激光焊接Laser
- 格式:pdf
- 大小:3.61 MB
- 文档页数:35
什么是激光焊接——激光英才网属于熔融焊接,以激光束为能源,冲击在焊件接头上。
焊接特性激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。
激光焊接属非接触式焊接,作业过程不需加压,但需使用惰性气体以防熔池氧化,填料金属偶有使用。
激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。
激光焊接的主要优点(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。
(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。
(3)不需使用电极,没有电极污染或受损的顾虑。
且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。
(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。
(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。
(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件。
(7)可焊材质种类范围大,亦可相互接合各种异质材料。
(8)易于以自动化进行高速焊接,亦可以数位或电脑控制。
(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。
(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件。
(11)可焊接不同物性(如不同电阻)的两种金属。
(12)不需真空,亦不需做X射线防护。
(13)若以穿孔式焊接,焊道深一宽比可达10:1。
(14)可以切换装置将激光束传送至多个工作站。
激光焊接的主要缺点(1)焊件位置需非常精确,务必在激光束的聚焦范围内。
(2)焊件需使用夹治具时,必须确保焊件的最终位置需与激光束将冲击的焊点对准。
(3)最大可焊厚度受到限制渗透厚度远超过19mm的工件,生产线上不适合使用激光焊接。
(4)高反射性及高导热性材料如铝、铜及其合金等,焊接性会受激光所改变。
镭射工艺技术镭射工艺技术(Laser technology)是一种通过使用激光器进行切割、打孔、焊接、打标等工艺的技术,其应用广泛,包括电子、制造业、医疗、汽车、航空航天等众多领域。
镭射工艺技术的核心是激光器,激光器通过激光的放大产生了高能量的激光束,用于处理不同材料。
与传统机械切割相比,镭射工艺技术具有高精度、高可重复性、低热影响、不接触等优势。
这使得镭射工艺技术成为现代制造业中不可或缺的一部分。
在电子制造领域,镭射工艺技术被广泛应用于电路板的切割和打孔。
传统的机械工艺很难满足高密度电路板的生产要求,而镭射工艺技术可以实现微米级的切割精度,有效提高了电路板的质量和可靠性。
在制造业中,镭射工艺技术被用于各种材料的切割和焊接。
它可以处理金属、塑料、陶瓷等材料,并且不受材料硬度的限制。
这使得生产过程更加灵活高效,提高了生产效率。
医疗领域是镭射工艺技术的重要应用领域之一。
激光器的高能量激光可以在微创手术中用于切割组织和凝固血管,取代传统手术中的切割工具和缝合线。
这不仅减少了手术创伤,还缩短了恢复时间,提高了手术的成功率。
在汽车制造中,镭射工艺技术被用于车身焊接、零件切割和打标。
镭射焊接可以提供均匀、高质量、无焊痕的焊缝,提高了汽车的安全性和耐用性。
镭射切割可以实现复杂形状的零件加工,提高了制造效益。
打标则可以用于零件标记和防伪。
航空航天领域是镭射工艺技术的另一重要应用领域。
激光打标可以实现高精度的零件标记和序列号刻印,提高了零件的追踪性和识别性。
此外,激光焊接和切割也被广泛应用于飞机和火箭等航空航天器的组装和维修中。
虽然镭射工艺技术有很多应用领域,但是也面临一些挑战。
首先,激光设备和技术的高成本限制了它的普及和应用。
其次,激光加工过程中产生的热量和粉尘等副产品对环境和操作人员的安全性也提出了要求。
尽管存在一些挑战,镭射工艺技术仍然在不断发展和进步中。
随着技术的提升和成本的下降,相信镭射工艺技术将在未来发展中发挥更加重要的作用。
激光、光电、光学词汇中英文对照1. 激光(Laser)2. 光电效应(Photoelectric Effect)3. 光学(Optics)4. 光纤(Fiber Optic)5. 光谱(Spectrum)6. 折射率(Refractive Index)7. 透镜(Lens)8. 反射(Reflection)9. 干涉(Interference)10. 衍射(Diffraction)11. 偏振(Polarization)12. 激光切割(Laser Cutting)13. 激光焊接(Laser Welding)14. 光电探测器(Photoelectric Detector)15. 光电传感器(Photoelectric Sensor)16. 光学显微镜(Optical Microscope)17. 光学望远镜(Optical Telescope)18. 光学镜头(Optical Lens)19. 光学滤波器(Optical Filter)20. 光学编码器(Optical Enr)21. 光学通信(Optical Communication)22. 光学存储(Optical Storage)24. 光学子系统(Optical Subsystem)25. 光学设计(Optical Design)26. 光学加工(Optical Fabrication)27. 光学镀膜(Optical Coating)28. 光学检测(Optical Inspection)29. 光学成像(Optical Imaging)30. 光学治疗(Optical Therapy)31. 光学材料(Optical Materials)32. 光学元件(Optical Elements)33. 光学路径(Optical Path)34. 光学平台(Optical Platform)35. 光学子件(Optical Component)36. 光学连接器(Optical Connector)37. 光学开关(Optical Switch)38. 光学调制器(Optical Modulator)39. 光学衰减器(Optical Attenuator)40. 光学放大器(Optical Amplifier)41. 光学显示器(Optical Display)42. 光学子午线(Optical Meridian)43. 光学分辨率(Optical Resolution)44. 光学畸变(Optical Distortion)45. 光学厚度(Optical Thickness)46. 光学密度(Optical Density)48. 光学干涉仪(Optical Interferometer)49. 光学相干断层扫描(Optical Coherence Tomography)50. 光学扫描器(Optical Scanner)51. 光学跟踪(Optical Tracking)52. 光学遥感(Optical Remote Sensing)53. 光学成像系统(Optical Imaging System)54. 光学跟踪系统(Optical Tracking System)55. 光学定位系统(Optical Positioning System)56. 光学子午仪(Optical Meridian Instrument)57. 光学补偿器(Optical Compensator)58. 光学补偿器(Optical Corrector)59. 光学基准(Optical Reference)60. 光学基准面(Optical Reference Plane)这些词汇涵盖了激光、光电和光学领域的基本概念、技术和设备。
激光的特点、应用及原理一、激光的特点激光(laser)是一种特殊的光波,具有以下几个特点:1.高度聚焦性:激光具有高度聚焦性,可以通过光学器件将其聚焦到小的点上,因此激光可以集中能量,实现高精度的加工和测量。
2.单色性:激光是单色光,其波长非常狭窄,只有一个确定的波长。
这使得激光可以在光谱分析、激光干涉等领域有着广泛的应用。
3.相干性:激光是相干光,具有相位一致性。
这种相位一致性使得激光在干涉、衍射等光学现象中表现出特殊的特点。
4.高亮度:激光束非常亮,具有高亮度。
这使得激光可以在远距离传输,并且可以在光通信、激光雷达等领域发挥作用。
二、激光的应用激光由于其特殊的性质,在多个领域得到了广泛的应用,下面列举了一些常见的激光应用:1.激光切割和焊接:由于激光具有高度聚焦性和能量密集性,因此常被用于金属切割和焊接。
激光切割和焊接具有高效、精确的优点,在制造业中有广泛应用。
2.激光医学:激光在医学领域有着重要的应用。
例如,激光手术可以代替传统手术,减少损伤和愈合时间;激光美容可以去除痣、纹身等。
3.激光测量和定位:由于激光具有高精度和高亮度,因此经常被用于测量和定位。
激光测距仪、激光雷达等设备广泛应用于工程测量、地质勘探等领域。
4.激光显示和光通信:激光被用于制造高清晰度的激光电视、投影仪等显示设备,同时也被应用于光纤通信,提高传输速度和质量。
三、激光的原理激光的产生是通过激发介质原子或分子,使其达到激发态,然后通过受激辐射产生的光的放大和反馈而产生的。
激光的产生过程可以分为以下几个步骤:1.激发:通过电流、光、化学反应等方式激发介质原子或分子,使其达到激发态。
2.受激辐射:当激发态的原子或分子遇到足够多的光子时,它们将发生受激辐射,释放出与入射光子相同的频率和相位的光子。
3.放大:放大器中包含了活性介质,这些活性介质被激发态的原子或分子所占据。
当受激辐射的光经过放大器时,由于反复的受激辐射作用,光的强度会不断增强。
激光焊接知识集锦目录激光焊接基本原理...................................................................................................................... - 2 - 激光焊接概述.............................................................................................................................. - 4 - 激光传感器焊接技术的介绍与发展.......................................................................................... - 6 - 激光焊接技术及其在汽车制造中的应用.................................................................................. - 8 - 激光塑料焊接概述.................................................................................................................... - 13 -激光焊接基本原理一、激光基本原理1、LASER是什么意思Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅)的英语开头字母2、激光产生的原理激光——“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。
处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。
一、激光基本原理1、LASER是什么意思Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅)的英语开头字母2、激光产生的原理激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。
处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。
为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。
含有钕(ND)的YAG结晶体发生的激光是一种人眼看不见的波长为1.064um的近红外光。
这种光束在微弱的受激发情况下,也能实现连续发振。
YAG晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。
3、激光的主要特长a、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光(波长、频率)b、方向性――激光传播时基本不向外扩散。
c、相干性――激光的位相(波峰和波谷)很有规律,相干性好。
d、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。
二、YAG激光焊接激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。
通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。
常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。
前者主要用于单点固定连续和薄件材料的焊接。
后者主要用于大厚件的焊接和切割。
l、激光焊接加工方法的特征A、非接触加工,不需对工件加压和进行表面处理。
B、焊点小、能量密度高、适合于高速加工。
C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。
1.1选题意义焊接技术作为一种重要的材料加工工艺,在制造工业领域得到越来越广泛的应用,同时人们对焊接技术的要求也越来越高,希望能够获得一种优质、高效且成本低、适用范围广的焊接工艺。
激光焊(Laser Beam Welding, LBW)作为一种先进焊接技术,因具有熔深大、焊速快、热影响区小及操控精度高等优点而被广泛应用于工业生产,但它同时也存在设备投资大、对工件装配精度要求高、接头搭桥能力差、易产生气孔和咬边、高反射率金属焊接困难等缺点[1-3]。
传统的电弧焊虽然成本低、适用范围广,但又存在焊速低、熔深小、焊缝变形和热影响区大等缺点[4,5]。
为了实现优质、高效焊接,研究者将LBW和电弧有机结合起来,形成了一种新的焊接技术—激光+电弧复合热源焊[6]。
而随后的研究结果则表明,这种新的焊接工艺不仅克服了两种焊接热源的缺点、综合了两者的优点,还产生了额外的能量协同效应[7],具有广泛应用于工业生产领域的巨大潜力,也因此越来越受到人们的重视和青睐。
脉冲熔化极气体保护焊(Pulsed Gas Metal Arc Welding, GMAW-P)与其它传统电弧焊相比,具有飞溅小、可控性好、焊接过程稳定等优点,从而受到广泛应用[4,5],因此,激光+GMAW-P复合热源焊也成为复合焊研究的重点。
由于激光+电弧复合热源焊除包含了单激光焊和单电弧焊的工艺参数,还具有其自身的新的工艺参数,如光丝间距、电弧与激光相对位置及两者之间的角度等[8],因此相较于单种焊件工艺,复合焊工艺参数更多,工艺优化也更困难[9]。
若仅通过试验方法来实现工艺优化,则需要高昂的成本。
随着计算机技术和数值分析技术的发展,焊接过程的数值模拟研究已经越来越成熟。
数值模拟技术已经成为研究焊接过程的强有力手段,它将焊接工艺的研究模式从“理论-实验-生产”转变为“理论-计算机模拟-生产”,因此,利用数值模拟技术对焊接过程进行研究,不但可以获得试验方法无法得到的重要信息,还可以实现对加工结果的预测和工艺参数的预选,从而为优化工艺节省大量的人力、物力和财力,降低生产成本,缩短加工工期。
激光焊接的原理、优缺点及工艺参数激光焊接的原理激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池。
它是一种新型的焊接方式,激光焊接主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。
焊接特性属于熔融焊接,以激光束为能源,冲击在焊件接头上。
激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦元件或镜片将光束投射在焊缝上。
激光焊接属非接触式焊接,作业过程不需加压,但需使用惰性气体以防熔池氧化,填料金属偶有使用。
激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。
激光焊接的主要优点(1)可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。
(2)32mm板厚单道焊接的焊接工艺参数业经检定合格,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。
(3)不需使用电极,没有电极污染或受损的顾虑。
且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。
(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。
(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。
(6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件。
(7)可焊材质种类范围大,亦可相互接合各种异质材料。
(8)易于以自动化进行高速焊接,亦可以数位或电脑控制。
(9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。
(10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件。
(11)可焊接不同物性(如不同电阻)的两种金属。