061等离子体显示器概述
- 格式:pptx
- 大小:3.47 MB
- 文档页数:40
等离子体显示器又称电浆显示器,是继CRT(阴极射线管)、LCD(液晶显示器)后的最新一代显示器,其特点是厚度极薄,分辨率佳。
从工作原理上讲,等离子体技术同其它显示方式相比存在明显的差别,在结构和组成方面领先一步。
其工作原理类似普通日光灯和电视彩色图像,由各个独立的荧光粉像素发光组合而成,因此图像鲜艳、明亮、干净而清晰。
另外,等离子体显示设备最突出的特点是可做到超薄,可轻易做到40英寸以上的完全平面大屏幕,而厚度不到100毫米(实际上这也是它的一个弱点:即不能做得较小。
目前成品最小只有42英寸,只能面向大屏幕需求的用户,和家庭影院等方面)。
等离子显示器(PDP,Plasma Display Panel)从上世纪90年代开始进入商业化生产以来,其性能指标、良品率等不断提高,而价格却不断下降。
特别是2005年以来,其性价比进一步提高,从前期以商用为主转变成以家用为主。
成像原理等离子显示器等离子显示技术的成像原理是在显示屏上排列上千个密封的小低压气体室,通过电流激发使其发出肉眼看不见的紫外光,然后紫外光碰击后面玻璃上的红、绿、蓝3色荧光体发出肉眼能看到的可见光,以此成像。
优越性厚度薄、分辨率高、占用空间少且可作为家中的壁挂电视使用,代表了未来电脑显示器的发展趋势。
工作原理等离子显示器是在两张薄玻璃板之间充填混合气体,施加电压使之产生离子气体,然后使等离子气体放电,与基板中的荧光体发生反应,产生彩色影像。
它以等离子管作为发光元件,大量的等离子管排列在一起构成屏幕,每个等离子对应的每个小室内都充有氖氙气体,在等离子管电极间加上高压后,封在两层玻璃之间的等离子管小室中的气体会产生紫外光,并激发平板显示屏上的红绿蓝三基色荧光粉发出可见光。
每个等离子管作为一个像素,由这些像素的明暗和颜色变化组合使之产生各种灰度和色彩的图像,类似显像管发光。
等离子彩电又称“壁挂式电视”,不受磁力和磁场影响,具有机身纤薄、重量轻、屏幕大、色彩鲜艳、画面清晰、亮度高、失真度小、视觉感受舒适、节省空间等优点。
等离子体显示器的工作原理等离子体显示器(Plasma Display Panel,PDP)是一种被广泛应用于平面显示领域的显示技术。
它采用了一种名为等离子体的物质作为显示元素,具有较高的亮度、广视角和快速的响应时间。
本文将详细介绍等离子体显示器的工作原理。
一、等离子体的定义和特性等离子体是一种物质状态,由极度高温或强电场中的气体中的电子和正离子组成。
与固体、液体和气体相比,等离子体具有一系列独特的特性,如导电性、辐射性和瞬时性等。
二、等离子体显示器的结构等离子体显示器由数以百万计的微小单元组成,每个单元称为像素。
每个像素由三个不同颜色的荧光物质和电极构成。
1. 基玻璃板等离子体显示器的基本结构是由两块玻璃板组成的。
这两块玻璃板之间被填充了一种稀薄的气体,并且在玻璃板上分布着一组垂直和水平的电极。
2. 真空腔两块玻璃板之间的空间形成了一个完整的真空腔。
真空腔中含有少量的稀薄气体,通常是氙气和氮气的混合物。
3. 三基色荧光物质在每个像素的前方,分别涂有红、绿和蓝三种不同颜色的荧光物质。
当这些荧光物质受到激发时,会释放出可见光。
4. 充放电电极在玻璃板的背后,有一组垂直和水平的电极。
这些电极通过控制电流的传递来激发荧光物质并控制像素的亮度。
三、等离子体显示器的工作原理等离子体显示器的工作原理主要分为两个过程:放电和荧光。
1. 放电过程当外部电源加电时,电极之间形成强电场。
这个电场使得气体中的原子被电离,形成电子和正离子。
这些电子和正离子之间的相互碰撞导致产生了等离子体。
2. 荧光过程当放电产生的等离子体撞击到荧光物质时,荧光物质会被激发并释放出可见光。
荧光物质的不同颜色对应着三基色荧光,通过调整电极的电流来控制每个像素的亮度,从而呈现出精彩绚丽的图像。
四、等离子体显示器的优点和应用领域等离子体显示器相较于其他平面显示技术,具有以下优点:1. 高亮度:等离子体显示器的荧光物质能够产生较高亮度的光线,使得图像更加明亮、鲜艳。
等离子显示器的特点
等离子显示器是一种新型的显示技术,它采用了与传统液晶显示器不同的原理和技术。
下面将介绍等离子显示器的特点。
可以呈现出更生动的色彩
等离子显示器主要采用了气态放电原理,这种原理可以在屏幕上产生较高强度的蓝、绿、红三种颜色的激光,通过像素点的控制,可以呈现出更生动、更真实的色彩,相比传统液晶显示器来说,它最大的优点就是色彩还原更真实。
视角范围更广
等离子显示器采用了玻璃板加膜技术,在屏幕两层玻璃板之间施加特殊膜,使得其显示图像更加清晰明亮,同时增加了可视角度,即在较大的范围内仍能正常显示。
这一点相比传统液晶显示器来说,它的视角范围更广。
反应速度更快
等离子显示器可以在微秒内完成像素点的刷新,这使得它在显示动态图像时更为出色。
传统液晶显示器的反应速度比较慢,会出现屏幕残影,而等离子显示器的反应速度可达到200Hz以上,几乎不存在残影现象。
可以消毒
等离子显示器采用了一种特殊的涂层材料,可以实现屏幕表面的消毒,能够有效杀灭屏幕表面的病菌。
这一点在公共场所和医院等地具有很大的实用性。
显示效果稳定
等离子显示器工作稳定,可以长时间运行,且耗电低。
它的屏幕寿命长,可以使用密集排列的像素点来制造高分辨率屏幕。
总体来说,等离子显示器具备着色彩还原好,视角范围广,反应速度快,具备消毒等特点。
虽然现在等离子显示器不如LED和OLED业绩好,但在某些领域,等离子显示器还是有它独特的应用优势。
等离子体显示器(PDP)是继液晶显示器(LCD)之后的最新显示技术之一。
这种显示器能够用作适应数字化时代的各种多媒体显示器,适用于创造大屏幕和薄型彩色电视机等,有着广阔的应用前景。
等离子体显示器具有体积小、分量轻、无X 射线辐射的特点,由于各个发光单元的结构彻底相同,因此不会浮现 CRT 显像管常见的图象几何畸变。
等离子体显示器屏幕亮度非常均匀,没有亮区和暗区,不像显像管的亮度--屏幕中心比四周亮度要高一些,而且,等离子体显示器不会受磁场的影响,具有更好的环境适应能力。
等离子体显示器屏幕也不存在聚焦的问题,因此,彻底消除了CRT 显像管某些区域聚焦不良或者使用时间过长开始散焦的毛病;不会产生 CRT 显像管的色采漂移现象,而表面平直也使大屏幕边角处的失真和色纯度变化得到彻底改善。
同时,其高亮度、大视角、全彩色和高对照度,意味着等离子体显示器图象更加清晰,色彩更加明艳,感受更加舒适,效果更加理想,令传统显示设备自愧不如。
与 LCD 液晶显示器相比,等离子体显示器有亮度高、色采还原性好、灰度丰富、对快速变化的画面响应速度快等优点。
由于屏幕亮度很高,因此可以在璀璨的环境下使用。
此外,等离子体显示器视野开阔,视角宽广(高达 160 度),能提供分外亮丽、均匀平滑的画面和前所未有的更大欣赏角度。
下面我们来介绍一下等离子体显示器件的工作原理。
一、等离子体放电简介等离子体是物质存在的第四种形态。
当气体被加热到足够高的温度,或者受到高能带电粒子轰击,中性气体原子将被电离,空间中形成大量的电子和离子,但总体上又保持电中性。
等离子体在我们日常生活中的自然存在很少,但实际上它又无处不在。
远到宇宙天体,近到大气中的电离层,又如生活中常用的日光灯,都充满了等离子体。
图 1 为日光灯的原理图。
若在图 1 中的低气压放电管中升高电压 V,同时测量放电电流 I,将得到图 2 所示的高度非线性电压-电流曲线。
在曲线上 A、B 间的区域是本底电离区,不断升高电压就描出一个由宇宙线和其他形式的电离本底辐射所产生的越来越多的单个离子和电子的电流。
等离子体显示器由于等离子体显示板(Plasma Display Panel)具有易于实现大屏幕、厚度薄、重量轻、视角宽、图像质量高和工作在全数字化模式等优点,因此受到世界电子工业界的广泛关注。
特别是20世纪90年代以来,等离子体显示技术在实现全彩色显示、提高亮度和发光效率、改善动态图像显示质量、降低功耗和延长寿命等方面取得了重大突破,使PDP成为大屏幕壁挂电视、高清晰度电视(HDTV)和多媒体显示器的首选器件。
随着21世纪信息时代的飞速发展,诸如数字电视广播和英特网等基于图形和图像的服务将得到广泛的拓展,从而为PDP提供了无比广阔的应用前景。
一.PDP的定义和分类PDP是指所有利用气体放电而发光的平板显示器件的总称。
它属于冷阴极放电管——利用加在阴极和阳极之间一定的电压,使气体产生辉光放电。
单色PDP通常直接利用气体放电时发出的可见光来实现单色显示,其放电气体一般选择纯氖气(Ne)或氖-氩混合气(Ne-Ar)。
彩色PDP则通过气体放电发射的真空紫外线(VUV)照射红、绿、蓝三基色荧光粉,使荧光粉发光来实现彩色显示。
其放电气体一般选择含氙的稀有混合气体,如氖氙混合气体(Ne-Xe)、氦氙混合气体(He-Xe)或氦氖氙混合气体(He-Ne-Xe)等。
PDP按工作方式的不同主要可分为电极与气体直接接触的直流型(DC-PDP)和电极用覆盖介质层与气体相隔离的交流型(AC-PDP)两大类。
而AC-PDP又根据电极结构的不同,可分为对向放电型和表面放电型两种。
它们的基本结构如图1所示。
1.AC-PDP的发展1976年,Owens-LLLinow研究小组研制出开放单元(Open Cell)结构的AC-PDP,它的电极制作在基板的内表面,并被介质层所覆盖。
因为介质层具有比玻璃基板低得多的容抗,且具有较好的电子发射特性,使得工作电压降低。
这种“对向放电型”结构目前仍然被法国Thomson公司和美国Photorics公司用来制造彩色显示器。
等离子体显示器由于等离子体显示板(Plasma Display Panel)具有易于实现大屏幕、厚度薄、重量轻、视角宽、图像质量高和工作在全数字化模式等优点,因此受到世界电子工业界的广泛关注。
特别是20世纪90年代以来,等离子体显示技术在实现全彩色显示、提高亮度和发光效率、改善动态图像显示质量、降低功耗和延长寿命等方面取得了重大突破,使PDP成为大屏幕壁挂电视、高清晰度电视(HDTV)和多媒体显示器的首选器件。
随着21世纪信息时代的飞速发展,诸如数字电视广播和英特网等基于图形和图像的服务将得到广泛的拓展,从而为PDP提供了无比广阔的应用前景。
一.PDP的定义和分类PDP是指所有利用气体放电而发光的平板显示器件的总称。
它属于冷阴极放电管——利用加在阴极和阳极之间一定的电压,使气体产生辉光放电。
单色PDP通常直接利用气体放电时发出的可见光来实现单色显示,其放电气体一般选择纯氖气(Ne)或氖-氩混合气(Ne-Ar)。
彩色PDP则通过气体放电发射的真空紫外线(VUV)照射红、绿、蓝三基色荧光粉,使荧光粉发光来实现彩色显示。
其放电气体一般选择含氙的稀有混合气体,如氖氙混合气体(Ne-Xe)、氦氙混合气体(He-Xe)或氦氖氙混合气体(He-Ne-Xe)等。
PDP按工作方式的不同主要可分为电极与气体直接接触的直流型(DC-PDP)和电极用覆盖介质层与气体相隔离的交流型(AC-PDP)两大类。
而AC-PDP又根据电极结构的不同,可分为对向放电型和表面放电型两种。
它们的基本结构如图1所示。
1.AC-PDP的发展1976年,Owens-LLLinow研究小组研制出开放单元(Open Cell)结构的AC-PDP,它的电极制作在基板的内表面,并被介质层所覆盖。
因为介质层具有比玻璃基板低得多的容抗,且具有较好的电子发射特性,使得工作电压降低。
这种“对向放电型”结构目前仍然被法国Thomson公司和美国Photorics公司用来制造彩色显示器。