第十一章 聚合物的力学性能
- 格式:pdf
- 大小:834.48 KB
- 文档页数:36
聚合物材料的力学性能第十章聚合物材料的力W性能§10-1聚合物材料的Yc性能特c分子品|大於1f以上的有C化合物Q楦叻肿硬牧希是由S多小分子聚合而成,故又Q榫酆衔锘蚋呔畚铩原子之g由共rIY合,Q橹rI;分子之g由范德瓦IB接,Q榇rI。
分子g次rI力之和h超^分子中原子g主rI的Y合力。
拉伸r常常先l生原子I的嗔选聚合物的小分子化合物Q误w,M成聚合物L的基本Y卧tQ殒。
聚合物L的重}的浚Q榫酆隙取天然的聚合物有木材、橡z、棉花、z、毛和角等。
人工合成聚合物有工程塑料、合成wS、合成橡z等一、聚合物的基本Y1、高分子的型(近程Y)由化WI所固定的缀涡睢―指高分子的化WM成、I接方式和立w型等。
D9―1。
(D9―2)。
L支、短支;型交分子、三S交分子。
由煞N以上Y误w聚合而成的聚合物Q楣簿畚铩聚合物的Y晶很y完全。
(共聚物的追N形式如D9―3。
)2、高分子的象(h端Y)一根巨分子L在空g的排布形象,Q榫薹肿渔的象。
otF、伸展、折B、螺旋等象(D9―5)。
3、聚合物聚集BY聚集BY包括晶BY、非晶BY及取向。
晶^c非晶^共存。
Y晶度<98%,微晶尺寸在100A左右。
非晶BY的高分子多呈otF形B。
在外力作用下,聚合物的L沿外力方向排列的形BQ聚合物的取向。
4、高分子材料Y特徵w{:聚合物檠}合物(∵各巨分子的分子量不一定相同)⑴;聚合物有型、象的化;⑵分子之g可以有各N相互排列。
⑶二、性能特c(1)密度小;(2)高性;(3)性模量小(度差);(4)粘性明@。
§10-2型非晶B聚合物的形型非晶B聚合物是指Y上o交、聚集BoY晶的高分子材料。
S囟炔煌而化,可於玻璃B、高B和粘流B三N力WB(D9―7) tb一脆化囟tg一玻璃化囟tf一粘流囟D9―8榉蔷B聚合物在不同囟认碌力一曲。
一、玻璃B下的形<tb 聚合物於硬玻璃B,只有性形A段,且伸L率很小。
靠主IIL的微量伸s和微小的I角化F性形。
聚合物材料的力学性能研究一、引言聚合物材料因其优异的物理性质和低成本的生产工艺在工业中被广泛使用,然而聚合物材料的力学性能成为了影响其应用范围的一个关键因素。
在工程应用中,聚合物材料必须具备一定的力学性能,例如强度、韧性、刚度等。
因此,研究聚合物材料的力学性能具有极其重要的意义。
本文将分别从强度、韧性和刚度三个方面探讨聚合物材料的力学性能研究。
二、聚合物材料的强度研究强度是指受力材料最大承受力的能力。
在聚合物材料中,强度受到化学结构、晶化程度和制备工艺等因素的影响。
其中,聚合物的化学结构对其强度性能的影响最大,因为它决定了聚合物的分子量、分子量分布和化学键的类型和数量。
此外,影响聚合物材料的强度还包括晶化程度和制备工艺等因素。
研究表明,化学结构和分子量是影响聚合物材料强度的最主要因素。
其中,分子量的大小和分子量分布的宽窄对聚合物材料的强度影响极大。
较高的分子量和较窄的分子量分布可以提高聚合物材料的强度。
而分子量过高或分子量分布过窄会导致聚合物材料的加工难度增加,从而影响其生产工艺。
此外,化学结构的差异也会对聚合物材料的强度产生不同的影响。
例如在聚乙烯和聚丙烯等同属于烯烃类聚合物材料中,不饱和度的增加会降低其强度,而在芳香族聚合物材料中,饱和度的增加反而会降低其强度。
三、聚合物材料的韧性研究韧性是指材料在受冲击载荷时形变和吸收能量的能力。
聚合物材料的韧性受到其结晶度、分子量和分子量分布等因素的影响。
研究表明,增加聚合物材料的结晶度可以提高其韧性。
这是由于高结晶度会使聚合物分子之间的相互作用变强,从而增加聚合物材料的强度和韧性。
分子量和分子量分布的影响也与强度类似,即分子量和分子量分布的增加可以提高聚合物材料的韧性,但过高的分子量和过窄的分子量分布会影响材料的加工和生产。
此外,制备工艺也对聚合物材料的韧性产生影响。
例如,在高速注塑成型中,熔融聚合物材料受到剪切力的作用,从而影响其晶化程度和结晶形态,进而影响聚合物材料的韧性。
实验7 聚合物动态力学性能的测定聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。
材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。
测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA )一、二、实验目的了解动态力学分析的测量原理及仪器结构。
了解影响动态力学分析实验结果的因素,正确选择实验条件。
掌握动态力学分析的试样制备及测试步骤。
掌握动态力学分析在聚合物分析中的应用。
实验原理聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。
研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。
这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。
应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δϖσσ+=t (7-1))900(0<<δ应变t ϖεεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。
式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。
图7.1 应力应变和时间的关系将式(7-1)展开为:δϖσδωσσsin cos cos sin 00t t += (7-3)即认为应力由两部分组成,一部分)cos sin (δϖσt 与应变同相位,另一部分)sin cos (0δϖσt 与应变相差2/π。
根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即t E t E ϖεωεσcos ''sin '00+= (7-4)此时模量是一个复数,叫复数模量*E 。
聚合物的力学性能名词解释聚合物是一种由单体通过化学反应连接而成的大分子化合物。
由于其独特的结构和性质,聚合物在各个领域中都有广泛的应用,包括塑料、纺织品、电子器件等。
聚合物的力学性能是衡量聚合物材料质量和可用性的关键指标之一。
本文将对聚合物力学性能中常见的名词进行解释。
1. 弹性模量弹性模量是衡量聚合物材料抵抗形变和恢复能力的指标。
当受到外力作用时,聚合物会发生形变,但在去除外力后能够恢复到原来的形态。
弹性模量越大,聚合物的恢复性能越好。
弹性模量可以用来评估材料的硬度和刚性。
2. 屈服强度屈服强度是指聚合物材料在拉伸过程中发生塑性变形的临界点。
在超过屈服强度之前,聚合物材料呈现出线性弹性变形。
当外力达到一定水平时,材料会突然发生非线性塑性变形,即超过了屈服强度。
屈服强度的高低反映了聚合物材料的抗拉性能。
3. 强度强度是衡量聚合物材料抵抗破坏和承受外部力的能力的指标。
通常以材料的最大承载能力来衡量。
强度高的材料具有更好的耐久性和抗破坏能力。
4. 断裂韧性断裂韧性是指聚合物材料在断裂前能吸收的能量。
它反映了材料的抗冲击和抗破坏能力。
聚合物材料如果具有高的断裂韧性,意味着它具有更好的抗冲击和破坏能力。
5. 耐磨性耐磨性是指聚合物材料抵抗磨损和磨损程度的能力。
耐磨性好的材料表面不容易磨损和磨损,能够更好地抵御摩擦和刮擦。
6. 硬度硬度是衡量材料抵抗外力侵蚀的能力。
在聚合物材料中,硬度与材料的结构、分子链长度以及交联程度有关。
硬度高的材料通常具有较好的抗刮擦和抗磨损能力。
7. 压缩性能压缩性能指材料在受到压缩作用时的变形性能。
聚合物材料的压缩性能包括压缩模量、压缩强度等指标。
良好的压缩性能意味着材料在承受压力时能保持稳定的形态和性能。
8. 拉伸性能拉伸性能是指聚合物材料在拉伸作用下的变形性能。
它包括拉伸模量、拉伸强度、延展性等指标。
拉伸性能的好坏直接影响材料的可塑性和可延展性。
9. 表观粘度表观粘度是指聚合物材料在流动过程中阻力的大小。
聚合物材料力学性能测试方法比较聚合物材料是一类具有高分子量的大分子化合物,具有良好的力学性能和化学稳定性,广泛应用于汽车、航空航天、电子、建筑等领域。
为了评估和比较不同聚合物材料的力学性能,科学家们开发了各种测试方法。
本文将比较几种常用的聚合物材料力学性能测试方法。
1. 拉伸测试方法拉伸测试是评估材料抗拉强度、断裂伸长率、弹性模量等力学性能的常见方法。
在拉伸测试中,材料在不断施加力的作用下,沿着其长度方向逐渐拉伸,记录下载荷和伸长量的变化。
通过伸长量与载荷之间的关系,可确定材料的力学性能。
2. 压缩测试方法压缩测试用于评估材料在受到压缩作用下的性能。
材料在压缩测试中受到垂直于其面积方向的力,并测量材料的应力应变关系。
通过压缩测试,可以确定材料的压缩强度、弹性模量等力学性能。
3. 弯曲测试方法弯曲测试是评估材料在受到弯曲力作用下的性能的方法。
材料在弯曲测试中受到两个力的作用,使其发生弯曲变形。
通过测量材料在不同载荷下的应变量和挠度,可以确定材料的弯曲强度、弯曲模量等力学性能。
4. 硬度测试方法硬度测试用于评估材料表面抗压、抗刮、抗穿刺等力学性能。
常用的硬度测试方法包括洛氏硬度测试、布氏硬度测试、维氏硬度测试等。
这些方法通过在材料表面施加一定的载荷,测量形成的痕迹的大小来评估材料的硬度。
5. 冲击测试方法冲击测试用于评估材料在受到突然冲击或冲击载荷下的性能。
常见的冲击测试方法包括冲击韧性试验、冲击强度试验等。
通过施加冲击载荷,测量材料的断裂韧性和抗冲击能力,可以评估材料的力学性能。
不同的聚合物材料力学性能测试方法有各自的优缺点,选择适合的方法取决于具体的测试需求。
拉伸、压缩和弯曲测试方法较为常用,适用于评估聚合物材料的静态力学性能。
硬度测试方法简单快捷,适用于快速比较不同材料的硬度。
而冲击测试方法则更适用于评估材料在受到突然冲击或冲击载荷下的性能。
除了选择合适的测试方法,还需要注意测试条件的标准化。
实验七 聚合物的动态力学性能1. 实验目的要求1.1 掌握使用DMA Q800型动态力学分析仪测定聚合物的复合模量、储能模量和损耗模量的原理及方法。
1.2 能够通过数据分析,了解聚合物的结构特性。
2. 实验原理当样品受到变化着的外力作用时,产生相应的应变。
在这种外力作用下,对样品的应力-应变关系随温度等条件的变化进行分析,即为动态力学分析。
动态力学分析是研究聚合物结构和性能的重要手段,它能得到聚合物的储能模量(E '),损耗模量(E '')和力学损耗(tan δ),这些物理量是决定聚合物使用特性的重要参数。
同时,动态力学分析对聚合物分子运动状态的反映十分灵敏,考察模量和力学损耗随温度、频率以及其它条件的变化的特性可得聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等等。
本实验采用DMA Q800型动态力学分析仪分析聚合物在一定频率下,动态力学性能随温度的变化。
如果在试样上加一个正弦应力σ,频率为ω,振幅为0σ,则应变ε也可以以正弦方式改变,应力与应变之间有一相位差δ,可分别表示为:0sin t εεω=0sin()t σσωδ=+式中0σ和0ε分别为应力和应变的幅值,将应力表达式展开:00cos sin()sin cos t t σσδωδσδω=++应力波可分解为两部分,一部分与应力同相位,峰值为0cos σδ,与储存的弹性能有关,另一部分与应变有90°的相位差,峰值为0sin σδ,与能量的损耗有关。
定义储能模量(E '),损耗模量(E '')和力学损耗(tan δ):00(/)cos E σεδ'= 00(/)sin E σεδ''=sin tan cos E E δδδ''=='复数模量可表示为:*E E iE '''=+其绝对值为:E =在交变应力作用下,样品在每一周期内所损耗的机械能可通过下式计算:320()()W t d t E φεσπε''∆==∆与E''成正比,因此,样品损耗机械能的能力高低可以用E''或tanδ值的大小来W衡量。
实验15 聚合物材料的动态力学性能测试在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。
动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。
这些物理量是决定聚合物使用特性的重要参数。
同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。
1. 实验目的(1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。
(2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。
2. 实验原理高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。
它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。
当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。
能量的损耗可由力学阻尼或内摩擦生成的热得到证明。
材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。
如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。
形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。
如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。
假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。
聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。
在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。
聚合物材料的力学性能与变形行为分析聚合物材料是一类具有广泛应用前景的材料,它们以其轻质、高强度和易加工性而备受关注。
在工程应用中,了解聚合物材料的力学性能和变形行为对于设计和优化材料结构具有重要意义。
本文将从力学性能和变形行为两个方面对聚合物材料进行分析。
一、力学性能的分析聚合物材料的力学性能主要包括强度、韧性、刚度和耐久性等指标。
首先讨论聚合物材料的强度。
聚合物材料的强度通常以拉伸强度、弯曲强度和压缩强度来表示。
拉伸强度指的是在拉伸加载下,材料能够承受的最大应力。
弯曲强度是指材料在弯曲加载下,能够承受的最大应力。
压缩强度则是指材料在受到压缩力作用时能够承受的最大应力。
这些强度指标既反映了聚合物材料的抗拉强度、抗弯强度和抗压强度,也对于材料的应用范围和使用寿命有着重要影响。
其次,韧性是评价聚合物材料的抗断裂能力的指标。
韧性可以通过测量断裂伸长率、断裂能量以及冲击韧性等来表征。
断裂伸长率是指材料在拉伸断裂时,断裂前后的长度差与断裂前的原始长度之比。
断裂能量则是指材料在断裂过程中吸收的能量。
冲击韧性则是评价材料在冲击加载下的抗冲击性能。
此外,刚度是描述聚合物材料抵抗变形的能力。
聚合物材料的刚度可以通过弹性模量来表征,弹性模量越大,意味着材料越难发生变形,刚度越高。
刚度与材料的应变硬化特性和空隙率等因素密切相关。
最后,耐久性是指材料在长期使用过程中能够保持其力学性能稳定的能力。
聚合物材料的耐久性主要包括抗疲劳性、耐腐蚀性和耐温性等。
抗疲劳性指材料在反复加载下不断延伸其使用寿命。
耐腐蚀性和耐温性则是指材料在恶劣环境条件下能够保持其性能不受损害。
二、变形行为的分析聚合物材料的变形行为是指材料在外界力的作用下产生的形变和位移现象。
聚合物材料的变形行为可以分为弹性变形、塑性变形和破坏性变形。
弹性变形是指材料在受力作用下,能够恢复到原始形状的变形过程。
聚合物材料的弹性变形主要受到材料的弹性模量和材料结构的影响。
聚合物材料的微观结构与力学性能的关系分析一、聚合物材料的微观结构介绍聚合物材料广泛应用于日常生活和工业领域中,如塑料、橡胶、纤维等。
聚合物材料的微观结构是其力学性能的决定因素之一。
聚合物材料的微观结构包括分子结构、晶型、链长、分支度、分子量分布等。
其中,分子结构和晶型是聚合物材料微观结构的两个重要方面。
1.分子结构分子结构影响聚合物材料的性质,如塑料的割裂强度、抗拉强度、硬度等。
不同聚合物材料的分子结构差异较大,例如高密度聚乙烯和低密度聚乙烯的分子结构就不同。
高密度聚乙烯的分子链比低密度聚乙烯分子链更紧密,因此具有更高的密度和更好的力学性能。
2.晶型聚合物材料的晶型对其力学性能也有重要影响。
聚合物材料的晶型包括α晶型、β晶型以及其它晶型等。
不同晶型对聚合物材料力学性能的影响不同,例如高密度聚乙烯主要存在α晶型,其力学性能比较优秀。
而低密度聚乙烯主要存在α晶型和β晶型,硬度比高密度聚乙烯差,但韧性更好。
二、聚合物材料的力学性能介绍聚合物材料具有轻质、耐腐蚀、绝缘、易成型等优异性能,已广泛应用于各个领域。
聚合物材料的力学性能是其应用的主要指标。
聚合物材料的力学性能包括力学强度、弹性模量、硬度、韧性、塑性等。
1.力学强度力学强度是聚合物材料的一个重要指标,它反映了在受到外部作用力的情况下,聚合物材料承受力量的大小。
力学强度的提高可以提高聚合物材料的负荷能力。
2.弹性模量弹性模量是聚合物材料在弹性变形范围内,材料单位截面积所受的拉应力与相应的变形(应变)之比。
弹性模量的提高可以提高聚合物材料的抗压能力。
3.硬度和韧性硬度和韧性分别是聚合物材料的刻擦和抗冲击能力。
硬度越高,耐磨性越好,但脆性越强,易爆裂;韧性越好,但刻蚀性越弱。
在应用中,需要根据不同的使用条件选择合适的聚合物材料。
4.塑性和弯曲强度聚合物材料的塑性表现为关键贮量在击穿前塑性加大而压缩强度减小,用来描述聚合物材料在受力时的伸长性和偏移性。
弯曲强度则反映聚合物材料在弯曲、扭曲等条件下受力后的力量承载能力。
大分子聚合物力学性能的研究随着科技的不断进步,人们对于新材料的研发已经不再满足于单一的材料组成,而是将复杂的多种材料组合而成,形成符合特定要求的全部新材料。
而聚合物材料作为一种重要的材料,其性能的研究至关重要。
聚合物作为一种重要的材料,不仅在日常生活中大量存在,而且在工程和科学的领域也同样得到了广泛应用。
聚合物的性能决定了它们在生产和应用中的重要性,力学性能是其中非常重要的一个方面。
在聚合物科学中,力学性能研究是一个复杂和多样的领域。
广泛的应用要求这些材料有足够的强度、刚度和韧性。
因此,大分子聚合物力学性能的研究至关重要。
一般来说,研究大分子聚合物材料的力学性能,需要从材料的结构和组成开始分析。
在分子级别上,聚合物的力学性质通常由链分子的生物聚合反应和结晶状态等因素所决定。
而在宏观层面,它的力学性质又往往取决于其结构、形状、缺陷和受外力效应的情况。
对大分子聚合物材料的力学性能进行剖析,主要可以从以下几个方面入手:1. 分析材料的形状和结构:先要确定材料的形状和结构,这些决定了材料的应力/应变响应。
当了解了材料的形状和结构后,可以使用有限元或者其他计算方法对其应力响应进行预测。
2. 测试材料在不同条件下的物性:分析材料的缺陷和物性,以确认它的强度、刚度和韧性。
在生产线上,用拉伸测试机进行拉伸、撕裂、弯曲和冲击试验等精确测量,以获得材料各项物理机械特性数据。
3. 分析大分子聚合物的晶体学和热力学性质:一般来说,聚合物的应力/应变响应取决于它们的结晶和非结晶状态。
结晶和非结晶材料的响应和热力学特性是非常不同的,因此研究不同材料形式的特性,可以提高研究效率。
4. 研究材料的建模和仿真:对于力学性能复杂的大分子聚合物材料,它们的力学性研究需要结合理论模拟方法。
此外,研究材料边界仍然是一项挑战,开发高精度模型需要对于材料的超分子组织结构有足够的理解。
总之,大分子聚合物力学性能的研究具有一定的专业性和复杂性,但对于聚合物材料的开发和应用有着重要意义。