DC-AC逆变电路
- 格式:ppt
- 大小:1.32 MB
- 文档页数:57
DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。
DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。
DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。
由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。
但转换输出的波形却很差,是含有相当多谐波成分的方波。
而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。
基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。
具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。
1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。
采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。
它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。
滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。
通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。
由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。
DC到AC有四种转换方式,分为四种结构:推挽式拓扑结构、半桥式拓扑结构、全桥式拓扑结构、高频升压逆变电路结构。
原理:利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。
方案一:推挽式拓扑结构推挽式逆变电路的拓朴结构如图1.1所示图1.1 推挽式逆变电路优点:推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。
缺点:是变压器利用率低,带动感性负载的能力较差。
方案二:半桥式拓扑结构半桥式逆变电路的拓朴结构如图1.2 所示:图1.2半桥式逆变电路优点:半桥型逆变电路结构简单,由于两只串联电容的作用,不会产生磁偏或直流分量,非常适合后级带动变压器负载,当该电路工作在工频(50 或者60H Z)时,电容必须选取较大的容量,使电路的成本上升,因此该电路主要用于高频逆变场合。
缺点:交流电压幅值只有Ud/2,并且直流侧需两电容串联,工作时要控制两电压均衡,因此半桥电路常用于几千瓦以下的小功率逆变电源。
方案三:全桥式拓扑结构全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。
由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。
该缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。
另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。
方案四:高频升压逆变电路结构推挽电路和全桥电路的输出都必须加升压变压器,由于升压变压器体积大,效率低,价格也较贵,随着电力电子技术和微电子技术的发展,采用高频升压变换技术实现逆变,可实现高功率密度逆变,这种逆变电路的前级升压电路采用推挽结构,但工作频率均在20KHz以上,升压变压器采用高频磁芯材料,因而体积小、重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电(一般均在300V以上)再通过工频逆变电路实现逆变。
dc转ac逆变器原理
直流(DC)到交流(AC)逆变器是一种电子装置,它将直流电源转换为交流电源。
它的原理基于使用电子开关将直流电压转换为交流信号。
主要原理如下:
1. 步骤1:整流:在直流输入端使用整流电路将交流电源转换为直流电压。
2. 步骤2:滤波:使用滤波电路将整流后的直流信号的波动降低,使其转换为平滑的直流电压。
3. 步骤3:逆变:使用逆变电路将平滑的直流电压转换为交流信号。
逆变电路通常使用可控开关(如晶体管或场效应管)来切换电流流向和极性,根据所需的输出电压和频率来生成所需的交流信号。
4. 步骤4:输出滤波:通过输出滤波电路去除逆变器产生的交流信号中的杂波和谐波,使其成为纯净的交流电源。
总体原理是通过整流-滤波-逆变-输出滤波的步骤将直流电源转换为交流电源。
这使得直流电源可以被用来驱动交流设备,如电动机、电器等。
dc ac逆变器电路图这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。
其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该逆变器的工作原理及制作过程。
电路图 工作原理这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。
电路的振荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。
电路的振荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图4所示。
MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。
DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。
DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。
由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。
但转换输出的波形却很差,是含有相当多谐波成分的方波。
而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。
基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。
具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。
1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。
采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。
它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。
滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。
通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。
由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。
DC/AC逆变器的制作这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。
其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该逆变器的工作原理及制作过程。
●电路图●工作原理这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)图3这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。
电路的振荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的反相器,输入端接地避免影响其它电路。
∙场效应管驱动电路。
图4由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图4所示。
∙MOS场效应管电源开关电路。
下面简述一下用C-MOS场效应管(增强型MOS 场效应管)组成的应用电路的工作过程(见图9)。
电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。
当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。
当输入端为高电平时,N 沟道MOS场效应管导通,输出端与电源地接通。
在该电路中,P沟道MOS场效应管和N沟道MOS 场效应管总是在相反的状态下工作,其相位输入端和输出端相反。
通过这种工作方式我们可以获得较大的电流输出。
同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。
不同场效应管其关断电压略有不同。
dc-ac逆变基本电路拓扑结构题目:DC-AC逆变器的基本电路拓扑结构及其工作原理分析引言:DC-AC逆变器是一种将直流电能转换为交流电能的重要电力电子器件。
它在电压和频率可调的情况下,为许多应用提供了必要的电源。
本文将详细介绍DC-AC逆变器的基本电路拓扑结构和其工作原理,以帮助读者更好地理解其原理和应用。
一、逆变器简介逆变器是一种将直流电压或直流电流转换为交流电压或交流电流的装置。
在各种应用中,逆变器广泛用于太阳能发电系统、无线电与电视广播传输系统以及用于医疗设备、家庭电器和工业自动化等领域。
逆变器的输入与输出可以是单相的或三相的,其中最常见的一种是单相交流逆变器。
二、逆变器的分类根据波形的性质和控制方式,逆变器可以分为多种不同类型。
其中,基础的逆变器类型有:方波逆变器、梯形波逆变器、正弦波逆变器、多级逆变器等。
本文将重点讨论中括号内主题所示的全桥逆变器拓扑结构。
三、全桥逆变器的基本电路拓扑结构全桥逆变器是一种常见的逆变器拓扑结构,其基本电路如下所示:(图一)[图一] 全桥逆变器基本电路拓扑结构全桥逆变器由四个功率开关元件(IGBT、MOSFET等)和一对中心点连接的电容器组成。
其中,功率开关元件被分为上下两对,分别由控制电路控制。
输入直流电压Vin通过滤波电容器C1提供,输出交流电压Vout 则通过滤波电容器C2输出。
全桥逆变器的控制方式可以是PWM脉宽调制技术,其详细控制原理将在后续章节中进行解析。
四、全桥逆变器的工作原理全桥逆变器基于PWM控制技术,其工作原理如下所示:1. 正半周工作原理:(图二)[图二] 全桥逆变器正半周工作原理- 步骤1:输入直流电压Vin经过滤波电容器C1供给电路。
- 步骤2:Q1和Q4导通,Q2和Q3关闭,此时输入电源Vin通过C1的正极流入Q1,再经过Q4的负极流出,形成外接负载。
- 步骤3:当Q1和Q4导通后,外接负载有电压Vout。
- 步骤4:当Q1和Q4导通时间达到PWM脉宽比要求后,控制电路将Q1和Q4关闭。