2016-2017学年湖北省恩施州咸丰一中高二上学期期中数学试卷与解析(文科)
- 格式:doc
- 大小:444.50 KB
- 文档页数:19
2016-2017学年高二上学期期中考试数学试题一、选择题(本大题共8小题,每小题5分,共40分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.05B .0.35C .0.7D .0.95 2.全称命题“2,54x R x x ∀∈+=”的否定是( )A .2000,54x R x x ∃∈+=B .2,54x R x x ∀∈+≠C .2000,54x R x x ∃∈+≠D .以上都不正确3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .144.某程序框图如图所示,若输出的结果是62,则判断框中可以是( ) A .7?i ≥ B .6?i ≥ C .5?i ≥ D .4?i ≥5.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)- 7.点P 在边长为1的正方形ABCD 内运动,则动点P 到 定点A 的距离|PA |1<|的概率为( )A.πB.2π C.4π D .6π8.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅ 的最大值为( ) A .2 B .3 C .6 D .8二、填空题(每题5分,共6个小题,满分30分) 9.某课题组进行城市空气质量调查,按地域把24个城市分 成甲、乙、丙三组,对应城市数分别为 4、12、8.若用分层 抽样方法抽取6个 城市,则甲组中应抽取的城市数为________.10.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.11.有一个容量为200的样本,其频率分布直方图如图所示, 据图知,样本数据在[8,10)内的频数为 12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合) 的中点的轨迹方程为13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为 . 14.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若1m ≥,则22(m 1)x m 30mx -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.第18题图16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.17.(满分13分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n 人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求,,n a p 的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=>(1)当1a =时,求椭圆的焦点坐标及椭圆的离心率; (2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,求22|F ||F |A B ⋅的值.2016-2017学年高二上学期期中考试数学试题答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.答案:D2.全称命题“∀x ∈R ,x 2+5x =4”的否定是( )A .∃x 0∈R ,x 20+5x 0=4 B .∀x ∈R ,x 2+5x ≠4 C .∃x 0∈R ,x 20+5x 0≠4 D .以上都不正确解析:选C 全称命题的否定为特称命题.3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .14解析:由甲组数据的众数为14得x =y =4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10.答案:C4.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .i >6?B .i >7?C .i ≥6?D .i ≥5?解析:根据题意可知该程序运行情况如下: 第1次:S =0+21=2,i =1+1=2; 第2次:S =2+22=6,i =3; 第3次:S =6+23=14,i =4; 第4次:S =14+24=30,i =5; 第5次:S =30+25=62,i =6; 第6次:S =62+26=126,i =7;此时S =126,结束循环,因此判断框应该是“i >6?”.答案:A5.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选C 方程ax 2+1=0至少有一个负根等价于x 2=-1a,故a <0,故选C.6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)-【解析】圆心坐标为(3,0),∴c =3,又b =4,∴5a =. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 【答案】 D7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π 解析:如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P到定点A 的距离|PA |<1的概率为S ′S =π4. 答案:C 8.直线l 经过椭圆的一个短轴顶点顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb=1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B .二、填空题(每题5分,共6个小题,满分30分)9.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样方法抽取6个城市,则甲组中应抽取的城市数为________.答案:110.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.答案:311.有一个容量为200的样本,其频率分布直方图如图所示,据图知,样本数据在[8,10)内的频数为( )A .38B .57C .76D .95 答案:C12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合)的中点的轨迹方程为2214x y += 13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.【答案】221168x y +=14.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是 ①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可. 若p 真,由y =c x为减函数,得0<c <1. .....................3分 当1,22x ⎡⎤∈⎢⎥⎣⎦时,由不等式2(x 1)22-+≥(x =1时取等号)知(x)f 在1,22⎡⎤⎢⎥⎣⎦上的最小值为2 ......................6分若q 真,则42c <,即12c < .......................8分 若p 真q 假,则112c ≤<; .......................10分 若p 假q 真,则0c ≤. ......................12分 综上可得,(]1,0,12c ⎡⎫∈-∞⎪⎢⎣⎭......................13分16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,计算被调查的出租车司机对新法规知晓情况比较好的频率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.解:(1)答对题目数小于9的人数为55,记“答对题目数大于等于9”为事件A ,P (A )=1-55100=0.45. .......................6分 (2)记“选出的2人中至少有一名女出租车司机”为事件M ,设答对题目数小于8的司机为A ,B ,C ,D ,E ,其中A ,B 为女司机,任选出2人包含AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,共10种情况,.......................9分(3)至少有一名女出租车司机的事件为AB ,AC ,AD ,AE ,BC ,BD ,BE ,共7种 ..12分则P (M )=710=0.7. ......13分16.(满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM第3题图17.(本小题满分14分) (Ⅰ)证明:在△ABC 中,因为AC =,2AB =,1BC =,所以 BC AC ⊥. ………………3分 又因为 AC FB ⊥, 因为BC FB B =所以 ⊥AC 平面FBC . ………………6分 (Ⅱ)M 为AC 中点时,连结CE ,与DF 交于点N ,连结MN .因为 CDEF 为正方形,所以N 为CE 中点. ……………8分 所以 EA //MN . ……………10分 因为 ⊂MN 平面FDM ,⊄EA 平面FDM , ………12分 所以 EA //平面FDM . …………13分18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率. 规范解答不失分 (Ⅰ)由茎叶图可知:甲班身高集中于160179:之间, 而乙班身高集中于170180: 之间.因此乙班平均身高高于甲班 ...............4分 (Ⅱ)158162163168168170171179182170.10x ++++++++==...............6分 甲班的样本方差为:222222222221(158170)(162170)(163170)(168170)10(168170)(170170)(171170)(179170)(179170)(182170)57.2.s ⎡=-+-+-+-⎣+-+-+-+-+-+-=...............8分(Ⅲ)设身高为176cm的同学被抽中的事件为A;从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173)(181,176)(181,178)(181,179)(179,173)(179,176)(179,178)(178,173)(178, 176) (176,173)共10个基本事件,...............10分而事件A含有4个基本事件;...............12分所以42().105P A ...............14分19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求n,a,p的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.解:(1)第二组的概率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以频率组距=0.35=0.06.............2分 频率分布直方图如下:............4分第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000 .............6分 因为第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65. 第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150.所以a =150×0.4=60 .............8分(2)因为年龄在[40,45)岁的“低碳族”与[45,50)岁的“低碳族”的人数的比为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)中有4人,[45,50)中有2人.设[40,45)中的4人为a ,b ,c ,d ,[45,50)中的2人为m ,n ,则选取2人作为领队的情况有(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),共15种, ............10分(3)其中恰有1人年龄在[40,45)岁的情况有(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),共8种, ............12分(4)所以选取的2名领队中恰有1人年龄在[40,45)岁的概率P =815.............14分 20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=> (1)当1a =时,求椭圆的焦点坐标及离心率;(2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,证明22|F ||F |A B ⋅为定值. 解:(1)焦点坐标12(1,0),F (1,0)F - ..........2分离心率12e = ..........3分(2)当斜率不存在时11|||F B |F A ===此时212|FA ||F B|3a ⋅= 5分当斜率不存在=时,设1122(x ,y ),B(x ,y )A:()AB y k x a =-由222(x a)x 4y k y a =-⎧⎨+=⎩ 得222222(1k )x 240ak x k a a +-+-= 7分 222212122224,11ak k a a x x x x k k -+==++ 9分11|FA |x a |==-22|F A |x a |==-所以22111212|FA||FB|(1)|x x a(x )a |k x ⋅=+-++ 12分 22222222242(1k )|a |11k a a a k k k -=+-+++23a = 13分 所以 22|F ||F |A B ⋅为定值23a .。
湖北高二高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.命题:“∃x 0∈R ,x 02+x 0﹣1>0”的否定为( )A .∀x ∈R ,x 2+x ﹣1<0 B .∀x ∈R ,x 2+x ﹣1≤0 C .∃x 0∉R ,x 02+x 0﹣1=0D .∃x 0∈R ,x 02+x 0﹣1≤02.一条直线的倾斜角的正弦值为,则此直线的斜率为( )A .B .±C .D .±3.圆和的位置关系是( ) A .相离B .外切C .内切D .相交4.已知命题p :∃x ∈R ,使得x 2﹣x+2<0;命题q :∀x ∈[1,2],使得x 2≥1.以下命题为真命题的是( )A .¬p ∧¬qB .p ∨¬qC .¬p ∧qD .p ∧q5.“a=﹣1”是“直线a 2x ﹣y+6=0与直线4x ﹣(a ﹣3)y+9=0互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线C :的离心率为,则C 的渐近线方程为( ) A .y=±2x B . C .y=±4xD .7.若抛物线y 2=2px ,(p >0)上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x8.若椭圆和双曲线有相同的左右焦点F 1、F 2,P 是两条曲线的一个交点,则的值是( )A .B .C .D .9.设P 是椭圆上一动点,F 1,F 2分别是左、右两个焦点则的最小值是( )A .B .C .D .10.若直线y=kx+4+2k 与曲线有两个交点,则k 的取值范围是( )A .[1,+∞)B .[﹣1,﹣)C .(,1]D .(﹣∞,﹣1]11.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为( ) A .2B .3C .6D .812.设F 1,F 2分别为双曲线的左、右焦点,若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的离心率为( ) A .B .C .D .2二、填空题1.抛物线的准线方程为 。
2016-2017学年湖北咸丰一中高二文上学期期中数学试卷考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1.已知集合(){}(){}22,|10,,|1A x y x y B x y x y =+-==+=,则A B = ( )A.{}0,1B.()(){}0,1,1,0 C.(){}0,1 D.(){}1,02.98与63的最大公约数为a ,二进制数()2110011化为十进制数为b ,则a b +=( )A.53B.54C.58D.603.在同一平面内,线段AB 为圆C 的直径,动点P 满足0AP BP > ,则点P 与圆C 的位置关系是( )A.点P 在圆C 外部B.点P 在圆C 上C.点P 在圆C 内部D.不确定4.从一批产品取出三件产品,设A =“三件产品全部是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论哪个是正确的( )A.A 与C 互斥B.B 与C 互斥C.,,A B C 中任何两个均互斥D.,,A B C 中任何两个均不互斥5.2015年我校组织学生积极参加科技创新大赛,其中作品A 获得省级奖,九位评委为作品A 给出的分数如茎叶图所示,记分员算得的平均分为89,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员的计算无限,则数字x 应该是( )A.3B.2C.1D.06.已知2sin 23α=,则2sin 4πα⎛⎫+= ⎪⎝⎭( ) A.16 B.12 C.23 D.567.过()()0,12,1A B -、两点的面积最小的圆的方程为( )A.()2212x y -+=B.()()22115x y -++=C.()()22111x y ++-=D.()()221210x y +++=8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为( )(参考数据:sin150.2588,sin 7.50.1305︒=︒=)A.3.10B.3.11C.3.12D.3.139.A 为圆22:1O x y +=上的点,B 为直线:20l x y +-=上的点,则线段AB 长度的最小值为( )1 D.110.在区间()0,1中随机取出两个数,则两数之和不小于45的概率是( ) A.825 B.925 C.1625 D.172511.曲线y =与直线y x b =-+有两个不同的交点,则b 的取值范围为( )A.12b -<<2b ≤<2b ≤≤ D.22b -≤≤12.直线()()212110t t x y --++= ()t R ∈的倾斜角为α,则α的范围是( ) A.3044ππααπ≤<<≤或 B.3442πππαα≤≤≠且 C.3044ππααπ≤<<<或 D.04πα≤<13.已知x 与y 之间的一组数据为:则y 与x 的回归直线方程y bx a ∧=+必过定点 . 14.设圆22450x y x +--=的弦AB 的中点为()3,1P ,则直线AB 的方程为 .15.根据下列程序,当a 的输入值为2,b 的输入值为-2时,输出值为a b 、,则ab = .16.已知圆()222:0O x y r r +=>,直线:1l y x =+.若圆O 上恰有两个点到直线的距离是1,则r 的取值范围是 .17.已知直线()1:120l m x y m +++-=和直线()2:210l x my m R +-=∈.(1)当12l l ⊥时,求实数m 的值;(2)当12//l l 时,求实数m 的值.18.现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a b 、,试计算下列事件的概率:(1)事件:A a b =;(2)事件B :函数()2112f x ax bx =-+在区间3,4⎡⎫+∞⎪⎢⎣⎭上为增函数. 19.我校名教师参加我县“六城”同创“干部职工进网络,服务群众进社区”活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组[)25,30,第二组[)30,35,第三组[)35,40,第四组[)40,45,第五组[]45,50,得到的频率分布直方图如图所示:上表是年龄的频数分布表.(1)求正整数,,a b N 的值;(2)根据频率分布直方图估计我校这N 名教师年龄的中位数和平均数;(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.20.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设AB 终点为,M CF 中点为N .(1)请将字母F G H 、、标记在正方体相应的顶点处(不需说明理由);(2)证明://MN AEF 直线面;(3)若正方体棱长为2,求三棱锥M AEF -的体积.21.已知函数()231f x x x =-+,数列{}()n a n N +∈是递增的等差数列,()()1231,0,1a f x a a f x =+==-.(1)求数列{}n a 的通项公式;(2)设2n n b a =+,求数列()11n n n N b b ++⎧⎫∈⎨⎬⎩⎭的前n 项和.22.在直角坐标系xoy 中,()()1,0,1,0B C -,动点A 满足ABm AC =(0m >且1m ≠). (1)求动点A 的轨迹方程,并说明轨迹是什么曲线;(2)若m,点P为动点A的轨迹曲线上的任意一点,过点P作圆:()2221x y+-=的切线,切点为Q.试探究平面内是否存在定点R,使PQPR为定值,若存在,请求出点R的坐标,若不存在,请说明理由.参考答案1.B【解析】试题分析:()()(){}2210,|0,1,1,01x y A B x y x y ⎧⎫+-=⎧⎪⎪==⎨⎨⎬+=⎪⎪⎩⎩⎭. 考点:集合的交集.2.C【解析】试题分析:∵981633563135283512872874=⨯+=⨯+=⨯+=⨯,,,,∴98和63的最大公约数是7.故选C.考点:算法案例.3.A【解析】试题分析:在同一平面内,线段AB 为圆C 的直径,动点P 满足0AP BP > ,所以APB∠为锐角,所以则点P 在圆C 外部.考点:平面向量的数量积.4.B【解析】试题分析:由题意知事件C 包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,∴事件C 中不包含B 事件,事件C 和事件B 不能同时发生,∴B 与C 互斥,故选B.考点:互斥事件与对立事件.5.C【解析】 试题分析:由题意可知,平均分为()()()1806788990002899x ⨯+++++⨯+++=,解得1x =.考点:茎叶图.6.D【解析】 试题分析:25sin 1cos 21sin 2443ππααα⎡⎤⎛⎫⎛⎫+=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 考点:1.二倍角公式;2.诱导公式.7.A【解析】试题分析:根据题意可知,以线段AB 为直径的圆在过A 和B 两点的所有圆中面积最小,()()0,12,1A B -、的中点坐标为()1,0 ,半径2r ==,所以过()()0,12,1A B -、两点的面积最小的圆的方程为()2212x y -+=.考点:圆的标准方程.8.B【解析】试题分析:模拟执行程序,可得:63sin 602n S ==︒=,,不满足条件3.10126sin 303S n S ≥==⨯︒=,,,不满足条件3.10241215120.2588 3.1056S n S sin ≥==⨯︒=⨯=,,,满足条件 3.10S ≥,退出循环,输出n 的值为24.故选:B.考点:程序框图.9.C【解析】试题分析:圆22:1O x y +=的圆心()0,0O 到直线:20l x y +-=的距离为d ==所以点A 是圆上的点,点B 是直线上的点,则线段AB1,故选C. 考点:直线与圆的位置关系.10.D【解析】试题分析:设取出两个数为x y ,;则0101x y <<⎧⎨<<⎩,若这两数之和小于45,则有010415x y x y +⎧⎪<<⎪<<⎨⎪⎪<⎩,根据几何概型,原问题可以转化为求不等式组010415x y x y +⎧⎪<<⎪<<⎨⎪⎪<⎩;表示的区域与0101x y <<⎧⎨<<⎩表示区域的面积之比问题,如图所示;易得其概率为144162555011⨯⨯=⨯ .考点:几何概型.【思路点睛】根据题意,设取出两个数为x ,y ;易得 0101x y <<⎧⎨<<⎩,若这两数之和小于45,则有010415x y x y +⎧⎪<<⎪<<⎨⎪⎪<⎩,根据几何概型,原问题可以转化为求不等式组 010415x y x y +⎧⎪<<⎪<<⎨⎪⎪<⎩表示的区域与0101x y <<⎧⎨<<⎩表示区域的面积的比值的问题,做出图形,计算可得答案. 11.B【解析】试题分析:在同一直角坐标系中画出曲线y =与直线y x b =-+的图像,如下图,当直线与半圆相切时,圆心()00,到直线y x b =-+的距离d r ===2b =;当直线y x b =-+经过点)时,得b =y =与直线y x b =-+有2b ≤<,故选B.考点:1.直线与圆的位置关系;2.曲线与方程.【思路点睛】本题考查学生掌握直线与圆的位置关系的判别方法,灵活运用数形结合的数学思想解决实际际问题;根据曲线方程的特点得到此曲线的图象为一个半圆如图所示,然后分别求出相切、过)及过直线方程,利用图象即可得到满足条件的b 的范围. 12.C【解析】试题分析:由题意可知212tan 12121t t t α-==-++,又12211011112121t t t +>⇒<<⇒-<-<++,可得1tan 1α-<<,由正切函数的性质和[)0,απ∈,可知3044ππααπ≤<<<或. 考点:直线的斜率和倾斜角.【思路点睛】本题主要考查了直线的斜率和倾斜角之间的关系;由题意可知212tan 12121t t t α-==-++,然后再根据指数幂的性质可知12211011112121t t t +>⇒<<⇒-<-<++,进而可求得1tan 1α-<<,然后再根据正切函数的性质和倾斜角[)0,απ∈,即可求出α的范围.13.5,52⎛⎫ ⎪⎝⎭【解析】 试题分析:由回归方程必过样本中心(),x y ,又5,52x y ==,可知y 与x 的回归直线方程y bx a ∧=+必过定点5,52⎛⎫ ⎪⎝⎭. 考点:直线的回归方程.14.()404x y y x +-==-+或【解析】试题分析:由22450x y x +--=得:()2229x y -+=,得到圆心0(2)C ,,所以求出直线CP 的斜率为10132-=-,根据垂径定理可知CP AB ⊥,所以直线AB 的斜率为1-,过()3,1P ,所以直线AB 的方程为()13y x -=-- 即40x y +-=.考点:直线与圆的位置关系.15.12- 【解析】试题分析:根据程序,可知()220,022a b =-==--=,进而可知,输出11,2a b ==-,所以12ab =-. 考点:顺序语句.【思路点睛】本题主要考查了算法中顺序语句,根据题中所给的顺序语句,可知第一步得到的0,2a b ==,第二步得到1a =,第三步得到12b =-,进而求出ab 的值. 16.11r <<【解析】试题分析:圆心0(0)O ,到直线:1l y x =+的距离2d ==,∵圆()222:0O x y r r +=>上恰有两个点到直线:1l y x =+的距离等于1,∴11r d r -<<+,∴1212r r ⎧-<⎪⎪⎨⎪+>⎪⎩∴11r <<+考点:直线与圆的位置关系.【思路点睛】本题考查圆的半径的取值范围的求法,先求出圆心0(0)O ,到直线:1l y x =+的距离d ,由圆()222:0O x y r r +=>上恰有两个点到直线:1l y x =+的距离等于1,得11r d r -<<+,由此能求出结果.17.(1)23m =-;(2)2m =-【解析】试题分析:(1)12l l ⊥ ,∴()210m m ++=,由此即可求出m 的值;(2)12//l l ,∴()()()12122m m m m +=⎧⎪⎨-+≠-⎪⎩ 解得m 即可.试题解析:(1)12l l ⊥ ∴()210m m ++=解得23m =- ∴当23m =-时12l l ⊥(2)12//l l ∴()()()12122m m m m +=⎧⎪⎨-+≠-⎪⎩解得2m =-∴当2m =-时12//l l . 考点:直线与直线的位置关系. 18.(1)()14P A =;(2)()38P B = 【解析】试题分析:首先,根据题意,将骰子投掷一次有4种结果,所以投掷两次有16种结果;(1)事件A 包含4种结果,由古典概型的概率计算公式即可求出结果;(2)由于函数()2112f x ax bx =-+在区间3,4⎡⎫+∞⎪⎢⎣⎭上为增函数.可知034a b a >⎧⎪⎨≤⎪⎩即()304b a a ≤>,所以事件A 包含6种结果,由古典概型的概率计算公式即可求出结果.试题解析:将骰子投掷一次有4种结果,所以投掷两次有16种结果 (1)事件A 包含4种结果由古典概型的概率计算公式可得:()14P A =(2) 函数()2112f x ax bx =-+在区间3,4⎡⎫+∞⎪⎢⎣⎭上为增函数. ∴034a b a >⎧⎪⎨≤⎪⎩即()304b a a ≤>.∴事件A 包含6种结果由古典概型的概率计算公式可得:()38P B =考点:古典概型.19.(1)15,20,50a b N ===;(2)中位数为:36.25;平均数:36.5;(3)12【解析】试题分析:(1)根据=小矩形的高距频数组 ,故频数比等于高之比,由此可得a b 、的值,进而求得N ;(2)设中位数为x ,则()350.080.1x -⨯=,可得36.25x =,由此即可求出结果;(3)由题意:在第一组抽取1人记为A ,在第二组抽取3人记为B C D 、、,从这4人中任意抽取2人共有:AB AC AD BC BD CD 、、、、、六种结果;其中2人均在第二组的有:BC BD CD 、、三种结果,由古典概型即可求出结果. 试题解析:(1)15,20,50a b N ===(2)设中位数为x ,则()350.080.1x -⨯=∴ 36.25x = 即中位数为:36.25平均数:27.50.132.50.337.50.442.50.147.50.136.5*+*+*+*+*= (3)由题意:在第一组抽取1人记为A ,在第二组抽取3人记为B C D 、、 ∴从这4人中任意抽取2人共有:AB AC AD BC BD CD 、、、、、六种结果 其中2人均在第二组的有:BC BD CD 、、三种结果 ∴其概率为:3162=. 考点:1.古典概型及其概率计算公式;2.频率分布直方图.【方法点睛】古典概型的一般解题技巧:第一步:判明问题的性质;这类随机试验中只有有限种不同的结果,即只可能出现有限个基本事件不妨设为12n ωωω 、、、;且它们具有以下三条性质: (1)等可能性::()()()12n P P P ωωω=== ; (2)完备性:在任一次试验中至少发生一个; (3)互不相容性:在任一次试验中,12n ωωω 、、、,中至多有一个出现,每个基本事件的概率为1n ,即()i P ω;第二步:掌握古典概率的计算公式; 如果样本空间包含的样本点的总数n ,事件A 包含的样本点数为m ,则事件A 的概率()A A A m P n ===事件包含的基本事件数有利于的基本事件数基本事件总数基本事件总数.20.(1);(2)【解析】 试题分析:(1)作出该正方体,从而能得到字母F ,G ,H 的位置.(2)连结BD ,设O 为BD 中点,推导出四边形OMNH 为平行四边形,从而MN ∥OH ,由此能证明MN ∥平面BDH.(3)由等体积法即可求出结果. 试题解析:(1)(2)设P 为BE 中点,连MP NP 、 N 为CF 中点∴//NP EF ,NP AEF EF AEF ⊄⊆面面 ∴//NP AEF 面又M 为AB 中点 ∴MP //12AE,MP AEF AE MNP ⊄⊆面面 ∴//MP AEF 面而MP NP P = MP NP MNP ⊆、面 ∴//,MNP AEF MN MNP ⊆面面而面 ∴//MN AEF 面////Q DF MN AQ MN AEF ⇒⎛⎫⎪⎪ ⎪⎝⎭法二:设为中点,易证直线面法三:建立空间直角坐标系酌情给分(3)M AEF F AEM V V --=13AEM S EF ∆=∙ 1112232=⨯⨯⨯⨯ 23=.考点:1.直线与平面平行的判定;2.空间几何体的体积公式. 21.(1)2n a n =-;(2)1nn + 【解析】试题分析:(1)由题意:()()()()22132131113120a a x x x x a +=+-+++---==解得:1x =或2x =;若2x =,则()()12331,0,11a fa a f =====-(不合题意,舍去);若1x =,则()()12321,0,01a f a a f ==-===,根据等差数列的通项公式即可求出结果;(2)由(1)知2n n b a n =+= ∴()1111111n n b b n n n n +==-++,由裂项相消即可求出结果. 试题解析:(1)由题意:()()()()22132131113120a a x x x x a +=+-+++---== 解得:1x =或2x =若2x =,则()()12331,0,11a f a a f =====-(不合题意,舍去)若1x =,则()()12321,0,01a f a a f ==-=== ∴数列{}n a 的通项公式为:()1112n a n n =-+-⨯=- (2)由(1)知2n n b a n =+= ∴()1111111n n b b n n n n +==-++ ∴数列11n n b b +⎧⎫⎨⎬⎩⎭的前项和为:1111111111122334111n n n n n -+-+--=-=+++…… (结果写成111n -+也给分)考点:1.等差数列的性质;2.裂项相消求和. 【方法点睛】裂项相消在使用过程中有一个很重要得特征,就是能把一个数列的每一项裂为两项的差,其本质就是两大类型类型一:()()n ka f n f n c =+型,通过拼凑法裂解成11n n n c n n c k k a a a cd a a ++⎛⎫==- ⎪⎝⎭;类型二:通过有理化、对数的运算法则、阶乘和组合数公式直接裂项型;该类型的特点是需要熟悉无理型的特征,对数的运算法则和阶乘和组合数公式。
高二上学期数学期中考试卷(含答案)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线10x y +-=的倾斜角为( )A .30B .60︒C .120︒D .135︒ 2.76是等差数列4,7,10,13, 的第( )项A .25B .26C .27D .283.若两条直线210ax y +-=与3610x y --=互相垂直,则a 的值为( )A .4B .-4C .1D .-14.设等差数列{}n a 的前n 项和为n S ,若1073=+a a ,则=9S ( )A .22.5B .45C .67.5D .905. 已知直线l 过()2,1A -,且在两坐标轴上的截距为相反数,那么直线l 的方程是( )A .02=+y x 或30x y -+=B .10x y --=或30x y -+=C .10x y --=或30x y +-=D .02=+y x 或30x y +-= 6.设等比数列{}n a 的前n 项和为147258,9,18,n S a a a a a a ++=++=则9S =( )A .27B .36C .63D .727.已知圆()()111:221=-++y x C ,圆2C 与圆1C 关于直线01=--y x 对称,则圆2C 的方程为( )A .B .C .D .8.若数列{n a }的前n 项和为n S =2133n a +,n S =( )A .123n -B .1(2)3n --C .2123+ D .1(2)3n +- 二、选择题:本题共 4 小题,每小题 5 分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.9.一条光线从点()0,1射出,经x 轴反射后与圆22430x y x +-+=相切,则反射光线所在直线的方程是( )A .4330x y --=B .1=yC .3440x y --=D .1y =-10.已知等差数列{}n a 中,410a a =,公差0d <,则使其前n 项和n S 取得最大值的自然数n 是( )A .4B .5C .6D .711.已知圆222450x y x y a +--+-=上有且仅有两个点到直线34150x y --=的距离为1,则实数a 的可能取值为( )A .12-B .8-C .6D .1-12.数列{}n a 的前n 项和为n S ,已知27n S n n =-+,则下列说法正确的是( )A .{}n a 是递增数列B .1014a =-C .当4n >时,0n a <D .当3n =或4时,n S 取得最大值三、填空题:本题共4小题,每小题5分,共20分.13.已知数列{}n a 中,11,111+-==+n n a a a ,则=2022a _________. 14.已知两条直线0162:,033:21=++=-+y x l y ax l ,若12//l l ,则直线1l 与2l 之间的距离=d ______.15.由正数组成的等比数列{}n a 中,若3654=a a a ,则=+++93832313log log log log a a a a .16.点M 在圆()()93522=-+-y x 上,点M 到直线3x +4y -2=0的最短距离为四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边的垂直平分线DE 的方程. 18.(本小题满分12分)已知S n 为等差数列{a n }的前n 项和,且a 3=17,S 7=98. (1)求{a n }的通项公式;(2)求S n 的最大值. 19.(本小题满分12分)已知圆()()2521:22=-+-y x C 及直线()()()R m m y m x m l ∈+=+++47112:.(1)证明:不论m 取什么实数,直线l 与圆C 恒相交; (2)求直线l 被圆C 截得的弦长的最短长度及此时的直线方程. 20.(本小题满分12分)数列{}n a 中13a =,已知1(,)n n a a +在直线2y x =+上. (1)求数列{}n a 的通项公式;(2)若3nn n b a =⋅,求数列{}n b 的前n 项和n T .21.(本小题满分12分)已知等比数列{}n a 中,11a =,且22a 是1a 和14a 的等差中项.数列{}n b 满足,且12712,13,1++=+==n n n b b b b b .(1)求数列{}n a 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 22.(本小题满分12分)已知圆C 过点()6,2A ,且与直线010:1=-+y x l 相切于点()4,6B . (1)求圆C 的方程;(2)过点()24,6P 的直线2l 与圆C 交于N M 、两点,若CMN ∆为直角三角形,求直线2l 的方程;(3)在直线2:3-=x y l 上是否存在一点Q ,过点Q 向圆C 引两切线,切点为F E 、,使QEF ∆为正三角形,若存在,求出点Q 的坐标,若不存在,说明理由.参考答案一、单选题题目 1 2 3 4 5 6 7 8 答案DA AB AC BB二、多选题题目 9 10 11 12 答案ADCDABDCD三、填空题:13.2 14.20107 15.34 16.2 三、解答题:17.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,所以BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.因为BC 边的垂直平分线DE 经过BC 的中点(0,2),所以所求直线方程为y -2=2(x -0), 即2x -y +2=0.18.解:(1)因为{a n }是等差数列,设公差为d ,因为a 3=17,S 77a 4=98所以a 4=14, 由d =a 4﹣a 3=﹣3,所以a n =a 3+(n ﹣3)d =17﹣3(n ﹣3)=﹣3n +26;(2)易知S n,当n =8时,S n 取得最大值S 8=100.19.(1)将直线的方程变形为,令,解得,即直线过定点.因为,所以点在圆内部.所以不论m 为何实数,直线与圆恒相交.(2)由(1)的结论知直线过定点,且当直线时,此时圆心到直线的距离最大,进而被圆所截的弦长最短,故,从而此时,此时,直线方程为,即.20、【解析】(1)∵1(,)n n a a +在直线2y x =+上, ∴12n n a a +=+,即12n n a a +-=∴{}n a 是以3为首项,以2为公差的等差数列.32(1)21n a n n ∴=+-=+.(2)3,(21)3n n n n n b a b n =⋅∴=+⋅231335373(21)3(21)3n n n T n n -∴=⨯+⨯+⨯+⋯+-⋅++⋅ ① 23133353(21)3(21)3n n n T n n +∴=⨯+⨯+⋯+-⋅++⋅ ②由①-②得()23+12332333(21)3n n n T n -=⨯+++⋯+-+⋅()11191392(21)32313n n n n n -++-=+⨯-+⋅=-⋅-,13n n T n +∴=⋅.21、解:(1)设等比数列{}n a 的公比为q 因为11a =,所以222131,a a q q a a q q ====.因为22a 是3a 和14a 的等差中项, 所以23144a a a =+, 即244q q =+, 解得2,q =所以1112n n n a a q --==.(2)因为212n n n b b b +++=, 所以{}n b 为等差数列. 因为171,13b b ==, 所以公差131271d -==-. 故21n b n =-.所以1122n n n T a b a b a b =++++⋯++()()1212n n a a a b b b =++⋅⋅⋅++++⋯+2121212112()2n n n n n -+-=+=+--22、(1)设圆心坐标为,则,解得:,圆的半径, 圆的方程为:.(2)为直角三角形,,,则圆心到直线的距离;当直线斜率不存在,即时,满足圆心到直线的距离;当直线斜率存在时,可设,即,,解得:,,即;综上所述:直线的方程为或.(3)假设在直线存在点,使为正三角形,,,设,,解得:或,存在点或,使为正三角形.。
湖北省咸丰一中2016-2017学年高二上学期期中考试文数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合(){}(){}22,|10,,|1A x y x y B x y xy =+-==+=,则AB =( )A .{}0,1B .()(){}0,1,1,0C .(){}0,1D .(){}1,0【答案】B考点:集合的交集.2. 98与63的最大公约数为a ,二进制数()2110011化为十进制数为b ,则a b +=( ) A .53 B .54 C .58 D .60 【答案】C 【解析】试题分析:∵981633563135283512872874=⨯+=⨯+=⨯+=⨯,,,,∴98和63的最大公约数是7. 故选C . 考点:算法案例.3. 在同一平面内,线段AB 为圆C 的直径,动点P 满足0AP BP >,则点P 与圆C 的位置关系是( ) A .点P 在圆C 外部 B .点P 在圆C 上 C .点P 在圆C 内部 D .不确定 【答案】A 【解析】试题分析:在同一平面内,线段AB 为圆C 的直径,动点P 满足0AP BP >,所以APB ∠为锐角,所以则点P 在圆C 外部.考点:平面向量的数量积.4. 从一批产品取出三件产品,设A =“三件产品全部是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论哪个是正确的( )A .A 与C 互斥B .B 与C 互斥 C.,,A B C 中任何两个均互斥D .,,A B C 中任何两个均不互斥 【答案】B 【解析】试题分析:由题意知事件C 包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,∴事件C 中不包含B 事件,事件C 和事件B 不能同时发生,∴B 与C 互斥,故选B . 考点:互斥事件与对立事件.5. 2015年我校组织学生积极参加科技创新大赛,其中作品A 获得省级奖,九位评委为作品A 给出的分数如茎叶图所示,记分员算得的平均分为89,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员的计算无限,则数字x 应该是( )A .3B .2 C.1 D .0 【答案】C考点:茎叶图. 6. 已知2sin 23α=,则2sin 4πα⎛⎫+= ⎪⎝⎭( ) A .16 B .12 C.23 D .56【答案】D 【解析】试题分析:25sin 1cos 21sin 2443ππααα⎡⎤⎛⎫⎛⎫+=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 考点:1.二倍角公式;2.诱导公式.7. 过()()0,12,1A B -、两点的面积最小的圆的方程为( ) A .()2212x y -+= B .()()22115x y -++=C. ()()22111x y ++-= D .()()221210x y +++= 【答案】A 【解析】试题分析:根据题意可知,以线段AB 为直径的圆在过A 和B 两点的所有圆中面积最小,()()0,12,1A B -、的中点坐标为()1,0 ,半径r ==,所以过()()0,12,1A B -、两点的面积最小的圆的方程为()2212x y -+=.考点:圆的标准方程.8. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为( )(参考数据:sin150.2588,sin 7.50.1305︒=︒=)A .3.10B .3.11 C. 3.12 D .3.13 【答案】B考点:程序框图.9. A 为圆22:1O x y +=上的点,B 为直线:20l x y +-=上的点,则线段AB 长度的最小值为( )A B .1- D .1【答案】C 【解析】试题分析:圆22:1O x y +=的圆心()0,0O 到直线:20l x y +-=的距离为d ==,所以点A 是圆上的点,点B 是直线上的点,则线段AB 1-,故选C. 考点:直线与圆的位置关系.10. 在区间()0,1中随机取出两个数,则两数之和不小于45的概率是( ) A .825 B .925 C.1625 D .1725【答案】D考点:几何概型.【思路点睛】根据题意,设取出两个数为x ,y ;易得 0101x y <<⎧⎨<<⎩,若这两数之和小于45,则有010415x y x y +⎧⎪<<⎪<<⎨⎪⎪<⎩,根据几何概型,原问题可以转化为求不等式组 010415x y x y +⎧⎪<<⎪<<⎨⎪⎪<⎩表示的区域与0101x y <<⎧⎨<<⎩表示区域的面积的比值的问题,做出图形,计算可得答案. 11.曲线y =与直线y x b =-+有两个不同的交点,则b 的取值范围为( )A .12b -<< B2b ≤<2b ≤≤ D .22b -≤≤ 【答案】B考点:1.直线与圆的位置关系;2.曲线与方程.【思路点睛】本题考查学生掌握直线与圆的位置关系的判别方法,灵活运用数形结合的数学思想解决实际际问题;根据曲线方程的特点得到此曲线的图象为一个半圆如图所示,然后分别求出相切、过)及过直线方程,利用图象即可得到满足条件的b 的范围.12. 直线()()212110t t x y --++=()t R ∈的倾斜角为α,则α的范围是( )A .3044ππααπ≤<<≤或B .3442πππαα≤≤≠且C.3044ππααπ≤<<<或 D .04πα≤<【答案】C【解析】试题分析:由题意可知212tan 12121t t t α-==-++,又12211011112121t t t +>⇒<<⇒-<-<++,可得1tan 1α-<<,由正切函数的性质和[)0,απ∈,可知3044ππααπ≤<<<或. 考点:直线的斜率和倾斜角.【思路点睛】本题主要考查了直线的斜率和倾斜角之间的关系;由题意可知212tan 12121t t tα-==-++,然后再根据指数幂的性质可知12211011112121t t t +>⇒<<⇒-<-<++,进而可求得1tan 1α-<<,然后再根据正切函数的性质和倾斜角[)0,απ∈,即可求出α的范围.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知x 与y 之间的一组数据为:则y 与x 的回归直线方程y bx a ∧=+必过定点 .【答案】5,52⎛⎫ ⎪⎝⎭考点:直线的回归方程.14. 设圆22450x y x +--=的弦AB 的中点为()3,1P ,则直线AB 的方程为 .【答案】()404x y y x +-==-+或 【解析】试题分析:由22450x y x +--=得:()2229x y -+=,得到圆心0(2)C ,,所以求出直线CP 的斜率为10132-=-,根据垂径定理可知CP AB ⊥,所以直线AB 的斜率为1-,过()3,1P ,所以直线AB 的方程为()13y x -=-- 即40x y +-=.考点:直线与圆的位置关系.15. 根据下列程序,当a 的输入值为2,b 的输入值为-2时,输出值为a b 、,则ab = .【答案】12-考点:顺序语句.【思路点睛】本题主要考查了算法中顺序语句,根据题中所给的顺序语句,可知第一步得到的0,2a b ==,第二步得到1a =,第三步得到12b =-,进而求出ab 的值. 16. 已知圆()222:0O x y r r +=>,直线:1l y x =+.若圆O 上恰有两个点到直线的距离是1,则r 的取值范围是 .【答案】11r <<+【解析】试题分析:圆心0(0)O ,到直线:1l y x =+的距离d ==,∵圆()222:0O x y r r +=>上恰有两个点到直线:1l y x =+的距离等于1,∴11r d r -<<+,∴11r r ⎧-<⎪⎪⎨⎪+>⎪⎩∴11r -<<+.考点:直线与圆的位置关系.【思路点睛】本题考查圆的半径的取值范围的求法,先求出圆心0(0)O ,到直线:1l y x =+的距离d ,由圆()222:0O x y r r +=>上恰有两个点到直线:1l y x =+的距离等于1,得11r d r -<<+,由此能求出结果.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知直线()1:120l m x y m +++-=和直线()2:210l x my m R +-=∈. (1)当12l l ⊥时,求实数m 的值; (2)当12//l l 时,求实数m 的值. 【答案】(1)23m =-;(2)2m =-(2)12//l l∴()()()12122m m m m +=⎧⎪⎨-+≠-⎪⎩解得2m =-∴当2m =-时12//l l .考点:直线与直线的位置关系. 18. (本小题满分12分)现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a b 、,试计算下列事件的概率: (1)事件:A a b =; (2)事件B :函数()2112f x ax bx =-+在区间3,4⎡⎫+∞⎪⎢⎣⎭上为增函数. 【答案】(1)()14P A =;(2)()38P B =试题解析:将骰子投掷一次有4种结果,所以投掷两次有16种结果 (1)事件A 包含4种结果 由古典概型的概率计算公式可得:()14P A =(2)函数()2112f x ax bx =-+在区间3,4⎡⎫+∞⎪⎢⎣⎭上为增函数. ∴034a b a >⎧⎪⎨≤⎪⎩即()304b a a ≤>.∴事件A 包含6种结果由古典概型的概率计算公式可得:()38P B =考点:古典概型.19. (本小题满分12分)我校名教师参加我县“六城”同创“干部职工进网络,服务群众进社区”活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组[)25,30,第二组[)30,35,第三组[)35,40,第四组[)40,45,第五组[]45,50,得到的频率分布直方图如图所示:上表是年龄的频数分布表. (1)求正整数,,a b N 的值;(2)根据频率分布直方图估计我校这N 名教师年龄的中位数和平均数;(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.【答案】(1)15,20,50a b N ===;(2)中位数为:36.25;平均数:36. 5;(3)12试题解析:(1)15,20,50a b N === (2)设中位数为x ,则()350.080.1x -⨯= ∴ 36.25x = 即中位数为:36.25平均数:27.50.132.50.337.50.442.50.147.50.136.5*+*+*+*+*=(3)由题意:在第一组抽取1人记为A ,在第二组抽取3人记为B C D 、、 ∴从这4人中任意抽取2人共有:AB AC AD BC BD CD 、、、、、六种结果 其中2人均在第二组的有:BC BD CD 、、三种结果 ∴其概率为:3162=. 考点:1.古典概型及其概率计算公式;2.频率分布直方图.【方法点睛】古典概型的一般解题技巧:第一步:判明问题的性质;这类随机试验中只有有限种不同的结果,即只可能出现有限个基本事件不妨设为12n ωωω、、、;且它们具有以下三条性质: (1)等可能性::()()()12n P P P ωωω===; (2)完备性:在任一次试验中至少发生一个; (3)互不相容性:在任一次试验中,12n ωωω、、、,中至多有一个出现,每个基本事件的概率为1n,即()i P ω;第二步:掌握古典概率的计算公式; 如果样本空间包含的样本点的总数n ,事件A 包含的样本点数为m ,则事件A 的概率()A A A m P n ===事件包含的基本事件数有利于的基本事件数基本事件总数基本事件总数. 20. (本小题满分12分)一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设AB 终点为,M CF 中点为N .(1)请将字母F G H 、、标记在正方体相应的顶点处(不需说明理由); (2)证明://MN AEF 直线面;(3)若正方体棱长为2,求三棱锥M AEF -的体积. 【答案】(1);(2)(2)设P 为BE 中点,连MP NP 、N 为CF 中点∴//NP EF ,NP AEF EF AEF ⊄⊆面面 ∴//NP AEF 面 又M 为AB 中点∴MP //12AE,MP AEF AE MNP ⊄⊆面面 ∴//MP AEF 面 而MPNP P = MP NP MNP ⊆、面∴//,MNP AEF MN MNP ⊆面面而面 ∴//MN AEF 面////Q DF MN AQ MN AEF ⇒⎛⎫⎪⎪ ⎪⎝⎭法二:设为中点,易证直线面法三:建立空间直角坐标系酌情给分(3)M AEF F AEM V V --=13AEM S EF ∆=∙ 1112232=⨯⨯⨯⨯ 23=.考点:1. 直线与平面平行的判定;2.空间几何体的体积公式. 21. (本小题满分12分)已知函数()231f x x x =-+,数列{}()n a n N +∈是递增的等差数列,()()1231,0,1a f x a a f x =+==-.(1)求数列{}n a 的通项公式; (2)设2n n b a =+,求数列()11n n n N b b ++⎧⎫∈⎨⎬⎩⎭的前n 项和.【答案】(1)2n a n =-;(2)1n n +试题解析:(1)由题意:()()()()22132131113120a a x x x x a +=+-+++---== 解得:1x =或2x =若2x =,则()()12331,0,11a f a a f =====-(不合题意,舍去) 若1x =,则()()12321,0,01a f a a f ==-=== ∴数列{}n a 的通项公式为:()1112n a n n =-+-⨯=- (2)由(1)知2n n b a n =+= ∴()1111111n n b b n n n n +==-++ ∴数列11n n b b +⎧⎫⎨⎬⎩⎭的前项和为:1111111111122334111nn n n n -+-+--=-=+++…… (结果写成111n -+也给分)考点:1.等差数列的性质;2.裂项相消求和.【方法点睛】裂项相消在使用过程中有一个很重要得特征,就是能把一个数列的每一项裂为两项的差,其本质就是两大类型类型一:()()n k a f n f n c =+型,通过拼凑法裂解成11n n n c n n c k k a a a cd a a ++⎛⎫==-⎪⎝⎭;类型二:通过有理化、对数的运算法则、阶乘和组合数公式直接裂项型;该类型的特点是需要熟悉无理型的特征,对数的运算法则和阶乘和组合数公式。
恩施市第一中学高二文科数学试卷满分:150分 时间:120分钟一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.330y --=,则该直线的倾斜角为A. 30B. 60C. 120D.1502.已知直线l 1:x+2ay ﹣1=0,与l 2:(2a ﹣1)x ﹣ay ﹣1=0平行,则a 的值是( )A .0或1B .1或 C .0或 D.3.下列命题中,,m n 表示两条不同的直线,,αβ表示两个不同的平面:①若,m n αα⊥⊂,则m n ⊥ ②若//,m n αα⊂,则//m n③若,m αβα⊥⊂,则m β⊥ ④若//,m αβα⊂,则//m β正确的命题是A. ①③B. ②③C. ①④D. ②④4.如下框图所示,已知集合{}|A x x =框图中输出的值集合{}|B y y =框图中输出的值,当0x =时,A B =A. {}0,1,3B. {}1,3,5C. {}1,3,5,7D. {}0,1,3,55.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A .k =12,b =-4B .k =-12,b =4C .k =12,b =4D .k =-12,b =-4 6.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33 D .- 37.若变量、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤-≤+0,024y x y x y x ,则y x +2的最大值是( )A.2B.4C.7D.88. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如下右图)”,下底面宽3=AD 丈,长4=AB 丈,上棱2=EF 丈,平面EF ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( )A .4立方丈B .5立方丈C .6立方丈D .8立方丈9. 若曲线方程为012=--y x ,则2y x -的取值范围为() A .3(,[,)33-∞-+∞B .[33-C .11(,][,)22-∞-+∞ D .11[,]22- 10. 设不等式组 4010x y y x x ≤⎧⎪≥⎨⎪≥⎩+,-,-表示的平面区域为D.若圆C :(x +1)2+(y +1)2=r 2(r>0)不经过区域D 上的点,则r 的取值范围是( )A.,.,]C.,.(0,)∪)11.如果圆8)()(22=-+-a y a x 上总存在两个点到原点的距离为,2则实数a 的取值范围是( )A .)3,1()1,3(⋃--B .)3,3(-C .[-1,1]D .(][)3,11,3 --12. 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元二、填空题(本题共4个小题,每题5分,共计20分.)13.经过点A(-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程是________.14.已知P 是直线:40(0)l kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B .若四边形PACB 的最小面积为2,则k = .15.已知y x ,满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(0≤k ),若目标函数3z x y =+的最大值为8,则k 的值为.16.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 若点()1,3A -,O 为坐标原点,则(,)d A O =;O与直线20x y +-=上一点的“折线距离”的最小值是三、解答题:(本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤)17. 已知直线1:260l ax y ++=和直线()22:310l x a y a +-+-=(1)当12l l ⊥时,求a 的值;(2)在(1)的条件下,若直线32//l l ,且3l 过点()1,3A -,求直线3l 的一般方程.18.在ABC ∆中,边a,b,c 分别为内角A,B,C 的对边,且满足()cos 2sin sin .A B A B -=(1)判断ABC ∆的形状;(2)若3,6a c ==,CD 为角C 的角平分线,求CD 的长.19.已知圆C 的圆心坐标)1,1(,直线l :1=+y x 被圆C 截得弦长为2。
高二上学期期中考试数学文科试题(有答案)A.第一列B.第二列C.第三列D.第四列第II卷(非选择题)请修改第II卷的文字说明评卷人得分二、填空题11. 在△中,,,,则___________.12. 在平面直角坐标系中,不等式( 为常数)表示的平面区域的面积为8,则的最小值为13. 已知是等差数列,,,则等于14. 已知不等式组表示的平面区域为D,若直线y=kx +1将区域D分成面积相等的两部分,则实数k的值是__________ 评卷人得分三、解答题15. 已知数列满足: ,其中为的前n项和.(1)求的通项公式;(2)若数列满足,求的前n项和.16. 设集合,.(1) 已知,求实数的取值范围;(2) 已知,求实数的取值范围.19. 如果无穷数列{an}满足下列条件:①②存在实数M,使得an≤M,其中n∈N*,那么我们称数列{an}为Ω数列.(1) 设数列{bn}的通项为bn=5n-2n,且是Ω数列,求M的取值范围;(2) 设{cn}是各项为正数的等比数列,Sn是其前n项和,证明:数列{Sn}是Ω数列;(3) 设数列{dn}是各项均为正整数的Ω数列,求证:dn≤dn+1.参考答案4.【答案】B【解析】5.【答案】C【解析】由题可知,故,而,故选C。
6.【答案】B【解析】当时,可知,所以A选项错误;当时,C选项错误;当时, ,与D选项矛盾.因此根据均值定理可知B选项正确.7.【答案】B【解析】设需使用甲型货车x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z=400x+300y的最小值.解得当时zmin=2 200.8.【答案】C【解析】令一直角边长为a,则另一直角边长为2a,斜边长为a2+4a2,周长l=a+2a+a2+4a2≥22+2>4.8,当且a=2a时取等号.9.【答案】C【解析】10.【答案】D【解析】二、填空题11.【答案】【解析】12.【答案】【解析】13.【答案】47【解析】14.【答案】【解析】三、解答题15.【答案】【解析】(1)①当n=1时, ,得②当时,所以,数列是以首项为,公比为的等比数列(2)…①又…②由①-②,得16.【答案】解:(1),当时,符合题意;当,即:时,,所以解得,综上可得当时,实数的取值范围是(2)同(1)易得当时,实数的取值范围是【解析】17.【答案】(1)设的公差为,则,且又,所以,,(2)易知,∴。
高二第一学期期中测试数学试题(文科)参考公式:回归直线方程a x by ˆˆ+=∧,其中∑∑==∧--=n i i ni ii xn x yx n yx b 1221,x b y aˆˆ-= 一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合要求的) 1.设,a b 为非零实数,若a b <,0c ≠ 则下列不等式成立的是A. ac bc <B. 22a b < C. 22ac bc < D. a c b c -<+ 2.要完成下列两项调查:宜采用的抽样方法依次为①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.A .①随机抽样法,②系统抽样法B .①分层抽样法,②随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立......的两个事件是 A .至少有1个白球,都是白球 B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球4.一组数据的平均数是2 .8 ,方差是3 .6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是A .57.2 ,3.6B .57.2 ,56.4C .62.8 ,63.6D .62.8 ,3.65.当1x >时,关于函数 下列叙述正确的是A.函数()f x 有最小值2B.函数()f x 有最大值2C.函数()f x 有最小值3D.函数()f x 有最大值3 6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90% , 则甲、乙二人下成和棋的概率为A. 50%B. 30%C. 10%D. 60% 7.如右图所示的程序框图输出的结果是S =120 ,则判断框内应填写的条件是A. i ≤5?B. i>5?C. i ≤6?D. i>6?,11)(-+=x x x f354555658.已知回归直线斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的回归方程是 A. 1.230.08y x ∧=+ B. 1.235y x ∧=+ C. 1.234y x ∧=+ D.0.08 1.23y x ∧=+9.△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c ,若 A=2B ,则cosB 等于A. B. C. D.10.ABCD 为长方形,AB=2 ,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到点O 的距离大于1的概率为 A .4π B . 14π- C . 8π D .18π- 二、填空题(本大题共4小题,每小题5分,共20分)11.把5进制数4301(5)化为十进制数:4301(5)= 。
2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.123.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.48.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.311.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.812.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是.14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.15.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段80,85),90,95),(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:60,70),80,90),.(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在hslx3y3h50,90)之外的人数.分数段hslx3y3h50,60)hslx3y3h60,70)hslx3y3h70,80)hslx3y3h80,90)x:y 1:1 2:1 3:4 4:520.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面【考点】平面的基本性质及推论.【分析】根据公理2以及推论判断A、B、D,再根据空间四边形判断C.【解答】解:A、根据公理2知,必须是不共线的三点确定一个平面,故A不对;B、根据一条直线和直线外的一点确定一个平面知,故B不对;C、比如空间四边形则不是平面图形,故C不对;D、两两相交且不共点的三条直线,则三个交点不共线,故它们确定一个平面,由公理1知三条直线都在此平面内,故D正确.故选D.2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.12【考点】系统抽样方法.【分析】系统抽样中,分段的间隔(抽样距)=【解答】解:抽样距==40.故选A3.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④【考点】平面与平面之间的位置关系.【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得①为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故②为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得③为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m 在平面α内,则有α和β相交于m,故④为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l⊥m;即①为真命题;因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.所以真命题为①③.故选C.4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】由组合数公式可得从5根木棒中任取3根的情况数目,由三角形的三边关系分析可得取出的三根可以搭成三角形的情况数目,由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从5根木棒中任取3根,有C53=10种情况,其中能构撘成三角形的有3、5、7,3、7、9,5、7、9,共3种情况,则能搭成三角形的概率为;故选D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定【考点】众数、中位数、平均数;茎叶图.【分析】由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,根据样本平均数的计算公式,代入数据可以求得甲和乙的平均分,把两个平均分进行比较,得到结果.【解答】解:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分,,∴a2>a1故选B.7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.4【考点】极差、方差与标准差.【分析】由题意知这组数据的平均数为10,方差为2可得到关于x,y的一个方程组,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,利用换元法来解出结果.【解答】解:由题意这组数据的平均数为10,方差为2可得:x+y=20,(x﹣10)2+(y﹣10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,设x=10+t,y=10﹣t,由(x﹣10)2+(y﹣10)2=8得t2=4;∴|x﹣y|=2|t|=4,故选D.8.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条【考点】空间中直线与直线之间的位置关系.【分析】过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,异面直线a、b成60°角,直线a′、b′所成锐角为60°,过点P与a′、b′都成60°角的直线,可以作3条.【解答】解:过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,∵异面直线a、b成60°角,∴直线a′、b′所成锐角为60°.①当直线l在平面α内时,若直线l平分直线a′、b′所成的钝角,则直线l与a、b都成60°角;②当直线l与平面α斜交时,若它在平面α内的射影恰好落在直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.此时l与a′、b′所成角的范围为,适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.综上所述,过点P与a′、b′都成60°角的直线,可以作3条.∵a′∥a,b′∥b,∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.故选:C.9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④【考点】棱柱的结构特征.【分析】正方体的平面展开图复原为正方体,不难解答本题.【解答】解:由题意画出正方体的图形如图:显然①②不正确;③CN与BM成60°角,即∠ANC=60°正确;④DM⊥平面BCN,所以④正确;故选C.10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.3【考点】棱柱的结构特征.【分析】对于①由题意及图形利用异面直线所成角的概念及求异面直线间的方法及可求解;对于②由题意及平面具有延展性可知实质为平面ABC1D1与平面BDC1所成的二面角;对于③由题意及三棱锥的体积的算法中可以进行顶点可以轮换性求解体积,和点P的位置及直线AD1与平面BDC1的位置即可判断正误.【解答】解:对于①因为在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,有正方体的及题意易有B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以①正确;对于②因为二面角P﹣BC1﹣D的大小,实质为平面ABC1D1与平面BDC1所成的二面角而这两的平面为固定的不变的平面所以夹角也为定值,故②正确;对于③三棱锥D﹣BPC1的体积还等于三棱锥的体积P﹣DBC1的体积,而平面DBC1为固定平面且大小一定,又因为P∈AD1,而AD1∥平面BDC1,所以点A到平面DBC1的距离即为点P到该平面的距离,所以三棱锥的体积为定值,故③正确.故选D.11.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.8【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出x、y的平均数,即可求出m值.【解答】解:根据题意,计算=×=200,=×(1+3+6+7+m)=,代入回归方程=0.8x﹣155中,可得=0.8×200﹣155=25,解得m=8.故选:D.12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB 与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选B.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是②③④.【考点】命题的真假判断与应用.【分析】根据空间线面之间的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①a⊥M,若M⊥N,则a∥N,或a⊂N,故错误;②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b,故正确;③a⊥M,b⊄M,若b∥M,则b⊥a,故正确;④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b,故正确.故答案为:②③④14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【考点】循环结构.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:815.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.【考点】异面直线及其所成的角.【分析】以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.【解答】解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.【考点】几何概型.【分析】分析知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率;即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.【解答】解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件:,画出不等式组表示的平面区域如图所示;所以p(A)=1﹣=;所以一艘船停靠泊位时必须等待一段时间的概率是.故答案为:.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段80,85),90,95),(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【考点】古典概型及其概率计算公式.【分析】(I)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;(II)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段95,10090,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.【考点】平面与平面垂直的判定;直线与平面平行的判定;点、线、面间的距离计算.【分析】(1)取PC的中点G,连接FG、EG,证出AF∥EG,由线面平行的判定定理,即可证出:AF∥平面PCE.(2)先证出AF⊥平面PCD,再由(1),可证EG⊥平面PCD,由面面垂直的判定定理即可证出平面PCE⊥平面PCD;(3)过点D作DH⊥PC于H,DH的长为点D到平面PEC的距离.【解答】(1)证明:取PC的中点为G,连结FG、EG∵FG∥DC,FG=DC,DC∥AB,AE=AB∴FG∥AE且FG=A∴四边形AFGE为平行四边形,∴AF∥EG.又∵AF⊄平面PCE,EG⊂平面PCE,∴AF∥平面PCE…(2)证明:∵PA⊥平面ABCD,AD⊥D,∴PD⊥DC∴∠PDA为二面角P﹣CD﹣B的平面角,∴∠PDA=45°,即△PAD为等腰直角三角形又∵F为PD的中点,∴AF⊥PD ①由DC⊥AD,DC⊥PD,AD∩PD=D,得:DC⊥平面PAD.而AF⊂平面PAD,∴AF⊥DC ②由①②得AF⊥平面PDC.而EG∥AF∴EG⊥平面PDC,又EG⊂平面PCE,∴平面PCE⊥平面PDC…(3)解:过点D作DH⊥PC于H.∵平面PCE⊥平面PDC,∴DH⊥平面PEC.即DH的长为点D到平面PEC的距离.在Rt△PAD中,PA=AD=a,PD= a在Rt△PDC中,PD=a,CD=a,PC=a,DH=a.即:点D到平面PCE的距离为a…19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:60,70),80,90),.(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在hslx3y3h50,90)之外的人数.分数段hslx3y3h50,hslx3y3h60,hslx3y3h70,hslx3y3h80,60)70)80)90)x:y 1:1 2:1 3:4 4:5【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.【分析】(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a 的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在50,60)的人数为:100×0.05=5,数学成绩在70,80)的人数为:,数学成绩在50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10.20.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.【考点】异面直线及其所成的角.【分析】(Ⅰ)直接作出异面直线所成角的平面角,通过余弦定理求解.(Ⅱ)由线线垂直转化为线面垂直及面面垂直然后建立比例关系,最后求参数的值.【解答】解:(Ⅰ)在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,由余弦定理得,cos∠PCH=∴异面直线GE与PC所成角的余弦值为.(Ⅱ)在平面GBCD内,过D作DM⊥GC,M为垂足,连结MF,又因为DF⊥GC∴GC⊥平面MFD,∴GC⊥FM由平面PGC⊥平面GBCD,∴FM⊥平面GBCD∴FM∥PG由得GM⊥MD,∴GM=GD•cos45°=∵,∴k=321.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.【考点】直线与平面垂直的判定;余弦定理.【分析】(I)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.利用面面垂直和线面垂直的判定与性质定理和二次函数的单调性即可得出;(II)在等腰△ADC中,使用余弦定理和利用余弦函数的单调性即可得出.【解答】解:(Ⅰ)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.∵平面APQ⊥平面PBCQ,又∵AR⊥PQ,∴AR⊥平面PBCQ,∴AR⊥RB.在Rt△BRD中,BR2=BD2+RD2=,AR2=x2.故d2=BR2+AR2=.∴当时,d2取得最小值.(Ⅱ)∵AB=AC=d,BC=2,∴在等腰△ADC中,由余弦定理得,即,∴当时,cosθ取得最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.【考点】棱锥的结构特征.【分析】(1)分别作出三角形的高,求出四个三角形的面积,然后求三棱锥D﹣ABC的表面积;(2)要证AC⊥平面DEF,先证AC⊥DE,再证AC⊥EF,即可.(3)M为BD的中点,连CM,设CM∩DE=O,连OF,只要MN∥OF即可,求出CN.【解答】解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D﹣ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.2016年11月26日。
高二文科数学期中质量检测试题(卷)答案2017.4一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.6. 2016年课标全国Ⅰ卷文科第3题7. 选自贾茹、何小荣《数学证明》课时标准二、填空题:本大题共4小题,每小题6分,共24分.13. a 、b 、c 都不是正数 (课本66页例4改) 14. 3;15. 21()(2)n f n n n-=…; (教参110页第9题) 16. 正四面体内一点到四个面距离之和是一个定值.(课本56页例4)三、解答题:本大题共4小题,共66分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分16分)(课本62页例6改)>只需证明22>,……5分即3526+>+……10分从而只需证明>即1512>,这显然成立. ……15分> ……16分18. (本小题满分16分) 解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ,则“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,于是632623(),(),(),(),10551055======P A P A P B P B ……4分 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件.(1)甲乙两人都抽到足球票就是事件AB 发生,根据相互独立事件的概率乘法公式,得到326()()().5525==⨯=P AB P A P B 答:两人都抽到足球票的概率是6.25……8分 (2)甲、乙两人均未抽到足球票(事件A B 发生)的概率为236()()().5525==⨯=P A B P A P B ……12分 所以两人中至少有1人抽到足球票的概率为6191()1.2525-=-=P A B ……16分 19. (本小题满分17分)20. (本小题满分17分)解:……8分根据列联表可以求得2250(991121) 3.125 2.70620302030⨯⨯-⨯=≈>⨯⨯⨯χ(式子列对结果不对得5分) ……14分 因此有90%的把握认为该学科成绩与性别有关. ……17分。
2017-2018学年湖北省部分重点中学高二(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题p:∃x0∈R,x02﹣5x0+6<0,则()A.¬p:∃x0∈R,B.¬p:∃x0∉R,C.¬p:∀x∈R,x2﹣5x+6>0 D.¬p:∀x∈R,x2﹣5x+6≥02.(5分)已知命题p:经过定点P0(x0,y0)的直线都可以用方程y﹣y0=k(x ﹣x0)表示,命题q:直线xtan+y﹣7=0的倾斜角是,则下列命题是真命题的为()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬P)∧(¬q)3.(5分)已知A(4,﹣3)关于直线l的对称点为B(﹣2,5),则直线l的方程是()A.3x+4y﹣7=0 B.3x﹣4y+1=0 C.4x+3y﹣7=0 D.3x﹣4y﹣1=04.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)圆x2+y2﹣4x+6y=0与直线2mx+y+2﹣m=0(m∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能6.(5分)椭圆mx2+y2=1的离心率是,则它的长轴长是()A.1 B.1或2 C.2 D.2或47.(5分)设x,y满足约束条件,若z=x+2y的最大值和最小值的差为8,则实数m=()A.﹣1 B.1 C.D.8.(5分)曲线x2+y2=2|x|+2|y|所围成的图形的面积为()A.6+2πB.6+4πC.8+2πD.8+4π9.(5分)已知平面内两点A(1,2),B(﹣2,﹣2)到直线l的距离分别为2,3,则满足条件的直线l的条数为()A.4 B.3 C.2 D.110.(5分)已知椭圆的弦AB的中点坐标为M(1,1),则直线AB的方程为()A.x+2y﹣3=0 B.x﹣2y+1=0 C.2x+y﹣3=0 D.2x﹣y+1=011.(5分)已知两点A(﹣1,0),B(0,1),点P是椭圆上任意一点,则点P到直线AB的距离最大值为()A.B.C.6 D.12.(5分)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为()A.B.C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)过点P(1,2),并且在两轴上的截距互为相反数的直线方程是.14.(5分)已知圆x2+y2=16,直线l:,圆上至少有三个点到直线l的距离都是2,则m的取值范围是.15.(5分)已知直线l交椭圆C:于A,B两点,F1为椭圆的左焦点,当直线l经过右焦点时,△ABF1周长为.16.(5分)设椭圆C的两个焦点是F1、F2,过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程为2x﹣y﹣7=0,AC边上的高BH所在直线方程为x﹣2y﹣6=0.(1)求点C的坐标;(2)求直线BC的方程.18.(12分)为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?19.(12分)矩形ABCD的两条对角线相交于点M(2,0),AB边所在的直线的方程为x﹣4y=8,点T(﹣1,2)在边AD所在的直线上.(1)求边AD所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)过点P(1,2)的直线l被矩形ABCD的外接圆截得的弦长为,求直线l的方程.20.(12分)在直角坐标系xOy中,二次函数y=x2+mx﹣3的图象与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)以AB为直径的圆能否经过点C?说明理由;(2)过A,B,C三点的圆在y轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.21.(12分)已知点是椭圆C:上的一点,椭圆的右焦点为F(1,0),斜率为的直线BD交椭圆C于B、D两点,且A、B、D 三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.22.(12分)已知圆M:和点,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC 的斜率分别是k1,k2,满足k1•k2=9,求△ABC面积的最大值.2017-2018学年湖北省部分重点中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题p:∃x0∈R,x02﹣5x0+6<0,则()A.¬p:∃x0∈R,B.¬p:∃x0∉R,C.¬p:∀x∈R,x2﹣5x+6>0 D.¬p:∀x∈R,x2﹣5x+6≥0【解答】解:∵特称命题的否定是全称命题,∴命题p:∃x0∈R,x02﹣5x0+6<0,则¬p:∀x∈R,x2﹣5x+6≥0,故选:D.2.(5分)已知命题p:经过定点P0(x0,y0)的直线都可以用方程y﹣y0=k(x ﹣x0)表示,命题q:直线xtan+y﹣7=0的倾斜角是,则下列命题是真命题的为()A.(¬p)∧q B.p∧q C.p∨(¬q)D.(¬P)∧(¬q)【解答】解:直线的斜率不存在时,不能表示,故p是假命题;直线xtan+y﹣7=0的斜率是﹣,故倾斜角是,故q是真命题,故(¬p)∧q是真命题,故选:A.3.(5分)已知A(4,﹣3)关于直线l的对称点为B(﹣2,5),则直线l的方程是()A.3x+4y﹣7=0 B.3x﹣4y+1=0 C.4x+3y﹣7=0 D.3x﹣4y﹣1=0【解答】解:由题意,直线AB与l的方程垂直,点A(4,﹣3),B(﹣2,5),k AB==﹣,那么直线l的方程的斜率为k=,A,B的中点的坐标在l的方程上,即中点为(1,1),∴l的方程为:y﹣1=(x﹣1),即3x﹣4y+1=0.故选:B.4.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:对于命题q:由a(a+2)﹣3=0,解得a=1或﹣3.a=﹣3时,两条直线重合,舍去.∴a=1.∴p是q的充要条件.故选:C.5.(5分)圆x2+y2﹣4x+6y=0与直线2mx+y+2﹣m=0(m∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能【解答】解:根据题意,直线的方程为2mx+y+2﹣m=0,即m(2x﹣1)+y+2=0,则直线恒过点(,﹣2),圆x2+y2﹣4x+6y=0的标准方程为(x﹣2)2+(y+3)2=13,其圆心为(2,﹣3),半径为,分析可得点(,﹣2)在圆内,则直线与圆相交;故选:C.6.(5分)椭圆mx2+y2=1的离心率是,则它的长轴长是()A.1 B.1或2 C.2 D.2或4【解答】解:把椭圆mx2+y2=1方程转化为:分两种情况:①椭圆的离心率则:解得:m=进一步得长轴长为4②椭圆的离心率则:长轴长为2故选:D.7.(5分)设x,y满足约束条件,若z=x+2y的最大值和最小值的差为8,则实数m=()A.﹣1 B.1 C.D.【解答】解:由x,y满足约束条件作出可行域如图,联立,解得A(2,3),联立,解得B(m﹣1,m),化z=x+2y,得y=﹣+.由图可知,当直线y=﹣+过A时,z有最大值为8,当直线y=﹣+过B时,z有最小值为3m﹣1,由题意,8﹣(3m﹣1)=8,解得:m=.故选:D.8.(5分)曲线x2+y2=2|x|+2|y|所围成的图形的面积为()A.6+2πB.6+4πC.8+2πD.8+4π【解答】解:由题意,作出如图的图形,由曲线关于原点对称,当x≥0,y≥0时,解析式为(x﹣1)2+(y﹣1)2=2,故可得此曲线所围的力图形由一个边长为2的正方形与四个半径为的半圆组成,所围成的面积是2×2+4××π×=8+4π故选:D.9.(5分)已知平面内两点A(1,2),B(﹣2,﹣2)到直线l的距离分别为2,3,则满足条件的直线l的条数为()A.4 B.3 C.2 D.1【解答】解:线段AB的中点M(﹣,0),|AB|==5.因此经过线段AB上的一点P,且满足|AP|:|PB|=2:3的点P且与直线AB垂直的直线满足条件.则直线AB的两侧各有一条直线满足条件.综上共有3条直线满足条件.故选:B.10.(5分)已知椭圆的弦AB的中点坐标为M(1,1),则直线AB的方程为()A.x+2y﹣3=0 B.x﹣2y+1=0 C.2x+y﹣3=0 D.2x﹣y+1=0【解答】解:根据题意,设直线方程AB为y=k(x﹣1)+1,设A、B的横坐标分别为x1、x2,且AB的中点坐标为M(1,1),则有(x1+x2)=1,即x1+x2=2,将直线AB的方程代入椭圆方程中,整理得(2k2+1)x2+4k(1﹣k)x+2(1﹣k)2﹣8=0,有x1+x2=﹣,设则有﹣=2,解可得k=﹣,则直线AB方程为y=﹣(x﹣1)+1,变形可得x+2y﹣3=0;故选:A.11.(5分)已知两点A(﹣1,0),B(0,1),点P是椭圆上任意一点,则点P到直线AB的距离最大值为()A.B.C.6 D.【解答】解:由两点A(﹣1,0 ),B(0,1),则直线AB的方程为y=x+1,由图知,直线y=x+m(m<0)和椭圆相切于P点时,到AB的距离最大.联立方程得到,整理得25x2+32mx+16m2﹣144=0由于直线y=x+m和椭圆相切,则△=(32m)2﹣4×25×(16m2﹣144)=0解得m=﹣5由于y=x+1与直线y=x﹣5的距离为d==3,则点P到直线AB距离的最大值为:3.故选:A.12.(5分)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为()A.B.C. D.【解答】解:如图,取点K(﹣2,0),连接OM、MK.∵OM=1,OA=,OK=2,∴==2,∵∠MOK=∠AOM,∴△MOK∽△AOM,∴==2,∴MK=2MA,∴|MB|+2|MA|=|MB|+|MK|,在△MBK中,|MB|+|MK|≥|BK|,∴|MB|+2|MA|=|MB|+|MK|的最小值为|BK|的长,∵B(1,1),K(﹣2,0),∴|BK|==.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)过点P(1,2),并且在两轴上的截距互为相反数的直线方程是x ﹣y+1=0或2x﹣y=0.【解答】解:直线经过原点时满足条件:直线方程为:y=2x.直线不经过原点时,设直线方程为:x﹣y=a,把点P(1,2)代入可得:1﹣2=a,解得a=﹣1.∴直线方程为:x﹣y+1=0.故答案为:x﹣y+1=0或2x﹣y=0.14.(5分)已知圆x2+y2=16,直线l:,圆上至少有三个点到直线l的距离都是2,则m的取值范围是﹣4≤m≤4.【解答】解:由圆C的方程:x2+y2=16,可得圆C的圆心为原点O(0,0),半径为4;若圆上至少有三个点到直线l:y=x+m的距离等于2,则满足O到直线l的距离d≤2,∵直线l的一般方程为:x﹣y+m=0,∴d==≤2,解得﹣4≤m≤4,∴m的取值范围是﹣4≤m≤4.故答案为:﹣4≤m≤4.15.(5分)已知直线l交椭圆C:于A,B两点,F1为椭圆的左焦点,当直线l经过右焦点时,△ABF1周长为12.【解答】解:椭圆C:的a=3,由椭圆的定义可得,△AF1B的周长为c=|AB|+|AF1|+|BF1|=(|AF2|+|AF1|)+(|BF1|+|BF2|)=2a+2a=4a=12.故答案为:12.16.(5分)设椭圆C的两个焦点是F1、F2,过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为.【解答】解:设椭圆的标准方程为:(a>b>0),由5|PF1|=6|F1Q|,设|PF1|=6k,|F1Q|=5k,|PF2|=|F1F2|=2c,过F2做F2D⊥PQ,则丨PD丨=丨DF1丨=3k,由椭圆的定义可得:|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,∴2c+6k=2a,即a﹣c=3k,①,|QF2|=2c﹣5k,由|PF2|2﹣|PD|2=|QF2|2﹣|QD|2,即(2c)2﹣(3k)2=(2c﹣5k)2﹣(8k)2,整理得:6c﹣4a=15k,②解得:a=k,c=k,则e==,故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知△ABC的顶点A(6,1),AB边上的中线CM所在直线方程为2x﹣y﹣7=0,AC边上的高BH所在直线方程为x﹣2y﹣6=0.(1)求点C的坐标;(2)求直线BC的方程.【解答】解:(1)依题意知:k AC=﹣2,A(6,1),∴l AC方程为:2x+y﹣13=0,联立l AC、l CM得,∴C(5,3).(2)设B(x0,y0),AB的中点M为(,),代入2x﹣y﹣7=0,得2x0﹣y0﹣3=0,∴,∴B(0,﹣3),∴k BC=,∴直线BC的方程为y=x﹣3,即6x﹣5y﹣15=0.18.(12分)为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解答】解:(1)依题意每天生产的茶杯个数为100﹣x﹣y,所以利润ω=5x+6y+3(100﹣x﹣y)=2x+3y+300.(2)约束条件为整理得目标函数为ω=2x+3y+300,作出可行域,如图所示,作初始直线l0:2x+3y=0,平移l0,当l0经过点A时,ω有最大值,由得∴最优解为A(50,50),此时ωmax=550元.故每天生产汤碗50个,花瓶50个,茶杯0个时利润最大,且最大利润为550元.19.(12分)矩形ABCD的两条对角线相交于点M(2,0),AB边所在的直线的方程为x﹣4y=8,点T(﹣1,2)在边AD所在的直线上.(1)求边AD所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)过点P(1,2)的直线l被矩形ABCD的外接圆截得的弦长为,求直线l的方程.【解答】解:(1)∵AB⊥AD,k AB=,∴k AD=﹣4,∵点T(﹣1,2)在边AD所在的直线上,∴直线AD的方程为y﹣2=﹣4(x+1),即4x+y+2=0,(2)联立,解得A(0,﹣2).∵矩形ABCD的两条对角线相交于点M(2,0),即圆心为M(2,0),∴圆的半径为AM=2,∴矩形ABCD外接圆的方程(x﹣2)2+y2=8.(3)当直线斜率不存在时,直线方程为x=1,圆心M到直线l的距离d=1,∴直线l被圆截得弦长为2=2,符合题意;当直线斜率存在时,设直线为y﹣2=k(x﹣1),即kx﹣y﹣2k+2=0,圆心M到直线的距离为d=,解得:k=﹣,则直线为3x+4y﹣11=0,综上,直线l的方程为x=1或3x+4y﹣11=0.20.(12分)在直角坐标系xOy中,二次函数y=x2+mx﹣3的图象与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)以AB为直径的圆能否经过点C?说明理由;(2)过A,B,C三点的圆在y轴上截得的弦长是否为定值?若是,则求出该定值;若不是,请说明理由.【解答】解:(1)以AB为直径的圆不经过点C,理由如下:二次函数y=x2+mx﹣3的图象与x轴交于A,B两点,设A(x1,0),B(x2,0),则x1x2=﹣3,又C的坐标为(0,1),故AC的斜率与BC的斜率之积为=﹣,所以不能出现AC⊥BC的情况,以AB为直径的圆不经过点C.(2)设过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),将A,B,C三点坐标带入,得x12+Dx1+F=0,x22+Dx2+F=0,1+E+F=0.∴x1x2=﹣3=F,从而E=2,∴圆的方程为x2+y2+Dx+2y﹣3=0,令x=0,得y2+2y﹣3=0,∴y1=﹣3,y2=1,进而得到圆在y轴上截得的弦长是定值为4.21.(12分)已知点是椭圆C:上的一点,椭圆的右焦点为F(1,0),斜率为的直线BD交椭圆C于B、D两点,且A、B、D 三点互不重合.(1)求椭圆C的方程;(2)求证:直线AB,AD的斜率之和为定值.【解答】(1)由题意,左焦点为F′(﹣1,0),由椭圆定义可得2a=|AF|+|AF′|=+=4,解得a=2,b=,所以椭圆C的方程为+=1.(2)证明:设直线BD的方程为y=x+m,又A、B、D三点不重合,∴m≠﹣1,设D(x1,y1),B(x2,y2),则由得x2+mx+m2﹣3=0,所以△=﹣3m2+12>0,所以﹣2<m<2.x1+x2=﹣m,x1x2=﹣m2﹣3,设直线AB、AD的斜率分别为:k AB、k AD,则k AD+k AB═+=+=1+(m+1)﹣,=1+(m+1)﹣,=1+(m+1)﹣,=1﹣1=0,所以k AD+k AB=0,即直线AB,AD的斜率之和为定值.22.(12分)已知圆M:和点,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC 的斜率分别是k1,k2,满足k1•k2=9,求△ABC面积的最大值.【解答】解:(1)圆M:的圆心为M(0,﹣),半径为2,点N(0,),在圆M内,因为动圆P经过点N且与圆M相切,所以动圆P与圆M内切.设动圆P半径为r,则2=|PM|.因为动圆P经过点N,所以r=|PN|,|PM|+|PN|=>|MN|,所以曲线E是M,N为焦点,长轴长为2的椭圆.由a=,c=,得b2=3﹣2=1,所以曲线E的方程为:.(2)直线BC斜率为0时,不合题意;设B(x1,y1),C(x2,y2),直线BC:x=ty+m,联立方程组,得(1+3t2)y2+6mty+3m2﹣3=0,y1+y2=,y1y2=,又k1k2=9,知y1y2=9(x1﹣1)(x2﹣1)=9(ty1﹣1+m)(ty2﹣1+m)=9t2y1y2+9(m﹣1)t(y1+y2)+9(m﹣1)2.且m≠1,y1+y2=,y1y2=,代入化简得(9t2﹣1)(m+1)﹣18mt2+3(m﹣1)(1+3t2)=0,解得m=2,故直线BC过定点(2,0),由△>0,解得t2>1,S△ABC=|y2﹣y1|===,(当且仅当时取等号).综上,△ABC面积的最大值为:.。
2016-2017学年高二上学期期中试卷数学(文科)一、选择题(共9小题,每小题4分,满分36分)1.已知圆C :x 2+y 2﹣4x=0,l 为过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能2.圆x 2+y 2﹣4x=0在点P (1,)处的切线方程为( )A .x+y ﹣2=0B .x+y ﹣4=0C .x ﹣y+4=0D .x ﹣y+2=03.直线x+﹣2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2B .2C .D .14.已知点A (2,3),B (﹣3,﹣2).若直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .B .C .k ≥2或D .k ≤25.已知双曲线C :的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .B .C .D .6.已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .B .C .3D .57.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .8.过点()引直线l 与曲线y=相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的斜率等于( )A .B .C .D .9.设F 1、F 2是椭圆的左、右焦点,P 为直线x=上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .B .C .D .二、填空题(共6小题,每小题4分,满分24分)10.已知圆C 的方程为x 2+y 2﹣2y ﹣3=0,过点P (﹣1,2)的直线l 与圆C 交于A ,B 两点,若使|AB|最小,则直线l 的方程是______.11.过直线x+y ﹣2=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是______.12.设AB 是椭圆Γ的长轴,点C 在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为______.13.椭圆Γ: =1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c ,若直线y=与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于______.14.在平面直角坐标系xOy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为______.15.已知过抛物线y 2=9x 的焦点的弦AB 长为12,则直线AB 的倾斜角为______.三、解答题(共4小题,满分40分)16.如图,圆x 2+y 2=8内有一点P (﹣1,2),AB 为过点P 且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB 被点P 平分时,写出直线AB 的方程.(3)求过点P 的弦的中点的轨迹方程.17.椭圆E : +=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e=,过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为,求△ABF 2的面积.18.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若=2,求直线l的方程.19.已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点.(Ⅰ)求直线PF的方程;(Ⅱ)求△DAB的面积S范围;(Ⅲ)设,,求证λ+μ为定值.2016-2017学年高二上学期期中试卷数学(文科)参考答案与试题解析一、选择题(共9小题,每小题4分,满分36分)1.已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能【考点】直线与圆的位置关系.【分析】将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P点,可得出直线l与圆C相交.【解答】解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.2.圆x2+y2﹣4x=0在点P(1,)处的切线方程为()A.x+y﹣2=0 B.x+y﹣4=0 C.x﹣y+4=0 D.x﹣y+2=0【考点】圆的切线方程.【分析】本题考查的知识点为圆的切线方程.(1)我们可设出直线的点斜式方程,联立直线和圆的方程,根据一元二次方程根与图象交点间的关系,得到对应的方程有且只有一个实根,即△=0,求出k值后,进而求出直线方程.(2)由于点在圆上,我们也可以切线的性质定理,即此时切线与过切点的半径垂直,进行求出切线的方程.【解答】解:法一:x2+y2﹣4x=0y=kx﹣k+⇒x2﹣4x+(kx﹣k+)2=0.该二次方程应有两相等实根,即△=0,解得k=.∴y﹣=(x﹣1),即x﹣y+2=0.法二:∵点(1,)在圆x2+y2﹣4x=0上,∴点P为切点,从而圆心与P的连线应与切线垂直.又∵圆心为(2,0),∴•k=﹣1.解得k=,∴切线方程为x﹣y+2=0.故选D3.直线x+﹣2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于()A.2 B.2 C.D.1【考点】直线与圆相交的性质.【分析】由直线与圆相交的性质可知,,要求AB,只要先求圆心(0,0)到直线x+﹣2=0的距离d,即可求解【解答】解:∵圆心(0,0)到直线x+﹣2=0的距离d=由直线与圆相交的性质可知,即∴故选B4.已知点A(2,3),B(﹣3,﹣2).若直线l过点P(1,1)且与线段AB相交,则直线l的斜率k的取值范围是()A.B.C.k≥2或 D.k≤2【考点】直线的斜率.【分析】首先求出直线PA、PB的斜率,然后结合图象即可写出答案.【解答】解:直线PA的斜率k==2,直线PB的斜率k′==,结合图象可得直线l的斜率k的取值范围是k≥2或k≤.故选C.5.已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.【考点】双曲线的标准方程.【分析】利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b 的值,即可求得双曲线的方程.【解答】解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25, =1,∴b=,a=2∴双曲线的方程为.故选:A.6.已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B. C.3 D.5【考点】双曲线的简单性质;抛物线的简单性质.【分析】确定抛物线y2=12x的焦点坐标,从而可得双曲线的一条渐近线方程,利用点到直线的距离公式,即可求双曲线的焦点到其渐近线的距离.【解答】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.7.如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A .B .C .D .【考点】椭圆的简单性质.【分析】不妨设|AF 1|=x ,|AF 2|=y ,依题意,解此方程组可求得x ,y 的值,利用双曲线的定义及性质即可求得C 2的离心率.【解答】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1:+y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;①又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C 2的实轴长为2m ,焦距为2n ,则2m=|AF 2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===. 故选D .8.过点()引直线l 与曲线y=相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的斜率等于( )A .B .C .D .【考点】直线与圆的位置关系;直线的斜率.【分析】由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.【解答】解:由y=,得x 2+y 2=1(y ≥0). 所以曲线y=表示单位圆在x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合,则﹣1<k <0,直线l 的方程为y ﹣0=,即.则原点O 到l 的距离d=,l 被半圆截得的半弦长为.则===.令,则,当,即时,S △ABO 有最大值为.此时由,解得k=﹣. 故答案为B .9.设F 1、F 2是椭圆的左、右焦点,P 为直线x=上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .B .C .D . 【考点】椭圆的简单性质.【分析】利用△F 2PF 1是底角为30°的等腰三角形,可得|PF 2|=|F 2F 1|,根据P 为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F 2PF 1是底角为30°的等腰三角形,∴|PF 2|=|F 2F 1|∵P 为直线x=上一点∴∴故选C .二、填空题(共6小题,每小题4分,满分24分)10.已知圆C 的方程为x 2+y 2﹣2y ﹣3=0,过点P (﹣1,2)的直线l 与圆C 交于A ,B 两点,若使|AB|最小,则直线l 的方程是 x ﹣y+3=0 .【考点】直线与圆相交的性质;直线的一般式方程.【分析】先判断点P (﹣1,2)在圆内,故当AB ⊥CP 时,|AB|最小,此时,k CP =﹣1,k l =1,用点斜式写直线l 的方程,并化为一般式.【解答】解:圆C 的方程为x 2+y 2﹣2y ﹣3=0,即 x 2+(y ﹣1)2=4,表示圆心在C (0,1),半径等于2的圆.点P (﹣1,2)到圆心的距离等于,小于半径,故点P (﹣1,2)在圆内.∴当AB ⊥CP 时,|AB|最小,此时,k CP =﹣1,k l =1,用点斜式写直线l 的方程y ﹣2=x+1,即x ﹣y+3=0.11.过直线x+y ﹣2=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是 (,) . 【考点】圆的切线方程;两直线的夹角与到角问题. 【分析】根据题意画出相应的图形,设P 的坐标为(a ,b ),由PA 与PB 为圆的两条切线,根据切线的性质得到OA 与AP 垂直,OB 与BP 垂直,再由切线长定理得到PO 为角平分线,根据两切线的夹角为60°,求出∠APO 和∠BPO 都为30°,在直角三角形APO 中,由半径AO 的长,利用30°角所对的直角边等于斜边的一半求出OP 的长,由P 和O 的坐标,利用两点间的距离公式列出关于a 与b 的方程,记作①,再由P 在直线x+y ﹣2=0上,将P 的坐标代入得到关于a 与b 的另一个方程,记作②,联立①②即可求出a 与b 的值,进而确定出P 的坐标.【解答】解:根据题意画出相应的图形,如图所示:直线PA 和PB 为过点P 的两条切线,且∠APB=60°,设P 的坐标为(a ,b ),连接OP ,OA ,OB ,∴OA ⊥AP ,OB ⊥BP ,PO 平分∠APB ,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x 2+y 2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴=2,即a 2+b 2=4①,又P 在直线x+y ﹣2=0上,∴a+b ﹣2=0,即a+b=2②,联立①②解得:a=b=,则P 的坐标为(,).故答案为:(,)12.设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.【考点】椭圆的标准方程;椭圆的简单性质.【分析】由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C 的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.【解答】解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.13.椭圆Γ: =1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c ,若直线y=与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于 . 【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】由直线可知斜率为,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF 1F 2=2∠MF 2F 1,可得,进而.设|MF 2|=m ,|MF 1|=n ,利用勾股定理、椭圆的定义及其边角关系可得,解出a ,c 即可.【解答】解:如图所示,由直线可知倾斜角α与斜率有关系=tan α,∴α=60°.又椭圆Γ的一个交点满足∠MF 1F 2=2∠MF 2F 1,∴,∴.设|MF 2|=m ,|MF 1|=n ,则,解得.∴该椭圆的离心率e=.故答案为.14.在平面直角坐标系xOy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 +=1 . 【考点】椭圆的简单性质. 【分析】根据题意,△ABF 2的周长为16,即BF 2+AF 2+BF 1+AF 1=16,结合椭圆的定义,有4a=16,即可得a 的值;又由椭圆的离心率,可得c 的值,进而可得b 的值;由椭圆的焦点在x 轴上,可得椭圆的方程.【解答】解:根据题意,△ABF 2的周长为16,即BF 2+AF 2+BF 1+AF 1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c ,将a=c ,代入可得,c=2,则b 2=a 2﹣c 2=8;则椭圆的方程为+=1;故答案为:+=1.15.已知过抛物线y 2=9x 的焦点的弦AB 长为12,则直线AB 的倾斜角为或 .【考点】直线与抛物线的位置关系.【分析】首先根据抛物线方程,求得焦点坐标为F (,0),从而设所求直线方程为y=k (x ﹣).再将所得方程与抛物线y 2=9x 消去y ,利用韦达定理求出x 1+x 2,最后结合直线过抛物线y 2=9x 焦点截得弦长为12,得到x 1+x 2+3=12,求出k ,得到直线的倾斜角.【解答】解:∵抛物线方程是y 2=9x ,∴2p=9,可得 =,焦点坐标为F (,0)设所求直线方程为y=k (x ﹣),与抛物线y 2=9x 消去y ,得k 2x 2﹣(k 2+9)x+k 2=0设直线交抛物线与A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=, ∵直线过抛物线y 2=9x 焦点,交抛物线得弦长为12,∴x 1+x 2+=12,可得x 1+x 2=,因此, =,解之得k2=3,∴k=tanα=±,结合α∈[0,π),可得α=或.故答案为:或.三、解答题(共4小题,满分40分)16.如图,圆x2+y2=8内有一点P(﹣1,2),AB为过点P且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB被点P平分时,写出直线AB的方程.(3)求过点P的弦的中点的轨迹方程.【考点】直线和圆的方程的应用.【分析】(1)过点O做OG⊥AB于G,连接OA,依题意可知直线AB的斜率,求得AB的方程,利用点到直线的距离求得OG即圆的半径,进而求得OA的长,则OB可求得.(2)弦AB被P平分时,OP⊥AB,则OP的斜率可知,利用点斜式求得AB的方程.(3)设出AB的中点的坐标,依据题意联立方程组,消去k求得x和y的关系式,即P的轨迹方程.【解答】解:(1)过点O做OG⊥AB于G,连接OA,当α=1350时,直线AB的斜率为﹣1,故直线AB的方程x+y﹣1=0,∴OG=∵r=∴,∴=﹣2,(2)当弦AB被P平分时,OP⊥AB,此时KOP∴AB的点斜式方程为(x+1),即x﹣2y+5=0(3)设AB的中点为M(x,y),AB的斜率为K,OM⊥AB,则消去K,得x2+y2﹣2y+x=0,当AB的斜率K不存在时也成立,故过点P的弦的中点的轨迹方程为x2+y2﹣2y+x=017.椭圆E : +=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e=,过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为,求△ABF 2的面积.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)利用椭圆的离心率以及△ABF 2的周长为8,求出a ,c ,b ,即可得到椭圆的方程,(2)求出直线方程与椭圆方程联立,求出A ,B 坐标,然后求解三角形的面积即可.【解答】解:(1)由题意知,4a=8,所以a=2,又e=,可得=,c=1.∴b 2=22﹣1=3.从而椭圆的方程为:.(2)设直线方程为:y=(x+1)由得:5x 2+8x=0.解得:x 1=0,x 2=, 所以y 1=,y 2=,则S=c|y 1﹣y 2|=.18.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若=2,求直线l 的方程.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)根据椭圆的焦距为2,离心率为,求出a ,b ,即可求椭圆C 的方程;(Ⅱ)分类讨论,设直线l 方程为y=kx+1,代入椭圆方程,由=2,得x 1=﹣2x 2,利用韦达定理,化简求出k ,即可求直线l 的方程.【解答】解:(Ⅰ)由题意知,c=1, =,…∴a=2,b= … 故椭圆方程为. …(Ⅱ)设A (x 1,y 1),B (x 2,y 2),当k 不存在时,直线方程为x=0,不符合题意. …当k 存在时,设直线方程为y=kx+1,代入椭圆方程,消去y ,得:(3+4k 2)x 2+8kx ﹣8=0,且△>0,…x 1+x 2=﹣①,x 1x 2=﹣②…若=2,则x 1=﹣2x 2,③… ①②③,可得k=±.…所求直线方程为y=x+1.即x ﹣2y+2=0或x+2y ﹣2=0 …19.已知点F 为抛物线C :y 2=4x 的焦点,点P 是准线l 上的动点,直线PF 交抛物线C 于A ,B 两点,若点P 的纵坐标为m (m ≠0),点D 为准线l 与x 轴的交点.(Ⅰ)求直线PF 的方程;(Ⅱ)求△DAB 的面积S 范围;(Ⅲ)设,,求证λ+μ为定值.【考点】直线的一般式方程;抛物线的应用.【分析】(Ⅰ)由题知点P ,F 的坐标分别为(﹣1,m ),(1,0),求出斜率用点斜式写出直线方程. (Ⅱ)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),用弦长公式求出线段AB 的长,再由点到直线的距离公式求点D 到直线AB 的距离,用三角形面积公式表示出面积关于参数m 的表达式,再根据m 的取值范围求出面积的范围.(Ⅲ),,变化为坐标表示式,从中求出参数λ,μ用两点A ,B 的坐标表示的表达式,即可证明出两者之和为定值.【解答】解:(Ⅰ)由题知点P ,F 的坐标分别为(﹣1,m ),(1,0),于是直线PF 的斜率为,所以直线PF 的方程为,即为mx+2y ﹣m=0.(Ⅱ)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),由得m 2x 2﹣(2m 2+16)x+m 2=0,所以,x 1x 2=1.于是.点D 到直线mx+2y ﹣m=0的距离,所以. 因为m ∈R 且m ≠0,于是S >4,所以△DAB 的面积S 范围是(4,+∞).(Ⅲ)由(Ⅱ)及,,得(1﹣x 1,﹣y 1)=λ(x 2﹣1,y 2),(﹣1﹣x 1,m ﹣y 1)=μ(x 2+1,y 2﹣m ),于是,(x 2≠±1).所以. 所以λ+μ为定值0.。
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
2016-2017学年湖北省恩施州咸丰一中高二(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|x+y﹣1=0},B={(x,y)|x2+y2=1},则A∩B=()A.{0,1}B.{(0,1),(1,0)}C.{(0,1)}D.{(1,0)} 2.(5分)98与63的最大公约数为a,二进制数110011(2)化为十进制数为b,则a+b=()A.53 B.54 C.58 D.603.(5分)在同一平面内,线段AB为圆C的直径,动点P满足•>0,则点P与圆C的位置关系是()A.点P在圆C外部 B.点P在圆C上C.点P在圆C内部 D.不确定4.(5分)从一批产品中取出3件产品,设事件A为“三件产品全不是次品”,事件B为“三件产品全是次品”,事件C为“三件产品不全是次品”,则下列结论正确的是()A.事件B与C互斥B.事件A与C互斥C.任何两个均不互斥D.任何两个均互斥5.(5分)2015年我校组织学生积极参加科技创新大赛,其中作品A获得省级奖,九位评委为作品A给出的分数如茎叶图所示,记分员算得的平均分为89,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员的计算无误,则数字x应该是()A.3 B.2 C.1 D.06.(5分)已知sin2α=,则sin2(α+)=()A.B.C.D.7.(5分)过A(0,1)、B(2,﹣1)两点的面积最小的圆的方程为()A.(x﹣1)2+y2=2 B.(x﹣1)2+(y+1)2=5 C.(x+1)2+(y﹣1)2=1 D.(x+1)2+(y+2)2=108.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)A.3.10 B.3.11 C.3.12 D.3.139.(5分)A为圆O:x2+y2=1上的点,B为直线l:x+y﹣2=0上的点,则线段AB 长度的最小值为()A.B.2 C.﹣1 D.110.(5分)在区间(0,1)中随机取出两个数,则两数之和不小于的概率是()A.B.C.D.11.(5分)曲线y=与直线y=﹣x+b有两个不同的交点,则b的取值范围为()A.﹣1<b<2 B.≤b<2 C.≤b≤2 D.﹣2≤b≤212.(5分)直线x•(2t﹣1)﹣y(2t+1)+1=0(t∈R)的倾斜角为α,则α的范围是()A.0≤α<或<α≤πB.≤α≤且α≠C.0≤α<或<α<πD.0≤α<二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知x与y之间的一组数据为:则y与x的回归直线方程y=bx+a必过定点.14.(5分)设圆x2+y2﹣4x﹣5=0的弦AB的中点为P(3,1),则直线AB的方程是15.(5分)根据下列程序,当a的输入值为2,b的输入值为﹣2时,输出值为a、b,则ab=.16.(5分)已知圆O:x2+y2=r2(r>0),直线l:y=x+1.若圆O上恰有两个点到直线的距离是1,则r的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知直线l1:(m+1)x+y+m﹣2=0和直线l2:2x+my﹣1=0(m∈R).(1)当l1⊥l2时,求实数m的值;(2)当l1∥l2时,求实数m的值.18.(12分)现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a,b,试计算下列事件的概率:(1)事件A:a=b;(2)事件B:函数f(x)=ax2﹣bx+1在区间[,+∞)上为增函数.19.(12分)我校名教师参加我县“六城”同创“干部职工进网络,服务群众进社区”活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组[25,30),第二组[30,35),第三组[35,40),第四组[40,45),第五组[45,50],得到的频率分布直方图如图所示:如表是年龄的频数分布表.(1)求正整数a,b,N的值;(2)根据频率分布直方图估计我校这N名教师年龄的中位数和平均数;(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.20.(12分)一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设AB终点为M,CF中点为N.(1)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥面AEF;(3)若正方体棱长为2,求三棱锥M﹣AEF的体积.21.(12分)已知函数f(x)=x2﹣3x+1,数列{a n}(n∈N+)是递增的等差数列,a1=f(x+1),a2=0,a3=f(x﹣1).(1)求数列{a n}的通项公式;(2)设b n=a n+2,求数列{}(n∈N+)的前n项和.22.(12分)在直角坐标系xOy中,B(﹣1,0),C(1,0),动点A满足=m (m>0且m≠1).(1)求动点A的轨迹方程,并说明轨迹是什么曲线;(2)若m=,点P为动点A的轨迹曲线上的任意一点,过点P作圆:x2+(y ﹣2)2=1的切线,切点为Q.试探究平面内是否存在定点R,使为定值,若存在,请求出点R的坐标,若不存在,请说明理由.2016-2017学年湖北省恩施州咸丰一中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|x+y﹣1=0},B={(x,y)|x2+y2=1},则A∩B=()A.{0,1}B.{(0,1),(1,0)}C.{(0,1)}D.{(1,0)}【解答】解:联立得:,解得:或,则A∩B={(0,1),(1,0)},故选:B.2.(5分)98与63的最大公约数为a,二进制数110011(2)化为十进制数为b,则a+b=()A.53 B.54 C.58 D.60【解答】解:∵由题意,98÷63=1 (35)63÷35=1…28,35÷28=1 (7)28÷7=4,∴98与63的最大公约数为7,可得:a=7,又∵110011=1+1×2+0×22+0×23+1×24+1×25=51,可得:b=51,(2)∴a+b=51+7=58.故选:C.3.(5分)在同一平面内,线段AB为圆C的直径,动点P满足•>0,则点P与圆C的位置关系是()A.点P在圆C外部 B.点P在圆C上C.点P在圆C内部 D.不确定【解答】解:如图,∵只有点P在圆C外部时,∠APB为锐角;即为锐角;∴满足.故选:A.4.(5分)从一批产品中取出3件产品,设事件A为“三件产品全不是次品”,事件B为“三件产品全是次品”,事件C为“三件产品不全是次品”,则下列结论正确的是()A.事件B与C互斥B.事件A与C互斥C.任何两个均不互斥D.任何两个均互斥【解答】解:A为{三件产品全不是次品},指的是三件产品都是正品,B为{三件产品全是次品},C为{三件产品不全是次品},它包括一件次品,两件次品,三件全是正品三个事件由此知:A与B是互斥事件,但不对立;A与C是包含关系,不是互斥事件,更不是对立事件;B与C是互斥事件,也是对立事件.故选:A.5.(5分)2015年我校组织学生积极参加科技创新大赛,其中作品A获得省级奖,九位评委为作品A给出的分数如茎叶图所示,记分员算得的平均分为89,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员的计算无误,则数字x应该是()A.3 B.2 C.1 D.0【解答】解:由茎叶图性质得:(86+87+88+88+89+90+90+90+x+92)=89,解得x=1.故选:C.6.(5分)已知sin2α=,则sin2(α+)=()A.B.C.D.【解答】解:∵sin2α=,则sin2(α+)===,故选:D.7.(5分)过A(0,1)、B(2,﹣1)两点的面积最小的圆的方程为()A.(x﹣1)2+y2=2 B.(x﹣1)2+(y+1)2=5 C.(x+1)2+(y﹣1)2=1 D.(x+1)2+(y+2)2=10【解答】解:由题意可知面积最小的圆的圆心坐标为(,),即(1,0),半径r==,则所求圆的方程为:(x﹣1)2+y2=2.故选:A.8.(5分)公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)A.3.10 B.3.11 C.3.12 D.3.13【解答】解:模拟执行程序,可得:k=0,S=3sin60°=,k=1,S=6×sin30°=3,k=2,S=12×sin15°=12×0.2588=3.1056≈3.11,退出循环,输出的值为3.11.故选:B.9.(5分)A为圆O:x2+y2=1上的点,B为直线l:x+y﹣2=0上的点,则线段AB 长度的最小值为()A.B.2 C.﹣1 D.1【解答】解:因为圆心(0,0)到直线l:x+y﹣2=0上的距离d==>1,所以圆和直线相离.大致图象如图圆心到直线的最短距离为.故线段AB的最小值为:d﹣r=﹣1.故选:C.10.(5分)在区间(0,1)中随机取出两个数,则两数之和不小于的概率是()A.B.C.D.【解答】解:设取出的两个数为x、y;则有0<x<1,0<y<1,其表示的区域为纵横坐标都在(0,1)之间的正方形区域,易得其面积为1,而x+y≥0.8表示的区域为直线x+y=0.8上方,且在0<x<1,0<y<1表示区域内部的部分,如图,易得其面积为1﹣×=1﹣=;则两数之和不小于0.8的概率是.故选:D.11.(5分)曲线y=与直线y=﹣x+b有两个不同的交点,则b的取值范围为()A.﹣1<b<2 B.≤b<2 C.≤b≤2 D.﹣2≤b≤2【解答】解:曲线y=与转化为:x2+y2=2(y≥0)表示一个半圆.曲线y=与直线y=﹣x+b相切时,b=2曲线y=与直线y=﹣x+b有两个不同的交点:≤b<2故选:B.12.(5分)直线x•(2t﹣1)﹣y(2t+1)+1=0(t∈R)的倾斜角为α,则α的范围是()A.0≤α<或<α≤πB.≤α≤且α≠C.0≤α<或<α<πD.0≤α<【解答】解:∵直线x•(2t﹣1)﹣y(2t+1)+1=0(t∈R)的倾斜角为α,∴tanα==1﹣,∵y=2t+1>1,∴0<<2,∴﹣1<1﹣<1,∴0≤α<或<α<π.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知x与y之间的一组数据为:则y与x的回归直线方程y=bx+a必过定点.【解答】解:∵回归直线方程必过样本中心点,∵,∴样本中心点是(,4)∴y与x的回归直线方程y=bx+a必过定点(,4)故答案为:(,4)14.(5分)设圆x2+y2﹣4x﹣5=0的弦AB的中点为P(3,1),则直线AB的方程是x+y﹣4=0【解答】解:由x2+y2﹣4x﹣5=0得:(x﹣2)2+y2=9,得到圆心O(2,0),所以求出直线OP的斜率为=1,根据垂径定理可知OP⊥AB所以直线AB的斜率为﹣1,过P(3,1),所以直线AB的方程为y﹣1=﹣1(x﹣3)即x+y﹣4=0故答案为x+y﹣4=015.(5分)根据下列程序,当a的输入值为2,b的输入值为﹣2时,输出值为a、b,则ab=.【解答】解:输入a=2,b=﹣2则a=a+b=2﹣2=0,b=a﹣b=0﹣(﹣2)=2故a==1b==﹣可得:ab=1×=﹣.故答案为:﹣16.(5分)已知圆O:x2+y2=r2(r>0),直线l:y=x+1.若圆O上恰有两个点到直线的距离是1,则r的取值范围是1<r<1+.【解答】解:如图,∵原点O到直线l:y=x+1的距离d=.∴以O为圆心,以为半径的圆上仅有一点A到直线l的距离为1,当圆的半径r时,开始有两点满足到直线l的距离为1,到半径增大到为1+时,除直线l的右下方有两点满足条件外,左上方的B点也满足到直线l的距离为1.∴r的取值范围是1<r<1+.故答案为:1<r<1+.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知直线l1:(m+1)x+y+m﹣2=0和直线l2:2x+my﹣1=0(m∈R).(1)当l1⊥l2时,求实数m的值;(2)当l1∥l2时,求实数m的值.【解答】解:(1)∵l1⊥l2,∴2(m+1)+m=0,解得m=﹣;(2)∵l1∥l2,∴,解得m=﹣2.18.(12分)现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a,b,试计算下列事件的概率:(1)事件A:a=b;(2)事件B:函数f(x)=ax2﹣bx+1在区间[,+∞)上为增函数.【解答】解:(1)有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a,b,将骰子投掷一次有4种结果,所以投掷两次有16种结果,事件A:a=b包含4种结果,由古典概型的概率计算公式可得:事件A:a=b的概率P(A)=.(2)∵函数f(x)=ax2﹣bx+1在区间[,+∞)上为增函数.∴,即b,a>0.∴事件B包含6种结果由古典概型的概率计算公式可得:事件B的概率P(B)=.19.(12分)我校名教师参加我县“六城”同创“干部职工进网络,服务群众进社区”活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组[25,30),第二组[30,35),第三组[35,40),第四组[40,45),第五组[45,50],得到的频率分布直方图如图所示:如表是年龄的频数分布表.(1)求正整数a,b,N的值;(2)根据频率分布直方图估计我校这N名教师年龄的中位数和平均数;(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.【解答】解:(1)由频率分布表知[25,30)内有人数为5人,由频率分布图得[25,30)内的频率为0.02×5=0.1,∴N==50,由频率分布表得[30,35)和[35,40)的频率分别为0.06×5=0.3,0.08×5=0.4,∴a=0.3×50=15,b=0.4×50=20.(2)设中位数为x,由频率分布直方图得:(x﹣35)×0.08=0.1,解得x=36.25,∴中位数为36.25.平均数为:27.5×0.1+32.5×0.3+37.5×0.4+42.5×0.1+47.5×0.1=36.5.(3)由题意在第一组抽取1人,记为A,在第二组抽取3人,记为B、C、D,∴从这4人中任意抽取2人共有:AB、AC、AD、BC|BD|CD六种结果,其中2人均在第二组的有:BC、BD、CD三种结果,∴从这4人中选取的两人年龄均在第二组的概率为p=.20.(12分)一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设AB终点为M,CF中点为N.(1)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥面AEF;(3)若正方体棱长为2,求三棱锥M﹣AEF的体积.【解答】解:(1)将正方体的平面展开图还胡成该正方体的直观图,将字母F、G、H标记在正方体相应的顶点处,如右图:证明:(2)设P为BE中点,连MP、NP,∵N为CF中点,∴NP∥EF,NP⊄面AEF,EF⊂面AEF,∴NP∥面AEF,又∵M为AB中点,∴MP AE,∵MP⊄面AEF,AE⊂面MNP,∴MP∥面AEF,而MP∩NP=P,MP、NP⊂面MNP,∴面MNP∥面AEF,∵MN⊂面MNP,∴MN∥面AEF.解:(3)∵正方体棱长为2,∴三棱锥M﹣AEF的体积:V M﹣AEF=V F﹣AEM==.21.(12分)已知函数f(x)=x2﹣3x+1,数列{a n}(n∈N+)是递增的等差数列,a1=f(x+1),a2=0,a3=f(x﹣1).(1)求数列{a n}的通项公式;(2)设b n=a n+2,求数列{}(n∈N+)的前n项和.【解答】解:(1)由题意:a1+a3=(x+1)3﹣3(x+1)+1+(x﹣1)3﹣3(x﹣1)+1=2a2=0,解得:x=1或x=2;若x=2,则a 1=f(x+1)=1,a2=0,a3=f(x﹣1)=﹣1.(不合题意,舍去),若x=1,则a1=f(2)=﹣1,a2=0,a3=f(0)=1.∴数列{a n}的通项公式为:a n=﹣1+1×(n﹣1)=n﹣2,(2)由(1)知b n=a n+2=n,∴==﹣∴数列{}的前项和为:1﹣+﹣+﹣+…+﹣=1﹣=22.(12分)在直角坐标系xOy中,B(﹣1,0),C(1,0),动点A满足=m (m>0且m≠1).(1)求动点A的轨迹方程,并说明轨迹是什么曲线;(2)若m=,点P为动点A的轨迹曲线上的任意一点,过点P作圆:x2+(y ﹣2)2=1的切线,切点为Q.试探究平面内是否存在定点R,使为定值,若存在,请求出点R的坐标,若不存在,请说明理由.【解答】解:(1)设A(x,y),∵动点A满足=m(m>0且m≠1).∴=m化简得动点的轨迹方程为:(x﹣)2+y2=表示以(,0)为圆心,为半径的圆.(2)由(1)当m=时,动点A的轨迹方程为:(x﹣2)2+y2=3,设P(x,y)∴x2+y2=4x﹣1假设在平面内存在点R(a,b)使得=λ(其中λ为正常数)∴=λ化简得:x2+y2﹣4y+3=λ2(x2+y2)﹣2aλ2x﹣2bλ2y+λ2(a2+b2),∵x2+y2=4x﹣1,∴4x﹣4y+2=λ2(4﹣2a)x﹣2bλ2y+λ2(a2+b2﹣1),对于任意满足(x﹣2)2+y2=3的P(x,y)恒成立∴解得或∴存在点R(1,1)或(,)满足题意。