大物下习题答案
- 格式:doc
- 大小:1005.00 KB
- 文档页数:8
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
第4章 机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
第4章 机械振动基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
⼤学物理课后习题答案详解第⼀章质点运动学1、(习题 1.1):⼀质点在xOy 平⾯内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道⽅程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置: 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2):质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动⽅程)(t x x =.解:kv dtdv -= ??-=t v v kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt e v dx t k t x -??=000 )1(0t k e k v x --=3、⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ?=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020= x 2= t 3 /3+10 (SI)4、⼀质量为m 的⼩球在⾼度h 处以初速度0v ⽔平抛出,求:(1)⼩球的运动⽅程;(2)⼩球在落地之前的轨迹⽅程;(3)落地前瞬时⼩球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联⽴式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = ⽽落地所⽤时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、已知质点位⽮随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任⼀时刻的速度和加速度;(2)任⼀时刻的切向加速度和法向加速度。
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
习题八8-1电量都是0的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中 心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:如题8-1图示(1)以人处点电荷为研究对象,由力平衡知:/为负电荷2—!—^cos30° =———莫一 4兀%。
~4吟(必白)2解得(2)与三角形边长无关.8-2图 8-2两小球的质量都是用,都用长为'的细绳挂在同一点,它们带有相同电量,静止时两 线夹角为2°,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所 带的电量.解:如题8-2图示T cos 。
= mg'Tsin0=F e =—4兀% (2/sin 。
)-E =28-3根据点电荷场强公式4花°广,当被考察的场点距源点电荷很近(r-0)时,则场强-8,这是没有物理意义的,对此应如何理解?E — q 亍~ A 2 弁解:仅对点电荷成立,当时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有i 定形状大小,考虑电荷在带电体上的分布求出的场强不会是 无限大.8-4在真空中有A , B 两平行板,相对距离为】,板面积为S,其带电量分别为+0和・ 0.则这两板之间有相互作用力/,有人说,,又有人说,因为f=qE,所以f = £饵.试问这两种说法对吗?为什么? f 到底应等于多少?题8T 图题解得解得 q = 2/sin 。
J 4 濯tan 0电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而 符号相同.证:如题8-21图所示,设两导体人、8的四个平面均匀带电的电荷面密度依次为,题8-21图(1)则取与平面垂直且底面分别在人、&内部的闭合柱面为高斯面时,有fEd 如(% +(T 3)AS = OCT + CR 3 = 0• • ,说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加 而成的,即’ 右 2 口3_ °2% 2% 2% 2%% + / = 0说明相背两面上电荷面密度总是大小相等,符号相同.8-22三个平行金属板A , B 和C 的面积都是200cm 2, A 和B 相距4.0mm, A 与C 相距2. 0 mm.B ,C 都接地,如题8-22图所示.如果使A 板带正电3. 0X 10气,略去边缘效应, 问3板和°板上的感应电荷各是多少?以地的电势为零,则人板的电势是多少?解:如题8-22图示,令A 板左侧面电荷面密度为’,右侧面电荷面密度为“2又•: 又•:2q c =-(y x S = --q A =-2xlO -7^=-cr 2S = -lxlO _7C 久=孩%=色烦=2.3x103V8-23 两个半径分别为&和人2 (&v&2)的同心薄金属球壳,现给内球壳带电+0,试 计算: (1) 外球壳上的电荷分布及电势大小;先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解:(1)内球带电+ 0;球壳内表面带电则为一 外表面带电为+ 0,且均匀分布,其电 势4TC £O 厂 4兀%/?(2) 外壳接地时,外表面电荷+0入地,外表面不带电,内表面电荷仍为一q.所以球壳电 势由内球+0与内表面一 0产生:U = —J *— = 04丸£()/?2 4*()任(3) 设此时内球壳带电量为q 「;则外壳内表面带电量为一 /,外壳外表面带电量为一 g+ q' (电荷守恒),此时内球壳电势为零,且=+ 二W4T C£()R] 4 冗4.%夫2,站q't+ - q + q' =(R 】_ 政4*0 R?4兀qR? 4715()R ;8-24半径为&的金属球离地面很远,并用导线与地相联,在与球心相距为d = 3R 处有 一点电荷+G,试求:金属球上的感应电荷的电量.解:如题8-24图所示,设金属球感应电荷为',则球接地时电势"。
第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。
然后使该球壳与地接触一下,再将点电荷+q 取走。
此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。
充电后,两极板间相互作用力为F 。
则两极板间的电势差为 ;极板上的电荷为 。
C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。
习题1111-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆心O点的场强。
解:以O为坐标原点建立xOy坐标,如图所示。
①对于半无限长导线A∞在O点的场强:有:(cos cos)42(sin sin)42AxA yERERλπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B∞在O点的场强:有:(sin sin)42(cos cos)42B xB yERERλπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB圆弧在O点的场强:有:200200cos(sin sin)442sin(cos cos)442AB xAB yE dR RE dR Rππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O xERλπε=,04O yERλπε=,得:0()4OE i jRλπε=+。
或写成场强:0E==,方向45。
11-5.带电细线弯成半径为R的半圆形,电荷线密度为0sinλλϕ=,式中λ为一常数,ϕ为半径R与x轴所成的夹角,如图所示.试求环心O处的电场强度。
解:如图,200sin44ddldER Rλϕϕλπεπε==,cossinxydE dEdE dEϕϕ==⎧⎪⎨⎪⎩考虑到对称性,有:0=xE;∴200000000sin(1cos2)sin4428yd dE dE dER R Rππλϕϕλλϕϕϕπεπεε-=====⎰⎰⎰⎰,方向沿y轴负向。
11-15.图示为一个均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为1R,外表面半径为2R .设无穷远处为电势零点,xyE求空腔内任一点的电势。
解:当1r R <时,因高斯面内不包围电荷,有:10E =,当12R r R <<时,有:203132031323)(4)(34r R r r R r E ερπεπρ-=-=,当2r R >时,有:20313220313233)(4)(34r R R r R R E ερπεπρ-=-=,以无穷远处为电势零点,有:21223R R R U E d r E d r ∞=⋅+⋅⎰⎰⎰⎰∞-+-=2R dr r R R dr r R r R R203132203133)(3)(21ερερ)(221220R R -=ερ。
11-19.如图所示,一个半径为R 的均匀带电圆板,其电荷面密度为σ(>0)今有一质量为m ,电荷为q -的粒子(q >0)沿圆板轴线(x 轴)方向向圆板运动,已知在距圆心O (也是x 轴原点)为b 的位置上时,粒子的速度为0v ,求粒子击中圆板时的速度(设圆板带电的均匀性始终不变)。
解:均匀带电圆板在其垂直于面的轴线上0x 处产生的电势为:00)2U x σε=,那么,(2Ob O b U U U R b σε=-=+,由能量守恒定律,222000111()(2222Ob q m v m v qU mv R b σε=--=++,有:)(22020b R b R m q v v +-++=εσ大学物理第12章课后习题12-3.有一外半径为1R ,内半径2R 的金属球壳,在壳内有一半径为3R 的金属球,球壳和内球均带电量q ,求球心的电势.解:由高斯定理,可求出场强分布:132********12004024E r R q E R r R r E R r R q E r R r πεπε=<⎧⎪⎪=<<⎪⎪⎨=<<⎪⎪=>⎪⎪⎩∴321321012340R R R R R R U E d r E d r E d r E d r ∞=⋅+⋅+⋅+⋅⎰⎰⎰⎰2312200244R R R q q dr dr r rπεπε∞=+⎰⎰321112()4q R R R πε=-+。
12-9.同轴传输线是由两个很长且彼此绝缘的同轴金属圆柱(内)和圆筒(外)构成,设内圆柱半径为1R ,电势为1V ,外圆筒的内半径为2R ,电势为2V .求其离轴为r 处(1R <r <2R )的电势。
解:∵1R <r <2R 处电场强度为:02E rλπε=,∴内外圆柱间电势差为:21212001ln 22R R R V V dr r R λλπεπε-==⎰则:12021()2ln()V V R R λπε-= 同理,r 处的电势为:22200ln 22R r rR U V d r r rλλπεπε-==⎰(*)∴220ln 2r R U V r λπε=+212221ln()()ln()R r V V V R R =-+。
【注:上式也可以变形为:r U =111221ln()()ln()r R V V V R R =--,与书后答案相同,或将(*)式用:11001ln 22rr R rV U dr r R λλπεπε-==⎰计算,结果如上】 习题1313-3.面积为S 的平行板电容器,两板间距为d ,求:(1)插入厚度为3d ,相对介电常数为r ε的电介质,其电容量变为原来的多少倍?(2)插入厚度为3d的导电板,其电容量又变为原来的多少倍?解:(1)电介质外的场强为:00E σε=,而电介质内的场强为:0r r E σεε=, 所以,两板间电势差为:00233r d U d σσεεε=⋅+⋅, 那么,03(21)r r S Q S C U U d εεσε===+,而00S C d ε=,∴0321r r C C εε=+; (2)插入厚度为3d的导电板,可看成是两个电容的串联,有:00123/3S S C C d d εε===, ∴0021212323C d S C C C C C ==+=ε⇒032C C =。
23d3d3d13-6.如图所示,半径为0R 的导体球带有电荷Q ,球外有一层均匀介质同心球壳,其内、外半径分别为1R 和2R ,相对电容率为r ε,求:介质内、外的电场强度大小和电位移矢量大小。
解:利用介质中的高斯定理iSS D d S q ⋅=∑⎰⎰内。
(1)导体内外的电位移为:0r R >,24QD r π=;0r R <,0D =。
(2)由于0r DE εε=,所以介质内外的电场强度为:0r R <时,10E =;10R r R >>时,22004DQE r επε==;21R r R >>时,32004r r DQE r εεπεε==;2r R >时,42004D Q E r επε==。
13-12.一平行板电容器的板面积为S ,两板间距离为d ,板间充满相对介电常数为r ε的均匀介质,分别求出下述两种情况下外力所做的功:(1)维持两板上面电荷密度0σ不变而把介质取出;(2)维持两板上电压U 不变而把介质取出。
解:(1)维持两板上面电荷密度0σ不变,有介质时:2201001122r r Sd W E Sd σεεεε==, (0r D E εε=,0D σ=)取出介质后:2202001122Sd W E Sd σεε==, 外力所做的功等于静电场能量的增加:2021011(1)2r Sd W W W σεε∆=-=-; (2)维持两板上电压U 不变,有介质时:20212121Ud S CU W r εε==,取出介质后:20222121U d S CU W ε==,∴02211(1)2r S W W W U d εε∆=-=-。
大学物理第14章课后习题14-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:;直导线在O点的磁感应强度:000020[sin 60sin(60)]4cos602II B R Rμππ=--=,方向:⊗;∴总场强:01)23IB Rμπ=-,方向⊗。
14-8.一橡皮传输带以速度v 匀速向右运动,如图所示,橡皮带上均匀带有电荷,电荷面密度为σ。
(1)求像皮带中部上方靠近表面一点处的磁感应强度B 的大小;(2)证明对非相对论情形,运动电荷的速度v 及它所产生的磁场B 和电场E 之间满足下述关系:21B v E c =⨯(式中001με=c )。
解:(1)如图,垂直于电荷运动方向作一个闭合回路abcda ,考虑到橡皮带上等效电流密度为:i v σ=,橡皮带上方的磁场方向水平向外,橡皮带下方的磁场方向水平向里,根据安培环路定理有:0abcdB dl L i μ⋅=⎰⇒02B L L v μσ⋅=,∴磁感应强度B 的大小:02vB μσ=;(2)非相对论情形下:匀速运动的点电荷产生的磁场为:02ˆ4qv rB rμπ⨯=⋅,点电荷产生的电场为:201ˆ4q E r rπε=⋅, ∴0002220ˆ11ˆ44q qv rv E v r B c r rμεμπεπ⨯⨯=⨯⋅=⋅=, 即为结论:21B v E c =⨯(式中001με=c )。
14-10.如图所示,两无限长平行放置的柱形导体内通过等值、反向电流I ,电流在两个阴影所示的横截面的面积皆为S ,两圆柱轴线间的距离d O O =21,试求两导体中部真空部分的磁感应强度。
解:因为一个阴影的横截面积为S ,那么面电流密度为:Ii S=,利用补偿法,将真空部分看成通有电流i ±,设其中一个阴影在真空部分某点P 处产生的磁场为1B ,距离 为1r ,另一个为2B 、2r ,有:12r r d -=。
利用安培环路定理可得:201011122I r I r S B r S μπμπ==,202022222I r I rS B r Sμπμπ==,abcdLP1r 2ˆr ⊥1ˆr ⊥ˆ则:0111ˆ2I r B r Sμ⊥=,0222ˆ2I r B r Sμ⊥=,∴00121122ˆˆˆ()22II d B B B r r r r d SSμμ⊥⊥⊥=+=+=。
即空腔处磁感应强度大小为02I dB Sμ=,方向向上。
14-12.在电视显象管的电子束中,电子能量为12000eV ,这个显像管的取向使电子沿水平方向由南向北运动。
该处地球磁场的垂直分量向下,大小为55.510B T -=⨯,问:(1)电子束将偏向什么方向?(2)电子的加速度是多少?(3)电子束在显象管内在南北方向上通过20cm 时将偏转多远?解:(1)根据f q v B =⨯可判断出电子束将偏向东。
(2)利用221mv E =,有:m E v 2=, 而ma qvB f ==,∴1141028.62-⋅⨯===s m m EmqB m qvB a(3)2211()322Ly at a mm v===。