直角三角形的判断
- 格式:ppt
- 大小:773.50 KB
- 文档页数:41
直角三角形的性质与判定性质:(1)直角三角形的两个锐角互余。
(2)直角三角形两条直角边的平方和等于斜边的平方。
(3)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
判定:(1)有两个锐角互余的三角形是直角三角形。
(2)如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
直角三角形全等判定定理:斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“HL”)基础题1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( ) A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为( )A.35°B.55°C.56°D.65°3.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.104.如图,数轴上点A表示的实数是.5.如图,在△ACB中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是( )A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5 D.∠A∶∠B∶∠C=2∶3∶5 7.以下列各组数据为边长作三角形,其中能组成直角三角形的是( )A.5,12,13 .B.3,5,27C.6,9,14 . D.4,10,138.如图所示,在△ABC中,CD⊥AB于点D,AC=4,BC=3,CD=12 5.(1)求AD的长;(2)求证:△ABC是直角三角形.9.已知CD是△ABC的边AB上的高.若CD=3,AD=1,AB=2AC,则BC的长为.10.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形11.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC =BC=3,则B′C的长为( )A.3 3 B.6 C.3 2 D.2112.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm.(杯壁厚度不计)13.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.你能证明所发现的规律吗?。
直角三角形的性质及判定直角三角形定义:有一个角为90°的三角形,叫做直角三角形。
直角三角形可用Rt△表示,如直角三角形ABC 写作Rt△ABC。
直角三角形性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。
即。
如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)性质2:在直角三角形中,两个锐角互余。
如图,若∠BAC=90°,则∠B+∠C=90°性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2 性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则BD:DC=AB:AC直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。
(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。
我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。
因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。
另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。
3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。
其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。
我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。
4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。
友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。
【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。
解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
直角三角形的性质与判定直角三角形是初中数学中常见的一个概念,它具有一些独特的性质和判定方法。
在本文中,我们将探讨直角三角形的性质以及如何判定一个三角形是否为直角三角形。
首先,让我们来了解直角三角形的定义。
直角三角形是指一个三角形中,其中一个角为90度的三角形。
这个角称为直角,通常用一个小方块来表示。
直角三角形有一个重要的性质,即勾股定理。
勾股定理是直角三角形的基本定理之一,它表明在一个直角三角形中,直角边的平方等于两个其他边的平方和。
这个定理可以用一个简单的公式来表示:c² = a²+ b²,其中c表示斜边的长度,a和b分别表示直角边的长度。
利用勾股定理,我们可以判定一个三角形是否为直角三角形。
如果一个三角形的三条边满足勾股定理,那么它就是一个直角三角形。
例如,如果一个三角形的边长分别为3、4和5,那么它就是一个直角三角形,因为3² + 4² = 5²。
除了勾股定理外,直角三角形还有一些其他的性质。
首先,直角三角形的两条直角边是相互垂直的。
这意味着,如果一个三角形的两条边互相垂直,那么它就是一个直角三角形。
这个性质可以用来判定一个三角形是否为直角三角形,而不需要使用勾股定理。
例如,如果一个三角形的两条边的斜率的乘积为-1,那么它就是一个直角三角形。
另外,直角三角形的两条直角边的长度也具有一定的关系。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
因此,如果我们已知一个直角三角形的斜边和其中一条直角边的长度,我们可以通过勾股定理计算出另一条直角边的长度。
在实际应用中,直角三角形的性质和判定方法经常被用于测量和计算。
例如,我们可以利用直角三角形的性质来测量一个高楼的高度。
通过在地面上测量一个直角三角形的一条直角边和斜边的长度,再利用勾股定理计算出高楼的高度。
此外,直角三角形的性质还被广泛应用于建筑、航海、导航等领域。
例如,在建筑设计中,我们可以利用直角三角形的性质来确定房屋的角度和尺寸。
直角三角形相似判定定理
一、定义法
如果两个直角三角形的三条边对应成比例,那么这两个直角三角形相似。
二、定理法
1.勾股定理:在直角三角形中,勾股定理表述了直角三角形的两条直角边的
平方和等于斜边的平方。
如果两个直角三角形的斜边相等,那么这两个直角三角形相似。
2.毕达哥拉斯定理:在直角三角形中,毕达哥拉斯定理表述了直角三角形的
两条直角边的平方和等于斜边的平方。
如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形相似。
三、斜边中线法
在直角三角形中,斜边上的中线等于斜边的一半。
如果两个直角三角形的斜边中线对应相等,那么这两个直角三角形相似。
四、两锐角对应相等
如果两个直角三角形的两个锐角对应相等,那么这两个直角三角形相似。
五、夹边中线法
在直角三角形中,夹边上的中线等于夹边的一半。
如果两个直角三角形的夹边中线对应相等,那么这两个直角三角形相似。
六、两边对应成比例且夹角相等
如果两个直角三角形的两边对应成比例且夹角相等,那么这两个直角三角形相似。
七、两边对应成比例且夹边平行
如果两个直角三角形的两边对应成比例且夹边平行,那么这两个直角三角形相似。
八、两锐角对应相等且夹边平行
如果两个直角三角形的两锐角对应相等且夹边平行,那么这两个直角三角形相似。
九、两角对应相等且夹边平行
如果两个直角三角形的两角对应相等且夹边平行,那么这两个直角三角形相似。
Rt △资料第 1 页 共 1 页直角三角形的性质、判定(HL )一、知识要点1、直角三角形的性质:⑴、在直角三角形中,两锐角 ; ⑵、在直角三角形中, 上的中线等于 的一半.⑶、在直角三角形中,如果一个锐角等于 ,那么 . ⑷、在直角三角形中,如果一条直角边等于斜边的一半,那么 .(定理⑵、⑶通常用于证明线段之间的倍分关系;定理⑷通常用于求三角形中角的度数) ⑸、勾股定理内容: . 2、直角三角形的判定:⑴、有一个角等于_________的三角形是直角三角形; ⑵、有两个角_____________的三角形是直角三角形;⑶、如果三角形一边上的中线等于这条边的________,那么这个三角形是直角三角形。
⑷、勾股定理的逆定理内容: .常见的勾股数(及其倍数): 3、直角三角形全等的判定:斜边、直角边定理:(1)定理内容: .(2)定理作用: .4、角平分线的性质和判定定理:(1)性质定理内容: . 用符号语言表示:如图,∵∴. (2) 判定定理内容: 用符号语言表示:如图,∵ ,∴ .二、知识运用典型例题例1:已知:△ABC 中,∠ACB=90°,CD 是高, ∠A=30°.求证:BD=14AB.例2:已知:如图, △ABC 中,AB=AC,BD ⊥AC 于D 点, BD=12AC. 求∠A.例3:已知如图,AE ⊥ED ,AF ⊥FD ,AF=DE ,EB ⊥AD ,FC ⊥AD ,垂足分别为B 、C.试说明EB=FC.例4、如图,在Rt △ABC 中,CD 是斜边上的中线,CE ⊥AB ,已知AB=10cm ,DE=2.5cm ,求CD 和∠DCE 。
例5、如图,在△ABC 中,∠C=90°,∠A=x °,∠B=2x °求x 。
例6、如图,已知AB ⊥BC ,AE ∥BC ,∠1=45°,∠E=70°.求∠2,∠3,∠4的度数.例7、如图,在△ABC 中,∠ACB=90°, ∠A=15°,AB=8cm ,CD 为AB 的中线,求△ABC 的面积。
直角三角形的性质、判定(HL )1、如果一个△ABC 有一个角是直角,则它是直角三角形,记作Rt △ABC 。
直角三角形两锐角互余。
2、直角三角形的判定定理:如果两个直角三角形的斜边和一条直角边对应相等,则这个两个直角三角形全等,简称HL 。
3、直角三角形性质定理(一):在直角三角形中,斜边上的中线等于斜边的一半.4、直角三角形性质定理(二):在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;5、直角三角形性质的逆定理(1):如果一个三角形一边上的中线,等于这条边的一半,则这个三角形式直角三角形.(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.二、知识运用典型例题例1:已知:△ABC 中,∠ACB=90°,CD 是高, ∠A=30°.求证:BD=14AB.例2:已知:如图, △ABC 中,AB=AC,BD ⊥AC 于D 点,BD=12AC. 则∠A=_____.例3:已知:如图,AD 为△ABC 的高,E 为AC 上的一点,BE 交AD 于F,且有BF=AC,FD=CD, 求证:BE ⊥AC.例4:如图3,AD 是ΔABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF , 求证:(1)AD 是∠BAC 的平分线AD CBAE DC BF 12 A12(2)AB=AC例5:已知如图,AE ⊥ED ,AF ⊥FD ,AF=DE ,EB ⊥AD ,FC ⊥AD ,垂足分别为B 、C.试说明EB=FC.例6:如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.三、知识运用课堂训练1、△ABC 中各角的度数之比如下,能够说明△ABC 是直角三角形的是( ) A.1:2:3 B.2:3:4 C.3:4:5 D.3:2:52、直角三角形中,两锐角的角平分线相交所成的角的度数为 .3、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 .4、如图,CD 为△ABC 的中线,∠ACB=90°,CE ⊥AB 于E, AE=ED,则图中30°的角有 个.ABCD FEABCD E5、如图,AC=BD,AD ⊥AC,BC ⊥BD,求证:AD=BC.6、如图所示,D 是△ABC 的边BC 上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,且BF =CE 。