAP2∽Rt△BCE,得,过C作CP3⊥AC交x正半轴于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0),故在坐标轴上存在三个点P1(0,0),P2(0,1∕3),P3(9,0),使得以P、A、C为顶点的三角形与BCE相似。