常见功率放大器的特点
- 格式:docx
- 大小:20.01 KB
- 文档页数:3
各种放大器及它们的特点1.通用型集成运算放大器通用型集成运算放大器是指它的技术参数比较适中,可满足大多数情况下的使用要求。
通用型集成运算放大器又分为Ⅰ型、Ⅱ型和Ⅲ型,其中Ⅰ型属低增益运算放大器,Ⅱ型属中增益运算放大器,Ⅲ型为高增益运算放大器。
Ⅰ型和Ⅱ型基本上是早期的产品,其输入失调电压在2mV左右,开环增益一般大于80dB。
2.高精度集成运算放大器高精度集成运算放大器是指那些失调电压小,温度漂移非常小,以及增益、共模抑制比非常高的运算放大器。
这类运算放大器的噪声也比较小。
其中单片高精度集成运算放大器的失调电压可小到几微伏,温度漂移小到几十微伏每摄氏度。
3.高速型集成运算放大器高速型集成运算放大器的输出电压转换速率很大,有的可达2~3kV/μS。
4.高输入阻抗集成运算放大器高输入阻抗集成运算放大器的输入阻抗十分大,输入电流非常小。
这类运算放大器的输入级往往采用MOS管。
5.低功耗集成运算放大器低功耗集成运算放大器工作时的电流非常小,电源电压也很低,整个运算放大器的功耗仅为几十微瓦。
这类集成运算放大器多用于便携式电子产品中。
6.宽频带集成运算放大器宽频带集成运算放大器的频带很宽,其单位增益带宽可达千兆赫以上,往往用于宽频带放大电路中。
7.高压型集成运算放大器一般集成运算放大器的供电电压在15V以下,而高压型集成运算放大器的供电电压可达数十伏。
8.功率型集成运算放大器功率型集成运算放大器的输出级,可向负载提供比较大的功率输出。
9.光纤放大器光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了衰减对光网络传输速率与距离的限制,更重要的是它开创了1550nm频段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。
功率放大器电路的特点:
1.输出功率大:一般可达几瓦至几十千瓦以上;
2.效率高:一般为90%~95%;
3.动态范围宽:失真小;
4.频率特性好:频带较宽;
5.工作温度范围宽,可在-40°C~+85°C之间正常工作。
拓展资料
功率放大器(amplifier)是电子学名词,是指将输入信号进行功率放大的电子设备。
它是一种将电能转换为声、光、热等不同形式能量的装置,其作用是把小电容器中的能量转换为大电容器中的能量。
由于这种器件的输出电压与电流成比例关系,所以又称之为"线性放大器"。
在电路中常用作信号的功率放大或控制用的小信号源。
功率放大器的基本知识一般视听电路中的功率放大(简称功放)电路是在电压放大器之后,把低频信号再进一步放大,以得到较大的输出功率,最终用来推动扬声器放音或在电视机中提供偏转电流。
一、功率放大电流的特点对功放电路的了解或评价,主要从输出功率、效率和失真这三方面考虑。
1、为得到需要的输出功率,电路须选集电极功耗足够大的三极管,功放管的工作电流和集电极电压也较高。
电路设计使用中首先要考虑怎样充分地发挥三极管功能而又不损坏三极管。
由于电路中功放管工作状态常接近极限值,所以功放电流调整和使用时要小心,不宜超限使用。
2、从能耗方面考虑,功放输出的功率最终是由电源提供的,例如收音机中功放耗电要占整机的2/3,因此要十分注意提高电路效率,即输出功率与耗电功率的比值。
3、功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。
功放管的工作点选择不当,输出会有严重失真。
二、常用功率放大电路的原理单只三极管输出的功放电路输出小、效率低,日用电器中已很少见。
目前常采用的是推挽电路形式。
图1是用耦合变压器的推挽电路原理图。
它的特点是三极管静态工作电流接近于零,放大器耗电及少。
有信输入时,电路工作电流虽大,但大部分功率都输出到负载上,本身损耗却不大,所以电源利用率较高。
这个电路中每只三极管只在信号的半个周期内导通工作,为避免失真,所以采用两只三极管协调工作的方式。
图中输入变压器B1的次级有一个接地的中心抽头。
在音频信号输入时,B1次级两个大小相等、极性相反的信号分别送到BG1和BG2的发射结。
在输入信号的正半周时间里,BG1管因加的是反向偏压而截止,只有BG2能将信号放大,从集电极输出;而在信号负半周,BG1得到正高偏压,能将这半个周期的信号放大输出,而BG2却截止。
电路中的两只三极管虽然各自放大了信号的半个同期,但它们的输出电流是分先后通过输出变压器B2的,所以在B2的次级得到的感应电流又能全成一个完整的输出信号。
功率放大电路的分类及特点分析1.B类功率放大电路B类功率放大电路是最常见的功率放大电路之一,特点是具有较高的效率和较大的输出功率。
该电路的工作原理是通过将输入信号分成正半周期和负半周期,并分别由两个互补的输电子管进行放大,然后将两个输出信号进行合并得到最终的输出信号。
由于每个输电子管只工作在一个半周期中,因此可以减小非线性失真,提高效率。
但是B类功率放大电路的缺点是存在交越失真,即输出信号在从负半周期切换到正半周期时可能产生的畸变。
2.A类功率放大电路A类功率放大电路是一种线性的功率放大电路,特点是输出信号与输入信号具有相同的波形。
该电路通过电压放大器和功率放大器的级联来实现。
由于工作在线性区域,A类功率放大电路可以提供极低的失真和良好的信号质量,但相对于B类功率放大电路而言,效率较低。
3.AB类功率放大电路AB类功率放大电路综合了A类和B类功率放大电路的优点,是一种常用的功率放大电路。
该电路结合了A类电路的线性扭矩和B类电路的高效能,可以提供较高的效率和较低的失真。
AB类功率放大电路一般采用两个输电子管,一个在正半周期工作,一个在负半周期工作,通过分别放大两个半周期的输入信号然后进行合并得到最终的输出信号。
4.D类功率放大电路D类功率放大电路是一种特殊的功率放大电路,特点是具有极高的效率和低的功耗。
该电路的工作原理是将输入信号转换为脉冲信号,即将连续的输入信号转换为高频的脉冲信号,然后通过对脉冲信号进行调制和滤波得到最终的输出信号。
D类功率放大电路的优点是功率转换效率高,适用于对功率效率要求较高的应用场合。
但是该电路的缺点是输出信号的失真较大,需要通过合适的滤波器进行处理。
总结起来,功率放大电路根据工作原理和应用特点的不同可以分为几种不同的类别,每种类别都有自己的优点和局限性。
在选择合适的功率放大电路时,需要根据具体的应用需求和限制条件来进行选择。
功率放大器的分类及区别作者:徐冬梅陈新来源:《中国科技博览》2019年第10期[摘要]功率放大器主要是用于向负载提供足够大的信号功率的放大器,简称功放。
与其它放大器没有本质的区别,只是功率放大器不是单纯的追求输出高电压和高电流,而是在电源一定的情况下,尽可能输出功率最大。
本文就目前市面上常见的几种功率放大器进行了详细分析。
[关键词]功率放大器静态工作点功耗失真中图分类号:TP941 文献标识码:A 文章编号:1009-914X(2018)10-0075-011、功率放大器的分类根据晶体管工作在放大状态时的电压和电流大小(即晶体管的静态工作点的位置)的不同,可将功率放大器分为甲类、乙类、甲乙类、丙类、丁类等。
1.1甲类放大器就是给放大管加入合适的静态偏置电流使静态工作点Q一直位于晶体管的放大区(线性区),在整个周期内都有电流流过晶体管的电路。
它可同时放大输入信号的正负半周,并且放大电路的电源始终给电路供电。
甲类放大器是所有功率放大器中效率最低的电路,因此同等输出功率下甲类放大器体积大、发热量高,但甲类放大器又是所有放大器中线性最好的,失真度最小,一般多用于小信号低频无失真放大。
甲类放大器的主要特点如下:(1)在音响系统中,甲类功率放大器的音质最佳。
在整个输入信号的周期内产生非线性失真度很小,这是甲类放大器的最大优点。
(2)信号在整个周期内用同一只晶体管来放大,在不产生非线性失真的情况下,放大器的输出功率受到了限制,故一般情况下该输出功率不可能做得很大。
(3)晶体管的静态工作电流比较大,在有无输入信号的情况下都消耗偏置电源能量,故静态功耗较大。
1.2.乙类(B类)放大器乙类放大器是指三极管所加静态偏置电流为零,且用两只性能对称的三极管来分别放大信号的正、负半周。
一个管子只能在信号的半个周期内导通,而在另外半个周期内截止,两个管子不能同时工作,最终在放大器的负载上将输出正、负半周信号合成一个完整的周期信号,即采用了互补式输出结构。
丙类功率放大器三种工作状态的特点下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!丙类功率放大器的三种工作状态及其特点解析丙类功率放大器是一种高效能的功率放大电路,尤其适用于高频信号的放大,如无线电通信和射频系统。
功率放大器的分类功率放大器是一种用来增加信号功率的电子电路,它能够把某一范围较低的输入功率,放大至一定程度的输出功率。
它通常用来增强模拟电路或加频信号的放大,也可以用来放大无线电信号和声波信号。
主要有以下三种分类:1、绝对功率放大器:绝对功率放大器通常用于模拟电路,它可以把较低的输入功率放大到一定程度的输出功率。
它的最大的特点是:即使当输入信号发生改变时,功率也会保持不变。
2、半导体功率放大器:半导体功率放大器通常用于无线电和频率调制的信号放大。
它可以把低级的输入信号放大至较高的输出功率,在这个过程中不会有失真。
3、变压器放大器:变压器放大器主要应用于低频声波信号的放大,它可以把较低的输入电压放大到较高的输出电压,提高信号的质量。
变压器放大器的主要优点是:几乎不存在失真,因此它的性能更稳定。
功率放大器对信号的放大如此重要,它已经成为现代电子电路中必不可少的元件了。
无论是在模拟电路还是在加频和无线电信号放大中,功率放大器都有着重要的应用。
功率放大器的分类还可以根据它们的工作原理分类,比如磁控放大器,热管放大器,以及机械放大器等。
磁控放大器是利用励磁线圈的磁场效应来放大信号的,这种放大器的优点是低噪声,缺点是响应慢。
热管放大器是利用温度变化来增大信号的,它的缺点是体积大,效率低。
机械放大器是利用加工技术把信号从低频增大至高频的,除了在调制频率方面有良好的表现外,它还有很多其他的优点,比如它的可靠性和稳定性。
此外,还有一些其他的功率放大器,比如脉冲放大器,超声放大器,光纤放大器,机械振荡放大器等,它们各自都有不同的应用场景和不同的性能特点。
这些放大器的应用广泛,可以用来处理声音,图像,数据等多种信号,每种放大器在满足其特殊应用需求的前提下,都给用户提供了便捷而又高效的信号处理方案。
总之,功率放大器是当今电子电路中极其重要的一类元件,它们极大地改善了信号放大的效率,并为不同场景的信号处理提供了可靠而有效的解决方案。
几种常用集成运算放大器的性能参数1.通用型运算放大器A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
μ通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例2.高阻型运算放大器,IIB为几皮安到几十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。
Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012)3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设计的。
目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器s,BWG>20MHz。
μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、5.低功耗型运算放大器W,可采用单节电池供电。
μA。
目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
运算放大器分类总结报告1、通用型运算放大器通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
下面就实验室里也常用的LM358来做一下介绍:LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
:外观管脚图它的特点如下:·内部频率补偿·直流电压增益高(约100dB)·单位增益频带宽(约1MHz)·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V)·低功耗电流,适合于电池供电·低输入偏流·低输入失调电压和失调电流·共模输入电压范围宽,包括接地·差模输入电压范围宽,等于电源电压范围·输出电压摆幅大(0 至Vcc-1.5V)常用性能指标:性能图表:大信号频率响应 大信号电压开环增益电压跟随器对小信号脉冲的响应常用电路: (1)、正向放大器根据虚短路,虚开路,易知:1(1)2R Vo Vi R =+ (2)、高阻抗差分放大器电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C ,因此得到结果:0(21)(1)e C e e a b =-++(3)、迟滞比较器将输入电平与参考电平作比较,根据虚短路,虚开路有:121()()O REF IN R R V V V R +=- ,则: 112112()()inL OL REF REFinHOH REF REFR V V V V R R R V V V V R R =-++=-++2、高精度运算放大器所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。
对几类放大器的认识在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。
现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。
现就这几类放大器的工作原理和特殊情况做一下说明。
1)掺铒光纤放大器(EDFA)EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。
由于EDFA 工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。
掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。
当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。
由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。
EDFA的组成:工作原理图:那么,EDFA的输出公路车是如何控制的呢?一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。
在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢?平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。
如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。
有上图可以知道,掺铝的金属元素的EDFA在增益的控制上明显要比不掺铝的EDFA平坦的多。
需要注意的是:EDFA在放大信号的同时也放大了噪声,而噪声主要来自EDFA的自身受激辐射,是主要的噪声源,也是系统OSNR劣化的主要原因。
放大器产生的自发辐射噪声功率为:PASE = -58 + NF + G (dBm)其中NF为光放大器噪声系数(dB)、G为光放大器的增益(dB)除了放大功率之外,还有几个量也是EDFA中比较重要的,了解他们,有助于在EDFA 故障中的维护定位:作电流:也称作偏置电流,其决定着放大板的输出光功率。
功放的种类和特点功率放大器简称功放,它可以说是各类音响器材中最大的一个家族了。
其品牌、型号之多,实在举不胜举。
虽然都称为功放,但以其主要用途来说,功放可以分做两个主要类别,这就是专用功放与民用功放。
在体育馆场、影剧场、歌舞厅、会议厅、公共场所扩声,以及录音监听等处所使用的功放,一般说在其技术参数上往往会有一些独特的要求,这类功放通常称之为专用功放或是专业功放。
而用于家庭的Hi-Fi音乐欣赏,AV系统放音,以及卡拉OK娱乐的功放,通常我们称为民用功放或是家用功放。
专用功放与民用功放尽管在一些特性参数上有所差别,但也很难说有一条泾渭分明的界线,比如用于音乐录音监听的功放很可能就是一台可用于家庭Hi-Fi甚至是Hi-end功放。
Hi-Fi功放与AV功放Hi-Fi功放与AV功放是目前家用功放中的两个主要类别。
这两类功放用于不同的用途,设计的侧重也不相同。
Hi-Fi功放用于欣赏音乐,使用者追求的是尽可能的“原汁原味”。
而AV功放的使用者追求的是与画面相配合的“现场”效果,甚至是夸张了的“现场”效果。
这两类功放不太好直接比较孰优孰劣,比如价位同为三千多元的Hi-Fi功放与AV功放,Hi-Fi功放的成本投入只在两个声道上,而AV功放的成本投入则要兼顾5—6个声道,还要具有一定的效果处理功能。
如果仅看其两个主声道的投入,肯定低于Hi-Fi功放两个声道的投入。
其放音效果的差异是显而易见的。
但是无论是Hi-Fi功放还是AV功放,都有高档精品型与超值普及型之分,比如天龙的AVC-A1型AV功放,当其用于音乐放音时,其音效不会比一台四、五千元的Hi-Fi功放逊色。
一般来说,很难能有一台可以对Hi-Fi、AV全兼容的AV功放,AV功放兼顾Hi-Fi音乐欣赏是有条件的,这一条件就是使用者欣赏音乐时的要求与标准,如果使用者仅是用来欣赏一些休闲音乐,或是只要求能够听到乐曲的旋律,AV功放是比较容易满足的,但是要是对音乐欣赏有较高的要求,一般的AV功放就难于满足了。
常见功率放大器的特点时间:2011-12-05来源: 作者:电气自动化技术网点击: 85次功率放大器简称功放,它可以说是各类音响器材中最大的一个家族了。
其品牌、型号之多,实在举不胜举。
虽然都称为功放,但以其主要用途来说,功放可以分做两个主要类别,这就是专用功放与民用功放。
在体育馆场、影剧场、歌舞厅、会议厅、公共场所扩声,以及录音监听等处所使用的功放,一般说在其技术参数上往往会有一些独特的要求,这类功放通常称之为专用功放或是专业功放。
而用于家庭的Hi-Fi音乐欣赏,AV系统放音,以及卡拉OK娱乐的功放,通常我们称为民用功放或是家用功放。
专用功放与民用功放尽管在一些特性参数上有所差别,但也很难说有一条泾渭分明的界线,比如用于音乐录音监听的功放很可能就是一台可用于家庭Hi-Fi甚至是Hi-end功放。
Hi-Fi功放与AV功放Hi-Fi功放与AV功放是目前家用功放中的两个主要类别。
这两类功放用于不同的用途,设计的侧重也不相同。
Hi-Fi功放用于欣赏音乐,使用者追求的是尽可能的"原汁原味".而AV功放的使用者追求的是与画面相配合的"现场"效果,甚至是夸张了的"现场"效果。
这两类功放不太好直接比较孰优孰劣,比如价位同为三千多元的Hi-Fi功放与AV功放,Hi-Fi功放的成本投入只在两个声道上,而AV功放的成本投入则要兼顾5-6个声道,还要具有一定的效果处理功能。
如果仅看其两个主声道的投入,肯定低于Hi-Fi 功放两个声道的投入。
其放音效果的差异是显而易见的。
但是无论是Hi-Fi功放还是AV功放,都有高档精品型与超值普及型之分,比如天龙的AVC-A1型AV功放,当其用于音乐放音时,其音效不会比一台四、五千元的Hi-Fi功放逊色。
一般来说,很难能有一台可以对Hi-Fi、AV全兼容的AV功放,AV功放兼顾Hi-Fi音乐欣赏是有条件的,这一条件就是使用者欣赏音乐时的要求与标准,如果使用者仅是用来欣赏一些休闲音乐,或是只要求能够听到乐曲的旋律,AV功放是比较容易满足的,但是要是对音乐欣赏有较高的要求,一般的AV功放就难于满足了。
晶体管功放与电子管功放用于Hi-Fi欣赏的功放可以分作晶体管功放和电子管功放两大类,以前还有用集成电路或是模块电路的Hi-Fi功放,但是现在已经不多见了。
音响技术超级论坛晶体管功放和电子管功放并不存在着优劣的差异,只不过应用的器件不同(一是晶体管,一是电子管),由于两类器件不同,其物理基理与电路特点也不相同。
电子管的电流是电子在真空中受电场力的吸引,运动形成的。
而晶体管的电流是半导体元素的外层电子在电场力的作用下转移位置形成的。
这种物理基理的不同,造成在实际应用中电路特点也不同。
相对来说,电子管功放的工作电压较高,但工作电流比较小,而晶体管功放的工作电压较低,工作电流都比较大。
电子管功放与晶体管功放的音色确是有一定的差异,两者对瞬态信号的响应也不相同。
这种不同都又分别适应了不同类别的音乐和不同的音乐欣赏者,所以目前的Hi-Fi功放中形成了晶体管功放和电子管功放并存的情况。
不过,若是以品牌、型号、数量而言,晶体管功放所占的份额仍是绝对大于电子管功放。
甲类功放与乙类功放晶体管功放输出级晶体管的工作状态,可以分做甲类与乙类。
所谓甲类,简单地说就是使输出级晶体管在正弦交流信号的正负半周时均工作在线性区,而乙类则是仅使输出级的晶体管在正弦交流信号的正半周(或是负半周)工作在线性区。
由于输出级晶体管的工作状态不同,使得输出级的电源利用效率(即输出功放与耗电功率之比)也不同。
在实用的输出电路中,乙类的效率要比甲类的效率高2-3倍。
比如马兰士PM80晶体管功放,在确定的供电电源条件下,工作在乙类时输出功率有100W,而在甲类时只有20W.甲类功放不存在交越失真,而且不论实际输出功率大小,输出级晶体的内阻均为恒定。
而乙类功放总会有一定的交越失真(尽管这种失真可能极小),另外,在大输出时输出级晶体管的内阻较小,但在小输出时输出级晶体管的内阻却比较大。
这些不同,造成听感上也有不同,甲类功放的声音相对乙类功放而言比较柔和,另外对音?皇低频控制力也比乙类功放强,尤其是在鰏在曲的旋律,AV功放是比较容易满足的,但是要是对音乐欣赏有较高的要求,一般的AV功放就难于满足了。
甲类功放不存在交越失真,而且不论实际输出功率大小,输出级晶体的内阻均为恒定。
而乙类功放总会有一定的交越失真(尽管这种失真可能极小),另外,在大输出时输出级晶体管的内阻较小,但在小输出时输出级晶体管的内阻却比较大。
这些不同,造成听感上也有不同,甲类功放的声音相对乙类功放而言比较柔和,另外对音箱的低频控制力也比乙类功放强,尤其是在小音量时低音的质感要好一些。
甲类功放的这些特点,使得甲类功放在实际应用中不需要很大的输出功率余量,一台20W-30W的甲类功放已经能够把大多数的音箱推动得很不错了。
前面提到了甲类功放的电源效率低,这一原因造成甲类功放工作时要散发大量的热量。
为了使晶体管的工作温度不超过一定限度,需要较大体积和面积的散热器,这使得甲类功放的体积、重量都比较大。
比如KRELL的KSD-50S甲类功放 ,输出为50W+50W,重量却有近30Kg,马兰士PM-80在工作状态下输出为20W+20W,重量也有13Kg.纯后级功放与单声道功放我们常见的功放都是把放大小信号的前置放大器(前级)与功率放大器(后级)做在一个机壳中,这种功放常被称为"合并功放".合并功放使用方便,又有比较好的性能价格比。
但这种合并功放有它一些固有的缺点,其中最不好克服的就是前级与后级之间的相互干扰问题了。
为了解决这一问题,于是便把前级与后级分别做在两个机壳中,这样就有了纯后级功放。
大多的纯后级功放都是双声道的结构形式,但这种结构形式使得两个声道相互干扰问题又不太好解决,为了解决两个声道相互间的干扰便又出现了把两个声道分开的单声道纯后级功放。
把功率放大器这样一块块地分割开,最主要的意义是要提高功放的素质,而不是追求这种形式。
如果仅仅在形式上实现了相互分开,尽管可以解决相互干扰问题,但其它参数并未明显改善,那么这种分开对功放提高整体素质来说还是有限的。
功率放大器有晶体管与电子管之分,前级同样也有晶体管和电子管之分。
对于音响爱好者与音乐爱好者而言,在选用前级与后级上有多种的组合形式,而不同的组合形式又有不同的音效特点,这使得使用者又多了一些选择的空间。
与纯后级功放配接的前级对整个音响系统的优劣影响比较大。
首先它必须具有一定的素质,否则,纯后级或是单声道的优点便发挥不出来,甚至有可能把一台劣质前级的"毛病"突出出来,整体音效反而更差了。
再有,不同的前级后级配合其音色特点不同,使用者可以根据个人的偏爱选择不同的组合形式。
比如,很多音响与音乐爱好者就喜欢用"胆前、石后"(即电子管前级,晶体管后级)的组合方式,觉得这样组合既发挥了晶体管后级功率输出大,瞬态响应好的特点,又领略了电子管前级音色甜美、醇厚的"韵味".不过这种搭配也并不是"金科玉律",因为具体的前级与后级都有各自的特点,而对音色的偏爱又因人而异,使用者可以依据具体的情况找出自己所喜爱的组合方式。
Hi- Fi功放应有多大的输出功率Hi-Fi功放应有的输出功率受很多因素影响,首先这一输出功率与所配接的音箱关系较大,其次还与功放的自身素质有关,再有就是与所使用的环境,也就是房间的空间体积有关。
音箱有一项参数叫作灵敏度,它的单位是dB/m?W,所代表的意义是当音箱得到1W的电功率时距离音箱1m处产生的声压(dB)。
如果某款音箱的灵敏度是90dB,那么在1m处得到90dB的声压需有1W的功率来推动。
要得到100dB的声压,那就需要10W的功率来推动了。
但如果音箱的灵敏度是80dB(如ATC的SCM-10)要想达到100dB的声压则需要100W的功率来推动了。
大多数音箱的灵敏度约为85dB-90dB,对这些音箱来说,有10W-30W的不失真功率已经能够有足够的声压了。
功放自身的素质,与功放应有的输出功率关系较大。
功放的参数中有一项称为阻尼系数,这是表示对音箱控制能力的一项参数,但这一参数有一个适度范围,而且又和具体的音箱有直接关系。
一般说来,如果一台功放的素质很好,在30 W输出时仍能保持其性能参数在一定的水准。
那么就没有必要去要求功放有更大的功率输出。
可是如果功放的素质不很理想,当输出功率增加时会引起其性能参数的劣化,那么就应当使功放的输出功率有一定的余量,以保证在实用的输出功率下仍有一定的良好参数。
通常情况下,当功放为甲类输出或是电子管功放,则不需要有过多的输出功率余量,20W-30W的输出功率已经够用了。
但如果是乙类功放或是素质较差的功放,这时应使功放的输出功率有较大的余量。
另外,如果配接的音箱是大型倒相式,也应使功放有较大的输出功率余量。
在从功放自身的素质考虑功放应有的输出功率时,将功率余量选得大些确实能改善功放与音箱的适配情况。
但这里我们还是要明确一下,选择输出功率较大的功放主要的意义,不是因为我们需要那样大的声压,而是要改善功放对音箱的适配状态。
如果一台输出功率适度的功放已经能够把音箱控制的得心应手,那么就没有必要对这台功放提出更高的输出功率要求。
使用环境,也就是房间的空间体积与功放应输出的功率也有一定的关系,以上我们所谈及的输出功率大小,是以房间的空间体积在40以下而言,如果房间的空间体积较大,那么功放的输出功率则应加大一些。
电子管功放输出级的特点电子管功放的功率输出级有三种电路类型,一类是有输出变压器的推挽输出电路。
这类输出电路类型在电子管功放中占了绝大多数。
在推挽电路中的输出变压器中直流成分很少,二次谐波失真也很小,这类电路的输出功率可以做得比较大,所以适用范围也比较大。
一般说对胆机音色有兴趣的音响爱好者来说,这类输出级的胆机很合适。
不过这类功放的,输出变压器的设计与工艺至关重要,如果输出变压器的设计与工艺上有不足之处,往往这类功放的频率响应,瞬态响应就不太理想。
另外由于输出变压器的制约,所以配接音箱的适应范围较小。
另一类功率输出级的电路类型是单端甲类电路。
这类电路也有变压器,但这类电路的输出变压器中有很大的直流成分,对输出变压器的要求比推挽输出电路中输出变压的要求要高。
另外对供电电源的要求也比较高。
这类输出电路的特点是二次谐波成分比较多,尽管这是一种谐波失真,但对音乐信号来说,二次谐波是高度的谐合音,所以听起来很入耳。
这一特点使得这种输出电路的功放在声音的音色上很有特点,尤其是当功放级采用三极管时,人声听起来很甜美,室内乐中的弦乐听起来也很细腻,或者说,这类功放的声音很有味道。