最新计量经济学第一讲new
- 格式:ppt
- 大小:1.10 MB
- 文档页数:7
计量经济学讲义(1)第一章绪论第一节什么是计量经济学计量经济学含义1.计量经济学是一个迅速发展的经济学分支,其目标是给出经济关系的经济内容。
2.计量经济学可以定义为实际经济现象的定量分析,这种分析根据的是适当推断方法联系在一起的理论和观测的即时发展。
计量经济学运用数理统计知识分析经济数据,对构建于数理经济学基础上的数学模型提供经验支持,并得出数量结果。
3.计量经济学是将经济理论、数学方法和统计推断等工具应用于经济现象分析的社会科学。
第二节计量经济学方法1.2.1计量经济学方法的内容计量经济学研究包括两个基本要素:经济理论和事实。
将经济理论与现实情况结合起来,用统计技术估计经济关系。
最可用的形式就是模型。
1.2.2计量经济分析步骤1.陈述理论。
例如有关价格变动与需求量之间的关系的经济理论:在其他条件不变的情况下,一商品的价格上升(下降),则对该商品的需求量减少(增加)。
1.2.2建立计量经济模型⑴需求函数的数学模型例如线性函数模型。
如果需求量Q 与价格P 之间的关系式线性的,则数学上需求函数可以表示为Q P αβ=+(1.2.1)αβ和称为该函数的参数。
等号左边的变量称为因变量或被解释变量,等号右边的变量称为自变量或解释变量。
⑵计量经济模型式(1.2.1)假定需求量Q 与价格P 之间的关系是一种确定关系,而现实的经济变量之间,极少有这种关系,更常见的是一种不确定性关系(见散点图),线性模型应该为Q P αβε=++(1.2.2)ε是随机扰动项。
1.2.3收集数据估计计量经济模型中的参数之前,必须得到适当的数据。
在经验分析中常用的数据有两种:时间序列数据(纵向数据)和横截面数据(横向数据)。
有时会同时出现前面的纵向数据和横向数据,称之为混合数据。
面板数据是混合数据的一种特殊类型。
1.2.4估计参数如利用收集的数据估计出式(1.2.2)中的参数,得回归模型76.05 3.88Q P =-(1.2.3)1.2.5假设检验对回归模型以及模型中的系数进行检验。
计量经济学讲稿第一章计量经济学概述1.1 什么是计量经济学一、计量经济学的产生计量经济学作为一门独立的学科产生于二十世纪30年代,是由挪威经济学家、第一届诺贝尔经济学奖得主R. Frisch 1926年仿照生物计量学一词提出来的。
半个多世纪以来,这门科学主要在资本主义中得到了发展,而且在理论和应用两个方面都取得了长足的进步。
今天的计量经济学已成为西方国家经济学的一个重要分支,其实用价值也正在越来越广泛的范围内表现出来。
著名经济学家诺贝尔经济学奖获得者萨谬尔森增经说:“第二次世界大战后的经济是经济计量的时代。
”我们不妨看看从1969年设立诺贝尔经济学奖起至1989年20年中共有27位获奖者,其中有15位是计量经济学家。
他们中有10位曾担任过世界计量经济学会会长,有4位是因为在计量经济学研究与应用方面有突出贡献而获奖。
这从一个侧面反映了计量经济学在经济科学中的地位。
1930年12月29日,一些国家的经济学家在美国成立了国际计量经济学会,学会的宗旨是“为了促进经济理论在与统计学和数学的结合中发展的国际学会”。
1933年该学会创办了会刊——《计量经济学》杂志。
R. Frisch在发刊词中有一段话:“用数学方法探讨经济学可以从好几个方面着手,但任何一方面都不能与计量经济学混为一谈。
计量经济学与经济统计学决非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分都具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义词。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活中的数量关系来说,都是必要的。
三者结合起来,就有力量,这种结合便构成了计量经济学”。
计量经济学主要是以模型来研究经济现象,这种模型实际上是一组方程,模型所使用的数据有时间序列数据和截面数据1等。
这些数据不是从实验中得到的结果,而是经济学家被动的观测到的经济变量数据资料,而且经济变量大都是不独立的,因此,使得在经济分析中应用统计方法受到一定的限制。
第一章绪论第一节计量经济学的含义一、计量经济学计量经济学(Econometrics,又译成经济计量学)是应用经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,挪威经济学家弗里希(R.Frish)将它定义为经济理论、统计学和数学三者的结合。
即以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技术,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
二、计量经济学模型模型,是对现实的描述和模拟,对现实的各种不同的描述和模拟方法,就构成了各种不同的模型,例如,语义模型(也称逻辑模型),物理模型、几何模型、数学模型和计算机模拟模型等。
语义模型是用语言来描述现实,例如,对供给不足下的生产活动,我们可以用“产出量是由资本、劳动、技术等投入要素决定的,在一般情况下,随着各种投入要素的增加,产出量也随之增加,但要素的边际产出是递减的”来描述。
物理模型是用简化了的实物来描述现实,例如一栋楼房的模型。
几何模型是用图形来描述现实,例如一个零部件的加工图。
计算机模拟模型是随着计算机技术而发展起来的一种描述现实的方法,在经济研究中有广泛的应用。
数学模型是用数学语言描述现实,也是一种重要的模型方法,由于它能够揭示现实活动中的数量关系,所以具有特殊重要性。
经济数学模型是用数学方法描述经济活动。
根据所采用的数学方法不同、对经济活动揭示的程度不同,构成各类不同的经济数学模型。
在这里,我们着重区分数理经济模型和计量经济模型。
数理经济模型揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述,上述用语言描述的生产活动,可以用生产函数描述如下:Q=f(T,K,L)公式中用Q 表示产出量,T 表示技术,K 表示资本,L 表示劳动。
计量经济模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
例如,上述生产活动中因素之间的关系,用随机数学方程描述为:5606.04645.0)014.01(01.1K L Q T +⨯=该模型是利用我国国有独立核算工业企业1978到1994年的统计资料,使用计量经济方法得到的,该模型定量地描述了我国国有独立核算工业企业中,技术、资本和劳动投入与产出量之间的数量关系;利用这个计量经济模型可以对生产过程做进一步的深入研究,如要素影响分析、要素需求分析、生产预测、成本分析等等。