当前位置:文档之家› 化学发展史大全

化学发展史大全

化学发展史大全
化学发展史大全

1、化学发展简史

(1)分析空气成分的第一位科学家——拉瓦锡;

(2)近代原子学说的创立者——道尔顿(英国);

(3)提出分子概念——何伏加德罗(意大利);

(4)候氏制碱法——候德榜(1926年所制的―红三角‖牌纯碱获美国费城万(5)国博览会金奖);(6)金属钾的发现者——戴维(英国);

(7)C l2的发现者——舍(8)勒(瑞典);

(9)在元素相对原子量的测定上作出了卓越贡献的我国化学家——张青莲;

(10)元素周期律的发现,

(11)元素周期表的创立者——门捷列夫(俄国);

(12)1828年首次用无机物氰酸铵合成了有机物尿素的化学家——维勒(德国);

(13)苯是在1825年由英国科学家——法拉第首先发现,

(14)德国化学家——凯库勒定为单双健相间的六边形结构;

(15)镭的发现人——居里夫人。

(16)人类使用和制造第一种材料是——陶2、俗名3

无机部分:

纯碱、苏打、天然碱、口碱:Na2CO3

小苏打:NaHCO3

大苏打:Na2S2O3

石膏(生石膏):CaSO4.2H2O

熟石膏:2CaSO4?.H2O

莹石:CaF2

重晶石:BaSO4(无毒)

碳铵:NH4HCO3

石灰石、大理石:CaCO3

生石灰:CaO

食盐:NaCl

熟石灰、消石灰:Ca(OH)2

芒硝:Na2SO4?7H2O (缓泻剂)

烧碱、火碱、苛性钠:NaOH

绿矾:FaSO4?7H2O

干冰:CO2

明矾:KAl (SO4)2?12H2O

漂白粉:Ca (ClO)2 、CaCl2(混和物)

泻盐:MgSO4?7H2O

胆矾、蓝矾:Cu SO4?5H2O 双氧水:H2O2

皓矾:ZnSO4?7H2O

硅石、石英:SiO2

刚玉:Al2O3

水玻璃、泡花碱、矿物胶:Na2SiO3

铁红、铁矿:Fe2O3

磁铁矿:Fe3O4

黄铁矿、硫铁矿:FeS2

铜绿、孔雀石:Cu2 (OH)2CO3

菱铁矿:FeCO3 赤铜矿:Cu2O

波尔多液:Ca (OH)2和CuSO4

石硫合剂:Ca (OH)2和S

玻璃的主要成分:Na2SiO3、CaSiO3、SiO2

过磷酸钙(主要成分):Ca (H2PO4)2和CaSO4

重过磷酸钙(主要成分):Ca (H2PO4)2

天然气、沼气、坑气(主要成分):CH4 水煤气:CO和H2

硫酸亚铁铵(淡蓝绿色):Fe (NH4)2 (SO4)2 溶于水后呈淡绿色

光化学烟雾:NO2在光照下产生的一种有毒气体

王水:浓HNO3:浓HCl按体积比1:3混合而成。

铝热剂:Al + Fe2O3或其它氧化物。尿素:CO(NH2)2

有机部分:

氯仿:CHCl3 电石:CaC2 电石气:C2H4 (乙炔)

TNT:三硝基甲苯

氟氯烃:是良好的制冷剂,有毒,但破坏O3层。

酒精、乙醇:C2H5OH

裂解气成分(石油裂化):烯烃、烷烃、炔烃、H2S、CO2、CO等。

焦炉气成分(煤干馏):H2、CH4、乙烯、CO等。醋酸:CH3COOH 甘油、三醇:C3H8O3 石炭酸:苯酚蚁醛:甲醛CH2O

福尔马林:35%—40%的甲醛水溶液蚁酸:甲酸CH2O2

葡萄糖:C6H12O6 果糖:C6H12O6

蔗糖:C12H22O11 麦芽糖:C12H22O11

淀粉:(C6H10O5)n

硬脂酸:C17H35COOH 油酸:C17H33COOH 软脂酸:C15H31COOH

草酸:乙二酸HOOC—COOH (能使蓝墨水褪色,呈强酸性,受热分解成CO2和水,能使KMnO4酸性溶液褪色)。

4、颜色

铁:铁粉是黑色的;一整块的固体铁是银白色的。

Fe2+——浅绿色Fe3O4——黑色晶体Fe(OH)2——白色沉淀

Fe3+——黄色Fe (OH)3——红褐色沉淀Fe (SCN)3——血红色溶液

FeO——黑色的粉末Fe (NH4)2(SO4)2——淡蓝绿色

Fe2O3——红棕色粉末

铜:单质是紫红色

Cu2+——蓝色CuO——黑色Cu2O——红色

CuSO4(无水)—白色CuSO4?5H2O——蓝色

Cu2(OH)2CO3 —绿色

Cu (OH)2——蓝色[Cu(NH3)4]SO4——深蓝色溶液

FeS——黑色固体

BaSO4 、BaCO3 、Ag2CO3 、CaCO3 、AgCl 、Mg (OH)2 、三溴苯酚均是白色沉淀

Al(OH)3 白色絮状沉淀H4SiO4(原硅酸)白色胶状沉淀

Cl2、氯水——黄绿色F2——淡黄绿色气体Br2——深红棕色液体

I2——紫黑色固体HF、HCl、HBr、HI均为无色气体,在空气中均形成白雾

CCl4——无色的液体,密度大于水,与水不互溶

Na2O2—淡黄色固体Ag3PO4—黄色沉淀S—黄色固体AgBr—浅黄色沉淀

AgI—黄色沉淀O3—淡蓝色气体SO2—无色,有剌激性气味、有毒的气体

SO3—无色固体(沸点44.8度)品红溶液——红色氢氟酸:HF——腐蚀玻璃

N2O4、NO——无色气体NO2——红棕色气体

NH3——无色、有剌激性气味气体

5、现象:

1、铝片与盐酸反应是放热的,Ba(OH)2与NH4Cl反应是吸热的;

2、Na与H2O(放有酚酞)反应,熔化、浮于水面、转动、有气体放出;

3、焰色反应:Na 黄色、K紫色(透过蓝色的钴玻璃)、Cu 绿色、Ca砖红;

4、Cu丝在Cl2中燃烧产生棕色的烟;

5、H2在Cl2中燃烧是苍白色的火焰;

6、Na在Cl2中燃烧产生大量的白烟;

7、P在Cl2中燃烧产生大量的白色烟雾;

8、SO2通入品红溶液先褪色,加热后恢复原色;

9、NH3与HCl相遇产生大量的白烟;10、铝箔在氧气中激烈燃烧产生刺眼的白光;

11、镁条在空气中燃烧产生刺眼白光,在CO2中燃烧生成白色粉末(MgO),产生黑烟;

12、铁丝在Cl2中燃烧,产生棕色的烟;13、HF腐蚀玻璃;

14、Fe(OH)2在空气中被氧化:由白色变为灰绿最后变为红褐色;

15、在常温下:Fe、Al 在浓H2SO4和浓HNO3中钝化;

16、向盛有苯酚溶液的试管中滴入FeCl3溶液,溶液呈紫色;苯酚遇空气呈粉红色。

17、蛋白质遇浓HNO3变黄,被灼烧时有烧焦羽毛气味;

18、在空气中燃烧:S——微弱的淡蓝色火焰H2——淡蓝色火焰

CO——蓝色火焰CH4————明亮并呈蓝色的火焰

S在O2中燃烧——明亮的蓝紫色火焰。

6、考试中经常用到的规律:

1 溶解性规律——见溶解性表;

2 常用酸、碱指示剂的变色范围:

指示剂PH的变色范围

甲基橙<3.1红色3.1——4.4橙色>4.4黄色

酚酞<8.0无色8.0——10.0浅红色>10.0红色

石蕊<5.1红色5.1——8.0紫色>8.0蓝色

5 在惰性电极上,各种离子的放电顺序:

阴极(夺电子的能力):Au3+ >Ag +>Hg2+ >Cu2+ >Pb2+ >Fa2+ >Zn2+ >H+ >Al 3+>Mg2+ >Na+ >Ca2+ >K+ 阳极(失电子的能力):S2- >I- >Br – >Cl- >OH- >含氧酸根

注意:若用金属作阳极,电解时阳极本身发生氧化还原反应(Pt、Au除外)

6 电荷平衡:溶液中阴阳离子所带的正负电荷总数应相等。

例:C mol / L的NaHCO3溶液中:

C(Na+) +C(H+) = C(HCO3-) +2C(CO32-) + C(OH-)

7 物料平衡:例:C mol / L NaHCO3溶液中:C = C(Na+) = C(HCO3-) + C(CO32-) + C(H2CO3)

C mol / L Na2S溶液中:C(Na+) = 2C = 2[ C(S2-) + C(HS-) + C(H2S)

注意:此二平衡经常相互代换,衍变出不同的变式。

9 双水解离子方程式的书写:(1)左边写出水解的离子,右边写出水解产物;

(2)配平:在左边先配平电荷,再在右边配平其它原子;(3)H、O不平则在那边加水。

例:当NaCO3与AlCl3溶液混和时:

3 CO32- + 2Al3+ + 3H2O = 2Al(OH)3↓ + 3CO2↑

7、写电解总反应方程式的方法:(1)分析:反应物、生成物是什么;(2)配平。

例:电解KCl溶液:KCl + H2O → H2 + Cl2 + KOH

配平:2KCl + 2H2O = H2 ↑+ Cl2 ↑+2 KOH 某组分的原始浓度C应等于它在溶液中各种存8、将一个化学反应方程式分写成二个电极反应的方法:(1)按电子得失写出二个半反应式;(2)再考虑反应时的环境(酸性或碱性);(3)使二边的原子数、电荷数相等。

例:蓄电池内的反应为:Pb + PbO2 + 2H2SO4 = 2PbSO4 + 2H2O 试写出作为原电池(放电)时的电极反应。

写出二个半反应:Pb – 2e- → PbSO4 PbO2 +2e- → PbSO4

分析:在酸性环境中,补满其它原子:

应为:负极:Pb + SO42- -2e- = PbSO4

正极:PbO2 + 4H+ + SO42- +2e- = PbSO4 + 2H2O

注意:当是充电时则是电解,电极反应则为以上电极反应的倒转:

为:阴极:PbSO4 +2e- = Pb + SO42-

阳极:PbSO4 + 2H2 -2e- = PbO2 + 4H+ + SO42-

9、在解计算题中常用到的恒等:原子恒等、离子恒等、电子恒等、电荷恒等、电量恒等,用到的方法有:质量守恒、差量法、归一法、极限法、关系法、十字交*法和估算法。(非氧化还原反应:原子守恒、电荷平衡、物料平衡用得多,氧化还原反应:电子守恒用得多在形式的浓度之和。10、电子层结构相同的离子,核电荷数越多,离子半径越小;

11、晶体的熔点:原子晶体>离子晶体>分子晶体中学学到的原子晶体有:Si、SiC 、SiO2=和金刚石。原子晶体的熔点的比较是以原子半径为依据的:

金刚石> SiC > Si (因为原子半径:Si> C> O).

12、分子晶体的熔、沸点:组成和结构相似的物质,分子量越大熔、沸点越高。

13、胶体的带电:一般说来,金属氢氧化物、金属氧化物的胶体粒子带正电,非金属氧化物、金属硫化物的胶体粒子带负电。

14、氧化性:MnO4- >CL2 >Br2 >Fe3+ >I2 >S=4(+4价的S)

例:I2 +SO2 + H2O = H2SO4 + 2HI

15、含有Fe3+的溶液一般呈酸性。

16、能形成氢键的物质:H2O 、NH3 、HF、CH3CH2OH 。

17、含有10个电子的物质:CH4 NH3 NH4+ H2O O2- H3O+ OH- HF F- Ne Na+ Mg2+ Al3+ 。

18、离子是否共存:(1)是否有沉淀生成、气体放出;(2)是否有弱电解质生成;(3)是否发生氧化还原反应;(4)是否生成络离子[Fe(SCN)2 、Fe(SCN)3 、Ag(NH3)+ [Cu(NH3)4]2+ 等];(5)是否发生双水解。

19、地壳中:

含量最多的元素是—— O ;含量第二的元素是—— Si

含量最多的金属元素是—— Al HClO4(高氯酸)——是最强的酸

20、熔点最低的金属是Hg (-38.9c),;熔点最高的是W(钨3410c);密度最小(常见)的是K;密度最大(常见)是Pt。

21、雨水的PH值小于5.6时就成为了酸雨。

22、有机酸酸性的强弱:乙二酸>甲酸>苯甲酸>乙酸>碳酸>苯酚>HCO3-

23、有机鉴别时,注意用到水和溴水这二种物质。

例:鉴别:乙酸乙酯(不溶于水,浮)、溴苯(不溶于水,沉)、乙醛(与水互溶),则可用水。24、取代反应包括:卤代、硝化、磺化、卤代烃水解、酯的水解、酯化反应等;

25、最简式相同的有机物,不论以何种比例混合,只要混和物总质量一定,完全燃烧生成的CO2、H2O及耗O2的量是不变的。恒等于单一成分该质量时产生的CO2、H2O和耗O2量。

26、可使溴水褪色的物质如下,但褪色的原因各自不同:

烯、炔等不饱和烃(加成褪色)、苯酚(取代褪色)、乙醇、醛、甲酸、草酸、葡萄糖等(发生氧化褪色)、有机溶剂[CCl4、氯仿、溴苯、CS2(密度大于水),烃、苯、苯的同系物、酯(密度小于水)]发生了萃取而褪色。

27、能发生银镜反应的有:醛、甲酸、甲酸盐、甲酰铵(HCNH2O)、葡萄溏、果糖、麦芽糖,均可发生银镜反应。(也可同Cu(OH)2反应)

计算时的关系式一般为:—CHO —— 2Ag

注意:当银氨溶液足量时,甲醛的氧化特殊:CH2O ——4Ag ↓ + H2CO3

反应式为:HCHO +4[Ag(NH3)2]OH = (NH4)2CO3 + 4Ag↓ + 6NH3 ↑+ 2H2O

28、胶体的聚沉方法:(1)加入电解质;(2)加入电性相反的胶体;(3)加热。

常见的胶体:液溶胶:Fe(OH)3、AgI、牛奶、豆浆、粥等;气溶胶:雾、云、烟等;固溶胶:有色玻璃、烟水晶等。

29、聚合反应种种:(1)烯烃、二烯烃的加聚;(2)酚醛聚合;(3)羧酸与醇的聚;(4)成肽的聚合等。

30、大气成分:N2:78%、O221%、稀有气体0.94%、CO2 0.03% 31、污染大气气体:SO2、CO、NO2 ,其中SO2、NO2形成酸雨。

32、环境污染:大气污染、水污染、土壤污染、食品污染、固体废弃物污染、噪声污染。工业三废:废渣、废水、废气。

33、在室温(20C)时溶解度在10克以上——易溶;大于1克的——可溶;小于1克的——微溶;小于0.01克的——难溶。

34、人体含水约占人体质量的2/3。地面淡水总量不到总水量的1%。当今世界三大矿物燃料是:煤、石油、天然气。石油主要含C、H地元素。

35、生铁的含C量在:2%——4.3% 钢的含C量在:0.03%——2% 。粗盐:是NaCl中含有MgCl2和CaCl2,因为MgCl2吸水,所以粗盐易潮解。浓HNO3在空气中也形成白雾。固体NaOH在空气中易吸水形成溶液。

36、气体溶解度:在一定的压强和温度下,1体积水里达到饱和状态时气体的体积。

37、氨水的密度小于1,硫酸的密度大于1,98%的浓硫酸的密度为:1.84g/cm3。六、重要的化学反应方程式:

①2Na2O2 + 2H2O = 4NaOH + O2↑

2Na2O2 + 2CO2 = 2Na2CO3 + O2↑

Cl2 + H2O = HCl + HClO

Ca(OH)2 + 2Cl2 = Ca(ClO)2 + CaCl2 + 2H2O

4HCl(浓)+MnO2 == MnCl2 + 2H2O + Cl2↑

2KMnO4 == K2MnO4 + MnO2 + O2↑

2KmnO4 + 16HCl(浓)= 2KCl + 2MnCl2 + 5Cl2↑+ 8H2O

②2Al+NaOH+2H2O = 2NaAlO2 + 3H2↑

Al2O3 + 2NaOH = 2NaAlO2 + 2H2O

Al(OH)3+ NaOH = NaAlO2 + 2H2O

2Al(OH)3 == Al2O3 + 3H2O

Al2(SO4)3 +6 NH3.H2O = 2Al(OH)3↓+3(NH3)2SO4

③2H2S + SO2 = 3S + 2H2O

H2S + Cl2 = S + 2HCl Cu + S == Cu2S

2H2SO4(浓)+ Cu == CuSO4 + 2H2O + SO2↑

2H2SO4(浓)+ C == CO2 ↑+ SO2 ↑+ 2H2O

SiO2 + 2NaOH = Na2SiO3 + H2O

2 Si + 2NaOH +H2O = Na2SiO

3 + 2H2

2H2O2 === 2H2O + O2↑

NaCO3 + SiO2 ===Na2SiO3 + CO2↑

④4NH3 + 5O2 === 4NO + 6H2O

4NO2 + O2 + 2H2O = 4HNO3

4NO + 3O2 + 2H2O = 4HNO3

Cu + 4HNO3(浓) = Cu(NO3)2 + 2NO2↑+ 2H2O

3Cu + 8HNO3(稀)= 3Cu(NO3)2+2NO ↑+ 4H2O

4HNO3(浓)+ C = 2H2O + 4NO2 ↑+ CO2↑

Na2S2O3 + H2SO4 = Na2SO4 + SO2 ↑+ S↓ + H2O

Cu(NO3)2 === CuO + 4NO2 ↑+ O2↑

2AgNO3 === 2Ag + N O2 ↑+ O2↑

⑤FeCl3 + 3KSCN = Fe(SCN)3 + 3KCl

2Al + Fe2O3 === 2Fe + Al2O3

3Fe + 4H2O(g) === Fe3O4 + 4H2

FeO + 4HNO3(浓) = Fe(NO3)3 + NO2 ↑+ 2H2O

4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3

2FeCl3 + Cu = CuCl2 + 2FeCl2

2FeCl3 + H2S = 2FeCl2 + S↓ + 2HCl

2Cu + O2 + H2O + CO2 = Cu2(OH)2CO3

4CuO === 2Cu2O + O2 ↑

CuSO4 + 4NH3.H2O = [Cu(NH3)4]SO4 + 4H2O

2Hg === 2Hg + O2 ↑ 2Ag2O ===4Ag + O2 ↑

MgO + C === Mg + CO↑

⑥FeCl3 +3H2O === Fe(OH)3(胶体)+3HCl

6FeSO4 + 3Br2 = 2Fe2(SO4)3 +2FeBr3

2FeSO4 + 2HNO3(浓)+ H2SO4 = Fe2(SO4)3 + 2NO2 ↑+ 2H2O

4FeS2 + 11O2 === 2Fe2O3 + 8SO2

SO2 + 2NH3 + H2O = (NH3)2SO3

(NH4)2SO3 + H2SO4 = (NH4 )2SO4 + SO2 ↑+ H2O

⑺CH2=CH2 + Br2 → CH2BrCH2Br

nCH2=CH2 ——→ [-CH2-CH2-]n

卤代烃同NaOH的水溶液反应:C2H5Br + H—O H → C2H5—OH + HBr

卤代烃同NaOH的醇溶液反应:C2H5Br + NaOH ——→ CH2=CH2 + NaBr + H2O

2CH3CH2OH + O2 ——→ 2CH3CHO + 2H2O CH3CH2OH ——→ CH2=CH2 + H2O CH3CHO + H2 ——→ CH3CH2OH 2CH3CHO + O2 ——→ 2CH3COOH

CH3CHO + 2Ag(NH3)2OH ——→ CH3COONH4 + 2Ag↓ + 3NH3 + H2O

CH3CHO + 2Cu(OH)2 ——→ CH3COOH + Cu2O + 2H2O

CH3COOH + HO-C2H5 CH3COOC2H5

CH3COOC2H5 + H2O CH3COOH + C2H5OH

化学的发展历程

化学的发展历程 化学的发展尽力了无比艰辛而漫长的探索历程,从原始人的砖木取火,到现代的基因工程,化学还经历了从简单到复杂,从宏观到微观,从无机到有机,从生物界到人类社会的巨大转变。其间,化学为人类提供了先进的生产工具,使社会生产力大大提高,为人类的文明开创了一个又一个新纪元。与此同时,化学的发展也为社会科学的发展提供了思想依据奠定了物质基础,为其他自然科学的研究,提供了研究手段。 原始社会初期,人类只会使用简单加工过的石块、树枝等进行狩猎、采集活动,生产力水平极为低下。原始社会后期,金属工具的出现,是人类生产力水平提高的重要标志。从此人类用金属工具进行生产劳动,获取了更丰富的劳动成果,饥饿对人类的威胁大大减小。奴隶社会,青铜冶铸,制陶有了很大发展。商朝的奴隶工匠把铜、锡和铅放在一起冶炼青铜,炉高温达1000摄氏度左右,同时铸造出了许多容器、车马配件、兵器等。商朝后期制造的司母戊大方鼎是迄今世界上发现的最大的青铜器。春秋后期,我国已经发明了生铁冶炼技术。铁质工具在农业,手工业生产上广泛使用,标志着社会生产力又一次提高。在我国封建社会,四大发明相继传入欧洲、美洲对人类的文明造成深远影响。随后,化学制剂逐渐生产,简单的金属工具像机器,以及机械自动化发展,推动着西方资本主义社会的第三次工业革命,使人类进入了近代文明。 首先,原始人发现了火,他们把它称为圣火,是神灵赏赐之物,能给人类带来温暖,能赶走野兽,能烧制香美的熟食。为了保持火种,原始人发明了砖木取火的方法。到十七世纪,英国科学家波义耳给元素下了较明确的定义,化学家们才开始燃烧反应和氧化还原反应的研究。经历了燃素说后,法国科学家拉瓦锡证明燃烧不是放出燃素,而恰恰相反,且增加了质量,根本不存在虚构的燃素。 其次,人类开始认识周围的物质世界,但由于宇宙万物形形色色,多种多样,千变万化。人们更陷入了唯物主义与唯心主义的争论之中。唯物派的智者们通过宏观世界的太阳、月亮、大地、山川河流等以及它们的运动状态进行了仔细观察和论证后,认为世界是物质的,物质是运动的,这些物质及其运动都是永恒的,既不能创生,也不能消灭,存在于人的意识之外,不随人的而转移的客观实在的东西。唯心主义则认为物质依赖于人的意识而存在,随人的意志而转移,即:万

《中国化学学科史》读书笔记

《中国化学学科史》读书笔记 在暑假里,我认真的阅读了《中国化学学科史》这本专业书,感觉收获特别大。这部书追溯了化学学科在中国建立、成长和发 展的历程。它不仅关注化学知识的增长进程,更关注化学作为一 个学科的体系、机构、制度在中国确立的过程。首先,在中国古代,确实存在很多 在暑假里,我认真的阅读了《中国化学学科史》这本专业书,感觉收获特别大。这部书追溯了化学学科在中国建立、成长和发 展的历程。它不仅关注化学知识的增长进程,更关注化学作为一 个学科的体系、机构、制度在中国确立的过程。首先,在中国古代,确实存在很多与化学相关的实践活动,并产生了丰富的化学 知识。其次,20世纪现代化学作为一个独立学科在中国的建立完 全是西方化学学科体制移植的结果。另外,中国古代的化学实践 和知识,曾在一定程度上 对现代化学做出了贡献。 作为一门现代科学,中国现代化学是20世纪初从西方全面移植过来的。晚清民国时期是现代化学学科在中国落地生根的关键 时期。本书对这段历史进行了全面梳理,尤其是对中国化学学会 等中国首批化学研究团体和研究机构建立、发展和演变的历史, 对于中文化学术语的制定以及学科化时期的学术研究情况进行了 专门研究,再现了中国化学学科的早期制度化过程。

自新中国成立以来,中国化学学科取得了重大发展,无机化学、有机化学、分析化学、物理化学等化学分支学科蓬勃发展。但以前对于中国化学学科在1949年以后的发展,还从未从学科史角度进行过全面的梳理。本书以1949年以后中国化学学科的发展情况作为全书的重点,填补了以前对于此段历史研究不够充分的缺陷。 《中国化学学科史》共分三大部分、共十七章。 第一部分包括前6章,对化学学科在中国得以建立的本土文化背景和国际学科背景进行了简要探讨,内容包括中国古代的化学相关实践和知识以及作为中国现代化学学科直接来源的西方现代化学学科的制度化过程。 主要论述了中国古代化学活动、知识及相应的社会和建制框架。在古代,无论是在中国,还是在西方,均不存在一个独立的化学学科,古代化学活动和知识存在于古代自然哲学、炼金术(炼丹术)、金属冶炼、医学及药物制备以及诸如制陶(瓷)、制酒等实用生活技术之中。这些实用性的技术一般都有官方和民间两套系统,除去造币为国家职能,冶铁、酿酒等曾经一度为国家垄断之外,其余技术一般既有官办场所又有民办场所。此部分阐明了中国古代有代表性的化学实用活动、知识及其社会文化依托。 第二部分全面追溯19世纪末到20世纪初现代化学逐渐传入中国,并作为一个独立学科在中国逐渐确立的过程,内容包括化学教科书的引进、名词术语的翻译、近代化学研究团体和研究机构

教育综合——我国化学学科的诞生及早期发展探讨

我国化学学科诞生的背景 (一)国际历史背景:现代化学学科的确立及化学工业的发展在西方,现代化学脱胎于多个源流,其中包括古希腊时期的“元素说”、阿拉伯人的化学和炼金术、文艺复兴时期的医学化学等。1661年,波义耳(R.Boyle)在牛津出版了《怀疑的化学家》(ScepticalChymists),该书提出了10个问题,对17世纪60年代之前相关化学研究进行了全面的质疑与批判。“化学史家曾经不止一次地指出过,正是这部着作使古老的‘黑术’(古埃及‘化学’概念的直译)走上了科学的道路。”[2]后经一个多世纪的发展,至1778年,法国化学家拉瓦锡(https://www.doczj.com/doc/3d3390537.html,voisier)引领了化学革命,他提出燃烧的氧化学说,阐明了燃烧现象的本质,并创建了一套用以描述其理论体系的化学术语(词汇),使其化学理论和语言成为了化学的核心内容。[3]此后,随着原子论和分子论的提出,物质转化及物质组成问题得到了圆满的解释,一系列化学基本概念和化学基本原理得到了阐明和确立,有机化学、无机化学、物理化学等分支学科也相继建立。至此,化学的研究目的、范围和方法已经清晰明确,化学基本上成为一门独立的学科,而不再是其他学科的附庸。在化学学科知识增长、化学学科纲领确立的同时,从拉瓦锡领导的化学革命到19世纪中期,化学学科的建制化也取得了重要突破。以当时被称为“三巨头”(TheBigThree)的法国、英国和德国为代表,西方现代化学实现了职业化和建制化,建立了全国性的化学学会、融教学与研究为一体的现代化学实验室,化学开始进入教育和科研体系。[4]18世纪既是化学学科发生重大变革与快速发展的时期,也是化学工业的萌芽和初步发展时期。三项重大技术的进步奠定了现代化学工业的基础:1749年,约翰?罗巴克(J.Roebuck)在普雷斯顿潘实现硫酸的商业化生产;1798年,英国工业化学家台耐特(C.Tennant)对氯气漂白技术的重大改进;1789年,法国吕布兰(N.Leblanc)对纯碱生产工艺的重大改进。[5]化学工业的产生和发展,极大地改变了人类社会的生产和生活面貌,为人类社会的现代化奠定了基础。可以说,19世纪的西方,在“现代化学学科纲领的确立”、“化学学科的建制化”、“化学工业的形成与发展”三个方面都取得了重要突破。这并非简单的巧合,三者相互之间有着密切的关联。一方面,化学学科知识的发展为化学工业提供了良好的智力支持,而化学学科建制化则为这种智力支持提供了制度保障;另一方面,化学工业的发展能够为化学知识的增长、化学专业人才的培养提供物质与经济支持。正是在这种宏观背景下,伴随着现代学校教育体制的诞生,使得化学进入了西方现代学校,成为学校教育学科群中的重要一员。 (二)国内历史背景:“西学东渐”时期化学的传入正当西方化学迅速发展的时候,中国社会的变革和西方教会组织的传教活动等引发了西学东渐的过程。相应的,化学也开始了向中国传播的历程。 1.化学知识在中国的早期传播及“化学”一词的出现早在鸦片战争之前,英美等资本主义列强就加紧了对中国的经济、文化和教育侵略。一方面,西方传教士来华传教,带来了部分科技知识,其中有许多关于采矿炼金、制造医疗药物等涉及化学工艺的内容。如德国耶稣会士汤若旺(JeanAdamSchallvonbell)与我国学者将德国矿物学名着《论金属》翻译成《坤舆格致》,其中就涉及化学知识,但由于当时社会动乱,该书译稿未及发行,现下落不明。[6]另一方面,西方国家开进中国的商船和炮艇已经用到了许多化学物品,例如用于灭火器的硫酸、用于焊接的盐酸、鉴别金属用的硝酸以及氢氧吹管等。[7]这样,古老中国的传统文化与现代西方科学开始了最初的碰撞,二者在碰撞中“化合”,生成着中国化学学科的最初源头。“化学”直接来源于英文chemistry一词的意译。Chemistry源于希腊文Khemia,后者是埃及一个古国的名字,指该国的土地为黑色,因而该词含有“埃及学”或“神秘学”的意思,而后逐渐演化成Chemistry。而在之前的汉语中,并没有“化学”一词,只是在唐末五代时期有一本道教着作《化书》。据郭宝章等人考证,我国最早出现“化学”一词,是在1856年。[8]是年,英国人韦廉臣(AlexanderWilliamson)出版《格物探源》一书,该书卷三论“元质”(元素)时写道:“轻二养一成为水,霼一绿一成为盐(NaCl),铗一淡一养三成为火硝(KNO3)。读化学一书,可悉其事”。同年,英国人伟烈亚力(AlexanderWylie)在其执笔的《六合丛刊》发刊号《小引》中写道:“比

化学发展简史大事记汇总

化学发展简史(1)

化学发展简史(2) 道尔顿的原子论用原子整数比解释了定组成定律和倍比定律,这属于原子间量的关系。但为什么原子会互相结合和分解?它们结合时遵循什么规律?这些问题似乎应该是无机化学来解决,但处于统治地位的贝采里乌斯的电化二元论过于笼统、不及实质而又十分强大,禁锢了人们的思想。在有机化学的研究中,许多现象使人们突破了电化二元论,勇敢地探索有机物的分子结构。这一讲我们将认识维勒、李比希、凯库勒和范霍夫,这些先行者用他们的无畏和智慧,开辟了一条光明之路——通过有机物的分子结构,建立、发展了原子间相互结合的价键理论,并使人们看清了原子在三维空间的排列情况。 维勒初涉“莽林” 1800年7月31日维勒出生于德国梅因河畔法兰克福附近的埃希海姆村。他的祖父是黑森选帝侯的马舍长,他的父亲在马尔堡大学学习兽医和农业,毕业后也曾在选帝侯的王子处任马舍长,1806年在法兰克福附近经营起自己的庄园,1812年迁入法兰克福担任宫廷职务,由于学识渊博能力突出,又热心社会公益事业,不久成了当地名流。他的母亲是哈瑙一位中学校长的女儿,对幼年维勒施以良好的教育。维勒七八岁时由父亲启蒙教他读写、绘画,不久入普通小学,又自学了拉丁文、法文、音乐。1814年入法兰克福的中学受到良师的教导。农学家的父亲影响他自幼热爱自然,特别是从事理化研究的布赫医生指引这位热心化学试验与采集矿物标本的中学生跟踪前人的工作进行科学的探索:例如他们曾查知一种制硫酸用的矿石中含有硒(这项工作1821年发表在科学杂志上,是维勒发表的第一篇论文),从锌中制得少量镉,以伏打电堆进行电化学试验,以碳还原法制得金属钾,等等,显示出少年维勒对化学的偏爱与才华。 1819年,维勒入马尔堡大学学医,次年转入海得尔堡大学在格曼林教授指导下学习,1823年9月获医学(外科学及产科学)博士学位。格曼林教授发现维勒的化学实验技能很强,就建议他赴瑞典化学大事贝采里乌斯处进修,专攻化学。 1823年11月,维勒赴瑞典贝采里乌斯处进修,按贝采里乌斯制定的方法从事沸石、黑柱石的分析,制备当时还较为少见的硒、锂、氧化铈、钨,研究氰酸及氰的反应,还担当贝采里乌斯的助手,很快接触到近代化学的前沿。在实验室,每当维勒操作得过快时,贝采里乌斯就对他说:“快是快,但工作可不大好!”真是高徒严师。 实验室工作结束后,维勒随贝采里乌斯穿越瑞典和挪威做野外地质考察:参观著名的矿山胜迹,考察典型的地质现象,会晤知名学者,采集岩矿标本。1824年9月17日,维勒辞别恩师贝采里乌斯,经丹麦做短期访问后,于1824年10月回到法兰克福。在瑞典的学习,不但奠定了维勒与贝采里乌斯的终生友谊,也确定了维勒一生的学术方向。 1825年3月维勒应柏林工业学校之聘,任化学与矿物学教职。1828年维勒晋升为教授。1830年6月维勒教授与他的一个族妹结婚。1831年柏林霍乱流行,维勒教授偕眷至卡塞尔岳父处避疫,同年9月受新建的卡塞尔工业技术学校的聘任而离开柏林。

化学发展史简介

化学发展史简介 概述化学发展史的五个时期 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起看越来越大的作用。化学史大致分为: 远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金木士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富责的黄金,开始了最早的化学实验。记载、总结炼丹术的书藉,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书耕,第一次有了“化学”这个名词。英语的chemistry 起源于alchemy,即炼金术。chemist至今还保留昔两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。 定量化学时期,即近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。 科学相互渗透时期,即现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到了逐步的解决。 古代和近代化学史大事记 §我国有了青铜器;春秋晚期能炼铁;战国晚期能炼钢;唐代有了火药。 §十八世纪七十年代,瑞典化学家舍勒和英国化学家普利斯里分别发现并制得了氧气;法国学家锡最早用天平和为研究化学的工具,并推翻了燃素学说;英国化学家卡文迪许。雷利等陆续从空气中发现了惰性气体。 §1748年俄国化学家罗蒙诺索夫建立了质量守恒定律。 §1808年英国科学家道尔顿提出了近代原子学说。 §1811年意大利科学家阿佛加德罗提出了分子的概念。 §1828年;德国化学家维勒第一次证明有机物可用普通的无机物制得。 §1869年俄国化学家门捷列夫发现了元素周期律。 §1888年法国化学家勒沙特列提出了化学平衡移动原理 §1890年德国化学家凯库蔓提出了苯分子的结构式。 §十九世纪荷兰物理学家范德华首先研究了分子间作用力。 §十九世纪英国物理学家丁达尔和植物学家布朗分别提出了胶体的“丁达尔现象”与

中国化学发展史

浅谈中国化学发展史 武瞳 兰州城市学院甘肃兰州 730070 摘要:化学的发展,对人类社会的进步至关重要。化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学。化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。 关键词:萌芽炼丹燃素定量化学化学史化学家侯德榜张青莲侯氏制碱法 化学史大致分为以下几个时期: (一)化学的萌芽时期:从远古到公元前1500年,人类学会在熊熊的烈火中由黏土制出陶器、由矿石烧出金属,学会从谷物酿造出酒、给丝麻等织物染上颜色,等等。这些都是在实践经验的直接启发下经过长期摸索而来的最早的化学工艺,但还没有形成化学知识,只是化学的萌芽时期。 (二)炼丹和医药化学时期:约从公元前1500年到公元1650年,化学被炼丹术、炼金术所控制。为求得长生不老的仙丹或象征富贵的黄金,炼丹家和炼金术士们开始了最早的化学实验,虽然他们都以失败告终,但在炼制长生不老药的过程中,在探索“点石成金”的方法中实现了物质间用人工方法进行的相互转变,积累了许多物质发生化学变化的条件和现象,为化学的发展积累了丰富的实践经验。在欧洲文艺复兴时期,出版了一些有关化学的书耕,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist 至今还保留昔两个相关的含义:化学家和药剂师。但随着炼丹术、炼金术的衰落,人们更多地看到它荒唐的一面,化学方法转而在医药和冶金方面得到正当发挥,中、外药物学和冶金学的发展为化学成为一门科学准备了丰富的素材。 (三)燃素化学时期:从1650年到1775年,是近代化学的孕育时期。随着冶金工业和实验室经验的积累,人们总结感性知识,进行化学变化的理论研究,使化学成为自然科学的一个分支。这一阶段开始的标志是英国化学家波义耳为化学元素指明科学的概念。继之,化学又借燃素说从炼金术中解放出来。燃素说认为可燃物能够燃烧是因为它含有燃素,燃烧过程是可燃物中燃素放出的过程,尽管这个理论是错误的,但它把大量的化学事实统一在一个概念之下,解释了许多化学现象。在燃素说流行的一百多年间,化学家为解释各种现象,做了大量的实验,发现多种气体的存在,积累了更多关于物质转化的新知识。特别是燃素说,认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近代化学思维的基础。这

化学发展史

化学发展史的五个时期 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢? 一、远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺, 主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还 没有形成。这是化学的萌芽时期。 二、炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术 士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏 火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早 的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊 都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发 展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来, 炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方 法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版 了一些有关化学的书籍,第一次有了“化学”这个名词。英语的 chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相 关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业 的文化遗迹了。

三、燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验 的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。 四、定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学 实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。

中国石油化工集团公司发展历史分析

) 成都理工大学旅游与城乡规划学院四川成都610059 摘要:本文回顾了中国石油化工集团公司的发展历程以及各阶段的特征。目前,中国石化正在向规模大型化、布局集中化、炼化一体化、生产园区化方向发展。其次, 本文分析了中国石化的空间分布格局。总体来看, 中国石化的空间格局呈现出“东西强、中部弱”, “北方强、南方弱”,“沿海强、内地弱”的分布特征; 辽中南、京津冀和沪宁杭等八大石化产业基地已成为支撑中国石化工业发展的基础。 关键词: 中国石化; 空间格局; 集聚 一、中石化的成立 中国石油化工集团公司的前身是中国石油化工总公司。1983年2月19日,中共中央、国务院发出《通知》,决定成立中国石油化工总公司。这年7月12日,中国石化总公司成立大会在人民大会堂隆重举行。从此,中国石油化工总公司正式宣告成立。1998年5月26日,中国石油天然气总公司、中国石油化工总公司划转企业交接协议签字仪式在北京举行,胜利油田管理局、中原石油勘探局、江汉石油管理

局、河南石油勘探局、江苏石油勘探局、华东输油管理局等12个油田和输油企业划入石化总公司。1998年7月,国家在原中国石油化工总公司基础上重组成立中国石油化工集团公司。中国石油化工集团公司是国家独资设立的国有公司、国家授权投资的机构和国家控股公司。 二、总部的区位选择 公司总部是整个公司的中心。其功能是制定影响公司发展方向的战略决策。公司总部最为重要的权力之一就是资金控制。作为一家在香港、纽约、伦敦、上海四地交易所成功发行股票上市的全球性大公司,中石化总部的视野是全球,所考虑的时间尺度也较为长远。因此,总部的区位要求可以概括为:(1)便利的交通运输;(2)及时的信息获取;(3)便于与关键人员随时接触。基于我国的特殊情况,国有大型企业主管部门多为中央部委和省、市政府。这些机构均位于首都、直辖市和省会。中石化的总部选择也不例外。其总部位于中国首都北京。北京是直辖市、中国国家中心城市,中国政治、文化和国际交流中心,中国第二大城市。因此,北京基本能满足中石化总部对区位条件的要求。 图1中石化总部所在地 三、子公司及其区位分布 中国石化集团公司主营业务范围包括:实业投资及投资管理;石油、天然气的勘探、开采、储运(含管道运输)、销售和综合利用;

《中国化学学科史》的读后感

《中国化学学科史》的读后感 《中国化学学科史》的读后感 对现代化学做出了贡献。 作为一门现代科学,中国现代化学是20世纪初从西方全面移植 过来的。晚清民国时期是现代化学学科在中国落地生根的关键时期。本书对这段历史进行了全面梳理,尤其是对中国化学学会等中国首 批化学研究团体和研究机构建立、发展和演变的历史,对于中文化 学术语的制定以及学科化时期的学术研究情况进行了专门研究,再 现了中国化学学科的早期制度化过程。 自新中国成立以来,中国化学学科取得了重大发展,无机化学、有机化学、分析化学、物理化学等化学分支学科蓬勃发展。但以前 对于中国化学学科在1949年以后的发展,还从未从学科史角度进行 过全面的梳理。本书以1949年以后中国化学学科的发展情况作为全 书的重点,填补了以前对于此段历史研究不够充分的缺陷。 《中国化学学科史》共分三大部分、共十七章。 第一部分包括前6章,对化学学科在中国得以建立的本土文化背景和国际学科背景进行了简要探讨,内容包括中国古代的化学相关 实践和知识以及作为中国现代化学学科直接来源的西方现代化学学 科的制度化过程。 第二部分全面追溯19世纪末到20世纪初现代化学逐渐传入中国,并作为一个独立学科在中国逐渐确立的过程,内容包括化学教科书 的引进、名词术语的翻译、近代化学研究团体和研究机构的设置、 中国近代化学工业体系的建立等。这部分包括三章。 第三部分、中国现代化学学科的发展,这部分包括后八章。是《中国化学学科史》的主体部分,这一部分对我国化学学科发展的 基本情况进行了系统概括,弥补了以往对新中国建立以后的化学学

科发展情况研究不够充分的`缺陷。这一部分分章介绍建国以来我国在无机化学、有机化学、分析化学、物理化学等分支领域里的学科发展情况,内容涉及这些分支学科中取得的重大化学成就、杰出研究者以及学术机构发展概况。

化学工业发展史

化学工业发展史 自有史以来,化学工业一直是同发展生产力、保障人类社会生活必需品和应付战争等过程密不可分的。为了满足这些方面的需要,它最初是对天然物质进行简单加工以生产化学品,后来是进行深度加工和仿制,以至创造出自然界根本没有的产品。它对于历史上的产业革命和当代的新技术革命等起着重要作用,足以显示出其在国民经济中的重要地位。 古代的化学加工 化学加工在形成工业之前的历史,可以从18世纪中叶追溯到远古时期,从那时起人类就能运用化学加工方法制作一些生活必需品,如制陶、酿造、染色、冶炼、制漆、造纸以及制造医药、火药和肥皂。 在中国新石器时代的洞穴中就有了残陶片。公元前50世纪左右仰韶文化时,已有红陶、灰陶、黑陶、彩陶等出现(见彩图[中国新石器时期(公元前2500年)烧制的彩陶罐]、[隋代(581~618)烧制的三彩陶骆驼]、[西汉(公元前 206~公元25年)制作的云纹漆]" class=image>、[唐代(618~907)越州窑烧制的青瓷水注]、[中国古代炼丹白描图])。在中国浙江河姆渡出土文物中,有同一时期的木胎碗,外涂朱红色生漆。商代(公元前17~前11世纪)遗址中有漆器破片战国时代(公元前475~前221)漆器工艺已十分精美。公元前20世纪,夏禹以酒为饮料并用于祭祀。公元前25世纪,埃及用染色物包裹干尸。在公元前21世纪,中国已进入青铜时代,公元前5世纪,

进入铁器时代,用冶炼之铜、铁制作武器、耕具、炊具、餐具、乐器、货币等。盐,早供食用,在公元前11世纪,周朝已设有掌盐政之官。公元前7~前6世纪,腓尼基人用山羊脂和草木灰制成肥皂。公元1世纪中国东汉时,造纸工艺已相当完善。 公元前后,中国和欧洲进入炼丹术、炼金术时期。中国由于炼制长生不老药,而对医药进行研究。于秦汉时期完成的最早的药物专著《神农本草经》,载录了动、植、矿物药品365种。16世纪,李时珍的《本草纲目》总结了以前药物之大成,具有很高的学术水平。此外,7~9世纪已有关于三种成分混炼法的记载,并且在宋初时火药已作为军用。欧洲自3世纪起迷信炼金术,直至15世纪才由炼金术渐转为制药,史称15~17世纪为制药时期。在制药研究中为了配制药物,在实验室制得了一些化学品如硫酸、硝酸、盐酸和有机酸。虽未形成工业,但它导致化学品制备方法的发展,为18世纪中叶化学工业的建立,准备了条件。 早期的化学工业 从18世纪中叶至20世纪初是化学工业的初级阶段。在这一阶段无机化工已初具规模,有机化工正在形成,高分子化工处于萌芽时期。 无机化工 第一个典型的化工厂是在18世纪40年代于英国建立的硫酸厂。先以硫磺为原料,后以黄铁矿为原料,产品主要用以制硝酸、盐酸及药物,当时产量不大。在产业革命时期,纺织工业发展迅速。它和玻璃、肥皂等工业都大量用碱,而植物碱和天然碱供不应求。1791年

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

刘立东-113班-2011122111-《中国化学史对世界化学史的影响》

中国化学史对世界化学史的影响 姓名:刘立东 学号:2011122111 系别:化学系 专业:应用化学 班级:113班 指导教师:左玉

中国化学史对世界化学史的影响 刘立东 (太原师范学院化学系,山西太原) [摘要]著名科学史家李约瑟说过,中国是“整个化学最重要的根源”,“化学是地地道道从中国传出去的”[1]。中国是世界文明最早发达的国家。中国化学史上的“世界第一”不少,中国有许多发明都是堪称世界第一的。中国古代化学也取得了相当辉煌的成就,其发展的水平远远超过了当时世界其它地区和国家。 [关键词]化学史,中国化学史,世界化学史 引言 化学还未成为一门独立的学科,但是利用化学手段来发展生产生活的历史早已开始。在北京人的时代,火的使用已经十分普遍。中国人在古代发展出了一系列烧制陶瓷、冶金和酿造的工艺。中国化学史上的世界第一集锦我国祖先在化学上的发明创造和成就,比起别的民族来,确实有过之而无不及[2]。在近代化学——科学的化学诞生以前,古代的中国化学工艺曾长期领先于西方,其内容丰富,成就辉煌,包括造纸术、烧制陶瓷工艺、炼丹术、生物化学酿造工艺、火药的制造等古代中国的化学工艺,对世界文明的发展做出了不可磨灭的贡献[3]。 [正文] 1.中国化学史上的世界“金牌” 1.焰色反应:被称为“山中宰相”的我国南朝著名科学家陶弘景(公元454—536 年)在实践中发现,硝石(硝酸钾)“以火烧之,紫青烟起”。从而找到了鉴别外表极为相似的硝石与朴硝(硫酸钠)的最简便方法。这个方法其实就是我们今天所说的“焰色反应”。陶弘景发现“焰色反应”并应用于物质的鉴别,比欧洲最早发现者德国化学家马格拉夫早一千二百多年[4]。 2.自燃:西晋时期的政治家、哲学家和诗人张华[5] (公元232—300 年)于公元290 年前出版的新著《博物志》一书,是世界上记载“自燃”现象的最早文字记载。 3.碳酸气:西晋时期张华所著《博物志》一书中,已有烧白石作白灰有气体发生的记载。白石就是白石灰石,白灰就是石灰,所产生的气体就是碳酸气即二氧化碳。十七世纪后,才有比利时人地碳酸气作专门的研究。 4.深井天然气:中国人于公元前1 世纪就已用传统的方法打出了4800 尺深的钻井,并用竹管把天然气从井里引到锅灶里,用来蒸煮食物和熬制食盐。比欧洲人早一千九百多年。 5.氧气:我国唐朝学者马和在公元八世纪时期就已发现了氧气的存在并提出了制取的方法,但由于其原著《平龙认》一书已失传,无法进一步研究和考证。过了一千多年三个欧洲人(普利斯特里、拉瓦锡、舍勒)才在各自不同国家里发现了氧气的存在。

化工发展史

化工发展史概述 自有史以来,化学工业一直是同发展生产力,保障人类社会生活必需品和应付战争等过程密不可分的.为了满足这些方面的需要,它最初是对天然物质进行简单加工以生产化学品,后来是进行深度加工和仿制,以至创造出自然界根本没有的产品.它对于历史上的产业革命和当代的新技术革 命等起着重要作用,足以显示出其在国民经济中的重要地位. 编辑本段古代的化学加工 化学加工在形成工业之前的历史,可以从18世纪中叶追溯到远古时期,从那时起人类就能运用化学加工方法制作一些生活必需品,如制陶,酿造,染色,冶炼,制漆,造纸以及制造医药,火药和肥皂. 在中国新石器时代的洞穴中就有了残陶片.公元前50世纪左右仰韶文化时,已有红陶,灰陶,黑陶,彩陶等出现(见彩图[中国新石器时期(公元前2500年)烧制的彩陶罐],[隋代(581~618)烧制的三彩陶骆驼],[西汉(公元前 206~公元25年)制作的云纹漆]" ,[唐代(618~907)越州窑烧制的青瓷水注],[中国古代炼丹白描图]).在中国浙江河姆渡出土文物中,有同一时期的木胎碗,外涂朱红色生漆.商代(公元前17~前11世纪)遗址中有漆器破片战国时代(公元前475~前221)漆器工艺已十分精美.公元前20世纪,夏禹以酒为饮料并用于祭祀.公元前25世纪,埃及用染色物包裹干尸.在公元前21世纪,中国已进入青铜时代,公元前5世纪,进入铁器时代,用冶炼之铜,铁制作武器,耕具,炊具,餐具,乐器,货币等.盐,早供食用,在公元前11世纪,周朝已设有掌盐政之官.公元前7~前6世纪,腓尼基人用山羊脂和草木灰制成肥皂.公元1世纪中国东汉时,造纸工艺已相当完善. 公元前后,中国和欧洲进入炼丹术,炼金术时期.中国由于炼制长生不老药,而对医药进行研究.于秦汉时期完成的最早的药物专著《神农本草经》,载录了动,植,矿物药品365种.16世纪,李时珍的《本草纲目》总结了以前药物之大成,具有很高的学术水平.此外,7~9世纪已有关于三种成分混炼法的记载,并且在宋初时火药已作为军用.欧洲自3世纪起迷信炼金术,直至15世纪才由炼金术渐转为制药,史称15~17世纪为制药时期.在制药研究中为了配制药物,在实验室制得了一些化学品如硫酸,硝酸,盐酸和有机酸.虽未形成工业,但它导致化学品制备方法的发展,为18世纪中叶化学工业的建立,准备了条件. 编辑本段早期的化学工业

当前发展化学工业的几点思考

当前发展化学工业的几点思考 化学工业是国民经济的基础产业,在促进和保证国民经济快速健康发展方面起着重要的支撑作用。我国化学工业主要是新中国成立以后建设和发展起来的。新中国化学工业的建设和发展过程中曾有过2次重要的标志:一是20世纪50年代末,以重点建设前苏联帮助设计和建设的156项中的XX、XX、XX化工区和华北制药厂等十几个新的化工项目为起点,新中国化学工业进入了第一个快速发展期;二是20世纪70年代末,我国化学工业以引进30万t/a乙烯、30万t/a合成氨为标志,相继扩建和新建了燕山、齐鲁、XX、扬子、金山等大型石化基地,我国化学工业从此进入第2个高速发展期也是持续快速的发展时期。21世纪以来,随着全球经济周期的上升,特别是“十五”计划开始,大亚湾、XX、镇海等地几套千万吨级炼油、百万吨级乙烯装置的相继立项和开工,以及氯碱、聚氯乙烯和煤制甲醇、煤制油等项目的建成投产和论证立项,我国化学工业正在经历着第3次建设热潮。 经过50多年的发展,特别是改革开放20多年来,立足国际、国内2个市场、2种资源,我国化学工业获得了持续快速发展,已经形成了完备的工业体系,有些装置规模、产品产量已居世界前列,我国已成为化工大国。21世纪以来的这次建设高潮应是由化工大国向化工强国迈进的跨越。但是正在经历的这次建设和投资热潮中有些问题需引起我们的高度关注。 1 发展化学工业的几个矛盾

目前,发达国家发展化学工业主要是通过企业并购和资产运作的方式,而大力投资新建生产装置的阶段已基本过去。当前我国化学工业正在经历的大发展时期主要是以投资新建为主,这是由我国的经济发展阶段决定的。 1.1 资源矛盾 化学工业的原料主要依靠石油、天然气、煤炭、原盐、矿产资源(如磷矿、硫铁矿、石灰石等)以及粮食或天然植物资源。除粮食和天然植物资源是可再生资源外,其余都是不可再生资源,而利用粮食或天然植物生产化学品,不仅受经济竞争力的制约,而且还受到技术的制约。目前,生产硫酸用的硫铁矿、生产磷肥用的磷矿石以及生产无机盐的一些矿产资源(如生产锶盐用的天青石、生产铬盐用的铬矿等)都面临着枯竭的危险。而我国又是一个多煤、少气、贫油的国家,特别是石油资源,我国现在每年的原油加工量3亿多吨,居世界第3位,原油进口量逐年增加,对外依存度不断提高。2003年对外依存度是36%,2004年和2005年均达到40%以上。原油进口量的不断增加和对外依存度的不断提高,石油资源已严重制约着我国石化工业的发展,石油的储备战略和替代战略均已提到国家战略的高度,资源矛盾已成为我国发展化学工业的主要矛盾。 资源矛盾的另一个表现是水资源的紧缺。我国淡水资源严重缺乏,水资源的储量远低于世界平均水平,人均水资源占有量与世界平均水平差距更大。化学工业是耗水大户,以当前投资较热

化学发展史大全

1、化学发展简史 (1)分析空气成分的第一位科学家——拉瓦锡; (2)近代原子学说的创立者——道尔顿(英国); (3)提出分子概念——何伏加德罗(意大利); (4)候氏制碱法——候德榜(1926年所制的―红三角‖牌纯碱获美国费城万(5)国博览会金奖);(6)金属钾的发现者——戴维(英国); (7)C l2的发现者——舍(8)勒(瑞典); (9)在元素相对原子量的测定上作出了卓越贡献的我国化学家——张青莲; (10)元素周期律的发现, (11)元素周期表的创立者——门捷列夫(俄国); (12)1828年首次用无机物氰酸铵合成了有机物尿素的化学家——维勒(德国); (13)苯是在1825年由英国科学家——法拉第首先发现, (14)德国化学家——凯库勒定为单双健相间的六边形结构; (15)镭的发现人——居里夫人。 (16)人类使用和制造第一种材料是——陶2、俗名3 无机部分: 纯碱、苏打、天然碱、口碱:Na2CO3 小苏打:NaHCO3 大苏打:Na2S2O3 石膏(生石膏):CaSO4.2H2O 熟石膏:2CaSO4?.H2O 莹石:CaF2 重晶石:BaSO4(无毒) 碳铵:NH4HCO3 石灰石、大理石:CaCO3 生石灰:CaO 食盐:NaCl 熟石灰、消石灰:Ca(OH)2 芒硝:Na2SO4?7H2O (缓泻剂) 烧碱、火碱、苛性钠:NaOH 绿矾:FaSO4?7H2O 干冰:CO2 明矾:KAl (SO4)2?12H2O 漂白粉:Ca (ClO)2 、CaCl2(混和物) 泻盐:MgSO4?7H2O 胆矾、蓝矾:Cu SO4?5H2O 双氧水:H2O2 皓矾:ZnSO4?7H2O 硅石、石英:SiO2 刚玉:Al2O3

化学发展史答案

一:化学发展的四个时期: 化学萌芽时期:这时人类的制陶、冶金、酿酒、染色等工艺主要是在实践经验直接启发下经过多少万年的摸索而来的,化学知识还没有形成。 炼丹和医药化学时期:炼丹术士和炼金术士开始最早的化学实验,这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。 近代化学发展时期:1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论,为现代化学的发展奠定了坚实的基础。 现代化学发展时期:二十世纪初,量子论的发展使化学和物理有了共同的语言,解决了化学上速度哦悬而未决的问题;另一方面,化学又向生物学和地质学等科学渗透,使蛋白质、酶的结构问题得到逐步的解决。 二:开设化学发展史课程的目的 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,化学的贡献在其中起了重要的作用。化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。例如,核酸化学的研究成果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他星体的化学成分的分析,得出了元素分布的规律,发现了星际空间有简单化和物的存在,为天体演化和现代宇宙学提供了实验数据,还丰富了自然辩证法的内容。通过学习化学发展史,我们不仅能够明白历史中各位前辈们为了化学的发展而付出的努力,同时也能感悟化学的魅力多彩,争取为现代化学的发展贡献出自己的微博之力。 三:中国古代自然观有哪些 (1)阴阳五行说:阳字本是指日光,阴字本是指没有日光。到后来,阴、阳发展成为指两种宇宙势力或原理,也就是阴阳之道。阳代表阳性,主动、热、明、干、刚等等;阴代表阴性,被动、冷、暗、湿、柔等等。阴阳二道互相作用,产生宇宙一切现象。 (2)八卦说:早在殷周时期的著作《周易》之中的八卦说,《周易》中的“易有太极,是生两仪,两仪生四象,四象生八卦”,可以看作是宇宙的生产过程。“太极”是宇宙的总根源,也就是指元气,古人从日常生活中选取八种自然物或自然现象作为构成万物的本原。八卦中对立的卦象以刚柔相济表示事物的相互转化,蕴含着朴素辩证法思想。 (3)天人合一:在看待人与自然的关系上,中国人采用的是“道法自然,天人合一”的思想。古代人认为,人是天(自然界)的一部分,所以人的行为的根据,一定要在天的行为中寻找。无论在肉体或精神方面,人都是天的副本。 (4)唯物主义自然观:唯物主义自然观学派的人不相信鬼神之说,摒弃所谓的“天人感应。四:燃素说的基本思想是什么 燃素学说是三百年前的化学家们对燃烧的解释,他们认为火是由无数细小而活泼的微粒构成的物质实体。这种火的微粒既能同其他元素结合而形成化合物,也能以游离方式存在。大量游离的火微粒聚集在一起就形成明显的火焰,它弥散于大气之中便给人以热的感觉,由这种火微粒构成的火的元素就是“燃素”。燃素说形成于17世纪末、18世纪初,它是一个解释燃烧现象甚至整个化学的学说。燃素说认为,可燃的要素是一种气态的物质,存在于一切可燃物质中,这种要素就是燃素。燃素说认为,燃烧和锻烧的过程牵涉到化合物分解为组成部分的过程,在最简单的情况下,也就是分解为硫质的“油土”和固定的“石土”。理论上,简单的物体不能发生燃烧,因为含有“油土”和另一种土的物质必然是化合物。

相关主题
文本预览
相关文档 最新文档