第5章 受精的机制
- 格式:doc
- 大小:26.00 KB
- 文档页数:11
绪论1、发育生物学:是应用现代生物学的技术研究生物发育机制的科学。
它主要研究多细胞生物体从生殖细胞的发生、受精、胚胎发育、生长到衰老和死亡,即生物个体发育中生命现象发展的机制。
2、〔填空〕发育生物学模式动物:果蝇、线虫、非洲爪蟾、斑马鱼、鸡和小鼠。
第一篇发育生物学基本原理第一章细胞命运的决定1、细胞分化:从单个的全能细胞受精卵开始产生各种分化类型细胞的发育过程称细胞分化。
2、细胞定型可分为“特化”和“决定”两个阶段:当一个细胞或者组织放在中性环境如培养皿中培养可以自主分化时,可以说这个细胞或组织发育命运已经特化;当一个细胞或组织放在胚胎另一个部位培养可以自主分化时,可以说这个细胞或组织发育命运已经决定。
〔特化的发育命运是可逆的,决定的发育命运是不可逆的。
把已特化细胞或组织移植到胚胎不同部位,会分化成不同组织,把已决定细胞或组织移植到胚胎不同部位,只会分化成同一种组织。
〕3、〔简答〕胚胎细胞发育命运的定型主要有两种作用方式:第一种通过胞质隔离实现,第二种通过胚胎诱导实现。
〔1〕通过胞质隔离指定细胞发育命运是指卵裂时,受精卵内特定的细胞质别离到特定的裂球中,裂球中所含有的特定胞质可以决定它发育成哪一类细胞,而与邻近细胞没有关系。
细胞发育命运的这种定型方式称为“自主特化”,细胞发育命运完全由内部细胞质组分决定。
这种以细胞自主特化为特点的胚胎发育模式称为“镶嵌型发育”,因为整体胚胎好似是由能自我分化的各部分组合而成,也称自主型发育。
〔2〕通过胚胎诱导指定细胞发育命运是指胚胎发育过程中,相邻细胞或组织之间通过互相作用,决定其中一方或双方细胞的分化方向。
相互作用开始前,细胞可能具有不止一种分化潜能,但是和邻近细胞或组织的相互作用逐渐限制它们的发育命运,使之只能朝一定的方向分化。
细胞发育命运的这种定型方式成为“有条件特化”或“渐进特化”或“依赖型特化”,因为细胞发育命运取决于与其邻近的细胞或组织。
这种以细胞有条件特化为特点的胚胎发育模式称为“调整型发育”,也称有条件发育或依赖型发育。
发育生物学试题库(发育生物学教学组)目录:第一章章节知识点与重点 (1)第二章发育生物学试题总汇 (6)第三章试题参考答案 (14)第一章章节知识点与重点绪论1.发育和发育生物学2.发育的功能3.发育生物学的基础4.动物发育的主要特点5.胚胎发育的类型(嵌合型、调整型)6.研究发育生物学的主要方法第一章细胞命运的决定1.细胞分化2.细胞定型及其时相(特化、决定)3.细胞定型的两种方式与其特点(自主特化、有条件特化)4.胚胎发育的两种方式与其特点(镶嵌型发育依赖型发育)5.形态决定子6.胞质定域(海胆、软体动物、线虫)7.形态决定子的性质8.细胞命运渐进特化的系列实验9.双梯度模型10.诱导11.胚胎诱导第二章细胞分化的分子机制1.细胞表型分类2.差异基因表达的源由3.了解基因表达各水平的一般调控机制第三章转录后的调控1.RNA加工水平调控2.翻译和翻译后水平调控第四章发育中的信号传导1.信号传导2.了解参与早期胚胎发育的细胞外信号传导途径第五章受精的机制1.受精2.受精的主要过程及相关知识3.向化性4.顶体反应5.皮质反应第六章卵裂1.卵裂特点(课堂作业)2.卵裂方式3.两栖类、哺乳类、鱼类、昆虫的卵裂过程及特点4.(果蝇)卵裂的调控机制第七章原肠作用1.了解原肠作用的方式:2.海胆、文昌鱼、鱼类、两栖类、鸟类、哺乳类的原肠作用基本过程与特点第八章神经胚和三胚层分化1.三个胚层的发育命运第九章胚胎细胞相互作用-诱导1.胚胎诱导和自动神经化、自动中胚层化2.胚胎诱导、异源诱导者3.初级诱导和次级诱导、三(多)级诱导4.邻近组织相互作用的两种类型5.间质与上皮(腺上皮)的相互作用及机制第十章胚轴形成1.体形模式2.图式形成3.果蝇形体模式建立过程中沿前后轴不同层次基因的表达4.果蝇前后轴建立的分子机制5.果蝇背腹轴形成的分子机制第十一章脊椎动物胚轴的形成1.什么是胚轴2.两栖类胚轴形成过程及分子机制3.了解鸟类、鱼类、哺乳类动物胚轴形成过程及分子机制第十二章脊椎动物中枢神经系统和体节形成机制1.脊椎动物中枢神经系统的前后轴形成2.脊椎动物中枢神经系统的背腹轴形成3.脊椎动物体节分化特征第十三章神经系统的发育1.神经系统的组织发生神经系统的组成来源(神经管、神经嵴、外胚层板)中枢神经系统的组织发生(脊髓、大脑、小脑、核团)神经系统发生过程中的组织与调控(位置、数目)2.神经系统的功能建立3.神经突起(树突和轴突)4.局部有序投射5.突触第十四章附肢的发育和再生1.附肢的起源2.附肢的早期发育附肢发育中外胚层与中胚层的相互作用附肢发育中轴性建立3.附肢再生(再生过程、再生调节)第十五章眼的发育1.视泡发育、分化2.晶状体发育、分化3.晶状体再生4.角膜发育第十六章变态1.变态2.昆虫变态的激素调控3.两栖类变态的激素调控第十七章性腺发育和性别决定1.哺乳动物的性腺发育2.哺乳动物的性别决定3.果蝇的性别决定4.雌雄同体、环境性别决定第十八章生殖细胞的发生1.精子发生:特点,过程2.卵子发生:特点,过程第十九章干细胞1.干细胞2.干细胞分类3.了解干细胞的应用第二十章动物发育的环境调控1.发育与环境关系2.环境对正常发育的调控3.环境对正常发育的干扰4.遗传与环境之间的相互作用第二章发育生物学试题样题总汇一、填空题(每空1分)1.发育生物学研究的主要内容是和,其主要任务是研究生命体发育的及其机制。
第五章受精受精是单倍体的精子和卵子相互结合和融合而形成双倍体合子的过程,是有性生殖生物个体发育的起点。
它一方面保证了双亲的遗传作用,另一方面恢复了染色体双倍体数目。
同时受精可以把个体发生过程中产生的变异通过生殖细胞遗传下去,保证了物种的多样性,在生物进化上具有重要意义。
第一节受精研究历史的简单回顾1875年和1876年,Hertwig和Fol分别在各自独立的研究中首先在海胆中发现了受精现象。
Hertwig发现了海胆精子入卵后雌雄两原核融合的现象,而Fol发现了精子接近和穿入卵子以及受精膜形成的过程,至此结束了胚胎学上的“精源学说”和“卵源学说”。
1883年,van Beneden发表了马副蛔虫受精的细胞生物学研究论文,肯定了在遗传上父母贡献均等的理论,并使精卵作用的研究更为深入。
他在马副蛔虫受精卵的第一次有丝分裂纺锤体上看到四条染色体,其中两条来自父方,两条来自母方,提出父母的染色体通过精卵的融合传给子代。
此后,H.T. Boveri在马副蛔虫的研究工作进一步巩固了上述理论,把染色体看作是遗传信息的载体。
二十世纪以来,有关受精的研究转向探讨受精后生理学变化和两性配子结合的机制。
在早期的研究中发现受精后细胞膜通透性变化、耗氧量增加等现象。
1912年以后,F.R. Lillie根据在沙蚕和海胆获得的一系列研究结果,提出了精卵相互作用的受精素假说。
根据这一假说,卵子分泌称为受精素(fertilin)的物质,使精子运动能力加强,并向卵子聚集。
四十年代前后,A. Tyler 就受精素的生物学、化学和免疫学特征展开了一系列工作,并进一步强调卵子在成熟过程中分泌的物质对受精有重要意义。
与此同时,M. Hartmann在海胆的研究工作中证实,不仅卵子能分泌受精素(雌配素),精子也能排出抗受精素(雄配素),二者相互作用的程度决定着受精的成功与否。
不久以后,在两栖类上发现卵外胶膜在精卵相互作用中发挥重要功能,为两栖类受精所必需。
《发育生物学》课后习题答案《发育生物学》课后习题答案绪论1、发育生物学的定义,研究对象和研究任务?答:定义:是应用现代生物学的技术研究生物发育机制的科学。
研究对象:主要研究多细胞生物体从生殖细胞的发生、受精、胚胎发育、生长到衰老死亡,即生物个体发育中生命现象发展的机制。
同时还研究生物种群系统发生的机制。
2、多细胞个体发育的两大功能?答:1.产生细胞多样性并使各种细胞在本世代有机体中有严格的时空特异性;2.保证世代交替和生命的连续。
3、书中所讲爪蟾个体发育中的一系列概念?答:受精:精子和卵子融合的过程称为受精。
卵裂:受精后受精卵立即开始一系列迅速的有丝分裂,分裂成许多小细胞即分裂球,这个过程称为卵裂。
囊胚:卵裂后期,由分裂球聚集构成的圆球形囊泡状胚胎称为囊胚。
图式形成:胚胎细胞形成不同组织,器官和构成有序空间结构的过程胚轴:指从胚胎前端到后端之间的前后轴和背侧到腹侧之间的背腹轴4、模式生物的共性特征?答:a.其生理特征能够代表生物界的某一大类群;b.容易获得并易于在实验室内饲养繁殖;c.容易进行试验操作,特别是遗传学分析。
5、所讲每种发育生物学模式生物的特点,优势及其应用?答:a.两粞类——非洲爪蟾取卵方便,可常年取卵,卵母细胞体积大、数量多,易于显微操作。
应用:最早使用的模式生物,卵子和胚胎对早期发育生物学的发展有举足轻重的作用。
b.鱼类——斑马鱼受精卵较大,发育前期无色素表达,性成熟周期短、遗传背景清楚。
优势:a,世代周期短;b,胚胎透明,易于观察。
应用:大规模遗传突变筛选。
c.鸟类——鸡胚胎发育过程与哺乳动物更加接近,且鸡胚在体外发育相对于哺乳动物更容易进行试验研究。
应用:研究肢、体节等器官发育机制。
d.哺乳动物——小鼠特点及优势:繁殖快、饲养管理费用低,胚胎发育过程与人接近,遗传学背景较清楚。
应用:作为很多人类疾病的动物模型。
e.无脊椎动物果蝇:繁殖迅速,染色体巨大且易于进行基因定位。
酵母:单细胞动物,容易控制其生长,能方便的控制单倍体和二倍体间的相互转换,与哺乳动物编码蛋白的基因有高度同源性。
第五章.种子植物生殖器官形态结构和功能一.名词解释1.繁殖:植物营养生长到一定阶段后就要通过一定的方式,由旧个体产生新个体来保持种族的延续,这就是植物的繁殖。
2.营养繁殖:植物营养体的一部分与母体分离,在适宜的条件下产生新个体的方式。
如扦插、分株、压条,嫁接、组织培养等。
3.孢子繁殖:也称无性繁殖,植物体生长到一定阶段后,产生一种称为孢子的繁殖细胞,孢子脱离母体后,直接发育形成一个新的植物个体。
4.有性生殖:植物生长到一定阶段后,产生两类不同的配子,即雄配子和雌配子,两类不同性别的配子结合后形成合于,在适宜条件下合子发育形成一个新植物个体。
种子植物主要是进行有性繁殖。
5.花:花的概念:花是一个不分枝的、节间极度缩短的具有生殖作用的变态枝条,其上着生各种变态的叶子,是被子植物特有的繁殖器官。
6.单子房:由一个心皮形成的雌蕊的子房,只有一室,称为单子房。
7.多室复子房:雌蕊的子房由多个心皮构成,心皮相接合的部位向子房内延伸,在子房中央愈合,心皮的一部分用来形成子房壁,另一部分用来形成子房内的隔膜,子房被分隔为多室,称为多室复子房。
8.完全花:一朵花中花萼、花冠、雄蕊、雌蕊均具有的称为完全花。
9.不完全花:花中花萼,花冠、雄蕊、雌蕊缺少其中一部分或几部分的花称为不完全花。
10.花芽分化:植物经过一定时期的营养生长后,在适宜条件下转为生殖生长,此时,茎尖顶端分生组织将不再形成叶原基和腋芽原基,而是逐渐形成花及花序原基,分化为花及花序,这一过程称为花芽分化。
11.减数分裂:减数分裂发生在花粉母细胞产生单核花粉粒和胚囊母细胞产生单核胚囊的时候,由两次连续的分裂组成,经过减数分裂,一个母细胞产生四个子细胞,其细胞内染色体数比母细胞减少一半。
12.心皮:具有生殖作用的变态叶子,它是构成雌蕊的基本单位。
13.双受精:当花粉管进入胚囊时,先端破裂,两个精子由花粉管进入胚囊。
其中一个精于与卵细胞结合,形成二倍体的合子,将来发育成胚;另一个精子与极核结合形成三倍体的初生胚乳核,这种两个精于分别与卵和极核结合的现象,称为双受精,双受精是进化过程中被子植物所特有的现象。
重点:1. 掌握发育生物学的概念发育生物学(developmental biology)是应用现代生物学的技术研究生物的生殖、生长和分化等发育本质的科学。
2. 掌握发育生物学研究的对象和任务①发育生物学主要研究多细胞生物体从生殖细胞的发生、受精、胚胎发育、生长、衰老和死亡,即生物个体发育 (ontogeny) 中生命过程发展的机制;②生物种群系统发生(systematics development) 的机制。
发育生物学的研究任务一个单细胞受精卵如何通过一系列的细胞分裂和细胞分化产生有机体的所有形态和功能不同的细胞,这些细胞又如何通过细胞之间的相互作用共同构建各种组织和器官,建成一个有机体并完成各种发育过程的。
阐明个体发育机制的核心问题是弄清遗传信息以何种方式编码在基因组上,DNA上的一维信息又是如何控制生物体的三维形态结构的构建和生命现象的发展。
3.动物发育的主要特征(1 ) 个体发育的特征;生物个体发育的特征是具有严格的时间和空间的次序性,这种次序性由发育的遗传程序控制。
发育是有机体的各种细胞协同作用的结果,也是一系列基因网络性调控的结果。
在发育的过程中涉及多种生命现象,如细胞分裂,细胞分化,细胞迁移,细胞凋亡,生长、衰老和死亡等。
(2 ) 个体发育的功能生物个体发育有两个主要的功能:①产生细胞的多样性并使各种细胞在本世代有机体中有严格的时间和空间次序性;②保证世代的交替和生命的连续。
4.动物发育的基本规律(1)受精新个体的生命开始于两性配子(gamete)——精子(sperm)和卵子(ovum)的融合,这个融合过程称为受精(fertilization)。
(2) 胚胎发育——形成幼体通过受精激活发育的程序,受精卵开始胚胎发育。
大多数动物要经过卵裂、原肠胚形成、神经胚形成(neurulation)、器官形成(organogenesis)等几个主要的胚胎发育阶段才能发育成为幼体。
(3)生长发育——成体 (4)衰老与死亡5. 了解后成论和先成论的基本内容后成论;胚胎是由简单到复杂逐渐发育形成的,这个理论后来称为后成论。
第一章绪论(3学时)教学目的与要求:1.了解发育生物学的研究对象、任务及其与其他学科学关系;2.掌握动物发育的主要特征和基本规律;3.了解发育生物学的发展简史;4.熟悉发育生物学研究中常用的模式生物及研究技术。
教学内容:第一节发育生物学的研究对象、任务及其与其他学科学关系发育(development)包括个体发育(ontogeny)和系统发育(phylogeny)。
个体发育是自受精卵开始到形成成熟个体所经历的一系列变化过程,系统发育是同一起源的生物群的形成历史。
发育生物学是从细胞水平和分子水平上研究生物个体发育机制的学科,它涉及基因如何控制胚胎细胞的行为、如何决定发育的模式以及胚胎的形态变化等重要问题,是生物学的核心学科。
随着分子生物学的发展与应用,发育生物学获得了迅速发展。
发育是生物界普遍存在的生物学现象,不同生物的发育既具有差异,又具有相似性,因此,对包括动物、植物和微生物在内的生物的发育过程进行比较和综合,有助于了解生物之间在发育上的共同规律和特殊性,有助于把握和理解发育的生物学本质。
由于历史的原因,人们对动物的发育研究比较充分和深入,而对植物等其他生物的研究则不够,因此,本课程中动物发育的内容所占比例相对较大。
第二节动物发育主要特征和基本规律动物的胚胎发育比较复杂,不同类的动物,胚胎发育的情况也不尽相同,但是早期胚胎发育的几个主要阶段却是相同的。
高等动物的发育过程也包括胚前发育、胚胎发育和胚后发育几个主要阶段,胚胎发育包括受精、卵裂、囊胚、原肠胚、中胚层及体腔形成、胚层分化等主要阶段,而低等动物因进化地位不同,其胚胎发育则缺少相应的后期几个阶段。
第三节发育生物学的发展简史一、胚胎发生的后成论(epigenesis)和先成论(prefomation)二、细胞学说促进了胚胎学理论的发展三、镶嵌式发育与调整式发育四、诱导现象的发现五、遗传学与发育学的结合第四节发育生物学的模式生物一、脊椎动物模式生物1.两栖类:非洲爪蟾(Xenopus laevis)2.鱼类:斑马鱼(Danio rerio)3.鸟类:鸡4.哺乳动物:小鼠二、无脊椎动物模式生物1.果蝇2.线虫:秀丽陷杆线虫第五节发育生物学研究技术一、常用发育生物学研究技术1.显微镜技术2.组织切片技术3.分子生物学技术4.原位杂交技术5.显微注射6.报道基因技术7.细胞标记技术二、发育遗传学技术1.正向遗传学技术2.反向遗传学技术第二章细胞命运的决定(3学时)教学目的与要求:1.掌握细胞命运的决定机制;2.掌握细胞命运决定在发育过程中的调控;3.了解常见模式生物的细胞命运决定。
第3节人类遗传病1.概述人类遗传病的主要类型。
(重点) 2.解释遗传病的致病机理。
(难点) 3.举例说明人类遗传病是可以检测和预防的。
4.调查常见的人类遗传病并探讨其预防措施。
知识点一人类常见遗传病的类型[学生用书P67]阅读教材P90~P911.遗传病的概念:由于遗传物质改变而引起的人类疾病。
2.人类常见遗传病的类型类型概念举例单基因遗传病指受一对等位基因控制的遗传病多指、并指、软骨发育不全、白化病等多基因遗传病指受两对以上的等位基因控制的人类遗传病冠心病、原发性高血压、青少年型糖尿病等染色体异常遗传病由染色体异常引起的遗传病21三体综合征(先天性愚型)、猫叫综合征人类遗传病的四个易错点(1)只有单基因遗传病符合孟德尔遗传规律,多基因遗传病和染色体异常遗传病不符合孟德尔遗传规律。
(2)携带遗传病基因的个体不一定会患遗传病,如Aa不是白化病患者。
(3)不携带致病基因的个体,不一定不患遗传病,染色体结构或数目异常也导致遗传病发生,如人的5号染色体部分缺失引起猫叫综合征,21三体综合征患者多了一条21号染色体,不携带致病基因。
(4)先天性疾病、家族性疾病和遗传病的关系①先天性疾病不一定是遗传病,如母亲妊娠前三个月内感染风疹病毒而使胎儿患先天性白内障。
②家族性疾病不一定是遗传病,如由于食物中缺少V A,家族中多个成员患夜盲症。
1.下列关于人类遗传病的叙述,错误的是()A.一般来说,常染色体遗传病在男性和女性中发病率相同B.21三体综合征属于人类染色体结构变异引发的遗传病C.血友病属于单基因遗传病D.多基因遗传病是指由多对等位基因控制的人类遗传病[解析]选B。
21三体综合征患者的第21号染色体比正常人的多了一条,属染色体数目异常引起的遗传病。
2.(2019·安徽淮南二中高一月考)人类21三体综合征的成因:在生殖细胞形成的过程中,第21号染色体没有分离。
已知21四体的胚胎不能成活,一对夫妇均为21三体综合征患者,从理论上说他们生出患病女孩的概率及实际可能性低于理论值的原因分别是() A.2/3,多一条染色体的卵细胞不易完成受精B.1/3,多一条染色体的精子因活力低并不易完成受精C.2/3,多一条染色体的精子因活力低并不易完成受精D.1/4,多一条染色体的卵细胞不易完成受精[解析]选B。
第五章受精的机制动物受精研究内容:精子获能和顶体反应、卵子的激活精卵融合,受精后生化变化动物受精方式受精:是指两性生殖细胞融合并形成具备双亲遗传潜能的新个体的过程。
受精作用是发育的开端,一个新的生命从此开始。
受精的功能1、将父母的基因传递给子代2、激发卵细胞中确保发育正常进展的一系列反应。
受精过程中几个重要的事件:精子与卵子的接触与识别、精子入卵、精子与卵子遗传物质的融合以及卵子的激活和发育开始。
受精既可以发生在体外,也可以在体内发生。
1. 成熟精子和卵子的结构2. 精子和卵子的接触和识别3. 精子入卵的调控4. 卵子代谢的激活5. 遗传物质的融合一、成熟精子和卵子的结精子头部由顶体囊泡(acrosomal vesicle)和精核构成。
顶体位于精核前端,由高尔基体演化而来。
顶体中含有多种水解酶,主要作用是溶解卵子的外膜。
有些动物的顶体中还有与精卵识别有关的分子。
整个精核是一致密结构,几乎看不到染色质丝和核仁,精子中所有的基因都不表达。
不同的动物以不同的形式推动精子游动。
大多数动物的精子依靠尾部或鞭毛波浪式的摆动,推动精子在水或雌性动物生殖道中移动。
鞭毛具有特殊的结构,轴纤丝(axoneme)是鞭毛中起推动作用的主要部分,具有典型的“9+2”结构。
哺乳动物精子鞭毛的横切面,示中央的轴纤丝(central axoneme)和外围的纤丝( external fibers)。
精子的运动装置——鞭毛的超微结构,示微管排列的“9+2”结构。
卵质外是质膜(plasma membrane),质膜外是卵黄膜(vitelline envelope)。
质膜在受精时可以调控特定的离子在卵子内外的流动,且能与精子质膜融合。
卵黄膜能识别同一物种的精子,对受精的物种特异性有非常重要的作用。
在哺乳动物中特称为透明带(zona pellucida),紧靠着透明带的一层滤泡细胞称为放射冠(corona radiata)。
皮层(cortex)是质膜下一层约5um厚的胶状胞质,比内部的胞质硬,含有高浓度的肌动蛋白分子,受精时,聚合成微丝,延伸到细胞表面形成微绒毛(microvilli),帮助精子进入卵子。
皮层内有皮层颗粒(cortical granule),含消化酶、粘多糖、黏性糖蛋白和透明蛋白,阻止多精入卵并可以为卵裂球提供支持。
精子和卵子的接触和识别受精过程中,精卵的识别具有种属特异性,即给定物种的卵子对同源精子的识别与结合具有绝对的特异性。
造成这种特异性的原因在于雌雄配子表面具有某些结构互补的特异分子,通过这些特异分子之间的相互作用,保证了雌雄配子的正确识别。
精子和卵子的相互作用主要分为5个步骤:1. 精子的趋化性( chemotaxis )2. 精子的顶体反应,释放水解酶。
3. 精子与卵子外围的卵黄膜(透明带)结合4. 精子穿过卵外的结构5. 精卵细胞质膜的融合1、精子的趋化性精子的趋化性(chemotaxis)是指精子根据化学浓度梯度直接向卵子运动的现象。
现已在许多动物中发现,其卵母细胞完成第二次减数分裂后,可以分泌具有物种特异性的的趋化因子如海胆的精子激活肽resact,构成卵周特有的微环境。
2、精子获能哺乳动物的精子需要在雌性生殖道中停留一个特定的时期,以获得对卵子受精的能力,这一过程称为精子获能( capacitation )。
获能期间,精子的细胞膜发生了一系列变化,包括内膜分子重排、精子表面某些成分移除,但分子机制还不很清楚。
哺乳动物精子的获能,牛精子在到达输卵管壶腹部之前与输卵管上皮细胞的接触。
3. 顶体反应顶体反应是指受精前精子在同卵子接触时,精子顶体产生的一系列变化。
具有顶体结构的无脊椎动物或脊椎动物中,只有发生顶体反应的精子才能进入卵子并与卵子融合,也只有精子与卵子接触时才发生顶体反应。
顶体反应是受精的先决条件顶体中含有顶体酶系统,包括:透明质酸酶,放射冠分散酶和顶体素。
顶体内的结合素可识别特异的糖基序列,以保证精子与卵的种特异性结合。
诱发顶体反应的条件:卵丘细胞,透明带,离子:Ca 2+,Na+,k+海胆的顶体反应精子与卵子胶膜结合后,可引起顶体反应。
顶体反应包括两个主要的事件:顶体膜与精子质膜发生融合以及顶体突起(acrosomal process)的形成海胆精子的顶体反应过程哺乳动物的顶体反应哺乳动物的顶体是一个帽状结构,覆盖于精核的前端。
顶体反应时,顶体帽部分的质膜与顶体外膜在多处发生融合,使顶体内的物质从融合处释放出来。
精子顶体酶及其穿透作用通过顶体反应释放的物质中含有大量的水解酶,因此顶体这一结构被认为具有类似溶酶体的功能。
精子顶体酶的一个功能是在卵子外围打一个洞,另外顶体反应还与精卵结合有关。
4,精卵识别的特异性海胆的精卵识别海胆精子发生顶体反应后释放顶体酶,使卵细胞外的胶膜降解,精子穿越胶膜,其突起与卵黄膜相互识别,与之融合,然后与卵细胞膜融合,导致精核进入卵细胞中。
海胆精子顶体突起与卵子微绒毛的接触海胆的精卵识别是由特异性结合蛋白(Bindin)所介导的。
Bindin 定位在精子的顶体突起上,具有种属特异性。
卵子卵黄膜上存在Bindin的受体,也被分离纯化出来。
海胆精子顶体突起上Bindin的定位哺乳动物的精卵识别哺乳动物精卵的特异性识别发生在卵细胞的透明带(zona pellucida)部分。
小鼠透明带中含有ZP3 糖蛋白,它与ZP1、ZP2以网状的骨架结构存在于透明带中。
ZP3能结合精子,并引发顶体反应。
精子细胞膜上有三种受体:1. sp56(56kDa,半乳糖结合蛋白)---可与ZP3分子上的半乳糖端部相结合。
如果ZP3的一个半乳糖基发生丢失或改变,精子将无法与卵子结合。
2. 半乳糖基转移酶 (GalTase)—可与ZP3分子上的N-乙酰葡糖胺结合,使精子G蛋白激活并诱导顶体反应。
3. P95 (ZP受体激酶)—(95kDa)一种跨膜蛋白,其外侧部分可与ZP3分子特异结合,而内侧部分具有酪氨酸激酶的功能。
该酶被激活后,导致顶体反应。
二次结合在顶体反应期间,与ZP3结合的顶体前端发生胞吐作用,精子必须与透明带结合才可以完成穿透作用,这种结合称为二次结合(secondary binding)。
二次结合是通过顶体内膜上的特殊蛋白与透明带中的ZP2糖蛋白结合的。
三、精子入卵的调控1、雌雄配子的融合精子通过与卵黄膜或透明带的相互作用,发生顶体反应,使和精子结合的卵黄膜或透明带被顶体反应释放的水解酶溶解,并在该位置进行精卵细胞膜的融合。
雌雄配子的融合大多被限定在特定的区域内。
2、多精受精阻断的机制与皮层反应许多精子都可以到达卵子的表面并与之吸附,但是通常只有一个精子能完成受精,称为单精入卵。
多个精子入卵受精称为多精入卵,将导致死亡或不正常的发育。
生命发展了多种机制防止多倍的染色体组融合,最普通的办法是阻碍多精入卵。
海胆阻碍多精入卵的作用方式海胆卵子细胞膜去极化引起的快速的阻碍作用;卵子皮层颗粒的胞吐作用产生的一种较慢的阻碍作用;卵子细胞质降解额外精子的核酸或排出包含有额外精子核酸的细胞质。
(1)快速阻碍多精入卵卵膜中存在离子通道,卵膜的快速阻碍多精入卵作用是通过改变自身膜电位形成的。
精子进入卵细胞触发细胞膜静息电位迅速去极化,引起膜外精子与卵细胞识别和融合的障碍。
如人为维持原有的膜电位,可诱导多精受精现象发生;如改变正常的初始膜电位,则会阻止卵细胞的受精。
(2)皮层颗粒反应多精受精快速阻碍机制中膜电位的变化时间非常短暂(1 min 左右),不足以永久实现阻碍多精入卵。
结合到卵黄膜的精子是通过皮层的小泡破裂,发生皮层反应被移除的;否则将导致多精入卵。
皮层由皮层颗粒组成,通常分布在没有微绒毛结构的卵膜下方。
当精子进入卵子时,皮层颗粒与卵膜发生融合,颗粒内容物被释放到卵膜和卵黄膜之间的区域——卵黄周隙(perivitelline space),这些释放物中有几种蛋白质在皮层颗粒反应中发挥了重要的作用。
皮质颗粒内含物中含有的蛋白质:1). 蛋白水解酶可以使卵黄膜与质膜间的联系分离;剪除卵膜上bindin的受体及与之结合的精子。
2). 粘多糖:进入卵周隙吸水膨胀,使卵黄层向外隆起,形成受精膜(fertilization envelope )举起。
3). 过氧化物酶:皮层颗粒分泌的过氧化物酶通过交联相邻蛋白质的酪氨酸残基使受精膜变硬。
受精膜最先在精子入卵的位置形成,并向外扩张至整个卵细胞,从而阻止多精入卵。
4). 透明质素(hyalin):在卵外形成透明质层(hyalin layer),它与卵裂中对分裂球的支持作用有关。
卵细胞质膜突起的微绒毛深入到其基部。
哺乳动物不形成受精膜,但皮质颗粒中释放的酶对透明带中的精子受体分子进行修饰,使之丧失与精子结合的能力,因此,称为透明带反应。
半乳糖基转移酶 (GalTase)—可与ZP3分子上的N-乙酰葡糖胺结合,使精子G蛋白激活并诱导顶体反应。
卵激活时皮质颗粒释放出来的N-乙酰葡糖酶能对ZP3上的GalTase结合位点进行修饰,由此阻断透明带外围的精子与受精卵结合。
)3、钙的作用皮层颗粒反应的作用机制与顶体反应基本相似,Ca2+作为细胞内信使发挥了及其重要的作用。
研究证明,启动皮层颗粒反应的钙主要储存在卵细胞的内质网中,而不是卵外钙离子的内流。
卵细胞内的信号分子三磷酸肌醇IP3激活Ca+的释放,而IP3的产生是与GTP结合蛋白或酪氨酸激酶相关的。
钙离子的作用:传导神经信号:促进神经递质分泌让心脏跳动:使细胞内外发生电位差传递御敌信号:启动了钙离子介导的信号通路,促使免疫细胞分化和生长调节酶的活性:钙调节蛋白与钙离子形成复合物调控生殖细胞的成熟和受精细胞内质网正常释放钙离子的机制:内质网释放钙离子后,内部的负电荷会增加,从而阻止钙离子继续释放,随后外部带正电荷的物质会进入内质网,并中和负电荷,使钙离子的释放保持正常内质网的膜上有“TRIC”的通道。
带正电荷的钾离子可以经由这种通道进入内质网,从而保证内质网能够正常释放钙离子。
四、卵子的激活机制未受精的卵子是惰性的,细胞的呼吸活动、RNA的转录和蛋白质的合成处于或几乎处于零水平。
只有受精的刺激才能唤醒其代谢的活跃进行。
这一活化过程分为两个阶段:一、早期反应(应答):指从精卵接触到发生皮质反应的数秒钟内所发生的事件。
二、晚期反应(应答):在受精开始后数分钟内发生的事件。
五、遗传物质的融合1. 雌雄原核的形成及融合单倍体的精子核进入卵细胞后,解凝聚形成雄原核,卵细胞核则形成雌原核,精核形成雄性原核的过程受到卵子的严格控制。
精子入卵时线粒体与鞭毛在卵细胞内降解,因此线粒体基因一般认为是母源性的;但中心体是父源性的。
海胆雌雄原核的融合海胆雄原核形成后旋转180º,其中心体位于雌、雄原核之间,装配成星体,连接并牵动雄原核与雌原核相互靠近,最后融合形成合子核(zygote nucleus)哺乳动物雌雄原核的融合哺乳动物精子入卵后,在卵母细胞胞质中谷胱甘肽的作用下精子染色体解凝聚。