链表的使用例子
- 格式:doc
- 大小:39.50 KB
- 文档页数:5
c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。
在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。
为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。
本文将介绍一些常见的C链表库函数及其用法。
一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。
数据域用于存放数据,指针域用于指向下一个节点。
链表的最后一个节点指针域为空(NULL),表示链表的末尾。
常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。
下面我们来看看C语言中常用的链表库函数。
二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。
```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。
常见的插入方式包括头部插入和尾部插入。
```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。
在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。
[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。
单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。
双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。
循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。
此外还有双向循环链表,它同时具有双向链表和循环链表的功能。
单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。
※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。
这是在C中唯⼀规定可以先使⽤后定义的数据结构。
链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。
c语言二路归并链表二路归并链表是一种常见的链表操作,它主要用于将两个有序链表合并成一个新的有序链表。
在这篇文章中,我们将通过一个实际的例子来解释二路归并链表的思想和实现方法。
假设我们有两个有序链表,分别是链表A和链表B。
我们的目标是将这两个链表合并成一个新的有序链表。
要实现这个目标,我们可以使用递归或迭代的方法。
我们来看一下递归的方法。
递归的思想是将原问题拆分为多个子问题,然后通过解决子问题来解决原问题。
在二路归并链表中,我们可以将链表A的头节点与链表B的头节点进行比较,较小的节点作为新链表的头节点。
然后,我们将较小节点的下一个节点与另一个链表的头节点进行比较,重复这个过程,直到其中一个链表为空。
最后,我们将非空链表的剩余部分直接连接到新链表的末尾。
接下来,我们来看一下迭代的方法。
迭代的思想是通过循环来解决问题。
在二路归并链表中,我们可以使用两个指针分别指向链表A 和链表B的头节点。
然后,我们比较两个指针指向的节点的值,较小的节点作为新链表的节点,并将指针向后移动一位。
重复这个过程,直到其中一个链表为空。
最后,我们将非空链表的剩余部分直接连接到新链表的末尾。
无论是递归还是迭代的方法,二路归并链表的时间复杂度都是O(n+m),其中n和m分别是链表A和链表B的长度。
这是因为我们需要遍历链表A和链表B的所有节点,并将它们连接到新链表中。
通过以上的描述,我们可以看出,二路归并链表是一种非常实用的链表操作,它可以帮助我们将两个有序链表合并成一个新的有序链表。
无论是递归还是迭代的方法,都可以有效地实现这个目标。
希望通过这篇文章的介绍,读者能够更好地理解和掌握二路归并链表的思想和实现方法。
链表应用场景链表是一种常见的数据结构,在计算机科学的多个领域都有广泛应用。
下面将介绍链表在不同领域的应用场景。
1.数据库索引在数据库中,索引用于加快查询速度。
传统的数据库索引是基于B+树的,但是如果需要频繁地插入和删除数据,B+树的修改和维护成本较高。
链表索引结构的修改方便,尤其适合多次插入和删除操作的场景,因此链表索引在部分数据库中被使用。
2.编辑器撤销操作编辑器通常有撤销操作,这就需要一种能够高效插入和删除数据的数据结构。
链表由于支持O(1)时间内插入或删除某个元素,因此也是编辑器中实现撤销操作的常用数据结构。
3.内存管理链表在内存管理中有广泛应用,比如操作系统中的内存管理器。
操作系统会将内存划分成多个块,每个块对应一个页框,然后使用链表来管理这些页框。
当有一个进程需要申请内存时,操作系统可以快速分配一个空闲页框。
4.垃圾回收在面向对象的编程语言中,垃圾回收器会定期扫描堆内存中的对象,将未被引用的对象标记为垃圾并回收掉。
垃圾回收器使用链表来管理内存池,以便快速查找空闲对象、回收内存等。
5.图形学在图形学中,遍历图像的像素的顺序很重要。
一些算法需要按照特定的顺序访问像素,比如计算图像的梯度、滤波、深度优先遍历等。
链表的任意访问特性使得其在图形学中的应用非常广泛。
6.缓存链表也常被用于实现缓存。
客户端向服务器请求数据时,服务器将数据缓存在链表中。
当客户端再次请求相同的数据时,服务器可以快速地将数据返回,无需再次生成。
链表也非常适合访问频率比较低的数据,可以将这些数据缓存到链表中,避免反复查找。
7.实现队列和栈链表也可以用来实现队列和栈的数据结构。
队列和栈在编程中经常被用到,比如在实现广度优先搜索算法时需要用到队列,而深度优先搜索算法需要使用栈。
利用链表实现队列和栈时,插入和删除元素的时间复杂度都是O(1),能够满足数据结构中常规的操作。
8.视频播放在视频播放器中,将视频分为小的数据块,再用链表依次连接。
链表c语言经典例题
链表是计算机科学中的经典数据结构之一,常用于存储和操作动态数据。
以下是一些常见的链表例题,可以帮助理解链表的基本操作和应用。
1. 链表的创建:
- 创建一个空链表。
- 创建一个包含指定节点值的链表。
2. 链表的插入操作:
- 在链表的头部插入一个节点。
- 在链表的尾部插入一个节点。
- 在指定位置插入一个节点。
3. 链表的删除操作:
- 删除链表的头节点。
- 删除链表的尾节点。
- 删除指定数值的节点。
4. 链表的查找操作:
- 查找链表中指定数值的节点。
- 查找链表的中间节点。
5. 链表的逆序操作:
- 反转整个链表。
- 反转链表的前 N 个节点。
- 反转链表的一部分区间内的节点。
6. 链表的合并操作:
- 合并两个有序链表,使其有序。
- 合并 K 个有序链表,使其有序。
7. 链表的环检测:
- 判断链表中是否存在环,若存在,则返回环的起始节点。
8. 链表的拆分操作:
- 将一个链表按照奇偶位置拆分成两个链表。
以上是一些链表的经典例题,通过解答这些例题,可以加深对链表结构和基本操作的理解。
在编写对应的 C 语言代码时,需要注意链表节点的定义、指针的使用以及内存的动态分配和释放等问题。
掌握数据结构中的链表和数组的应用场景链表和数组都是常用的数据结构,它们在不同的场景下有不同的应用。
一、链表的应用场景:1.链表适合动态插入和删除操作:链表的插入和删除操作非常高效,只需修改指针的指向,时间复杂度为O(1)。
因此,当需要频繁进行插入和删除操作时,链表是一个很好的选择。
-操作系统中的进程控制块(PCB):操作系统需要频繁地创建、停止、销毁进程,使用链表存储这些PCB,可以方便地插入、删除和管理进程。
-聊天记录:在聊天应用中,新的消息会动态插入到聊天记录中,使用链表存储聊天记录可以方便地插入新消息。
2.链表节省内存空间:每个节点只需存储当前元素和指向下一个节点的指针,不需要像数组一样预分配一块连续的内存空间,因此链表对内存空间的利用更加灵活。
-操作系统中的内存管理:操作系统使用链表来管理空闲内存块和已分配的内存块,可有效节省内存空间。
3.链表支持动态扩展:链表的长度可以随时变化,可以动态地扩容和缩容。
-缓存淘汰算法:在缓存中,如果链表已满,当有新数据需要加入缓存时,可以通过删除链表头部的节点来腾出空间。
4.链表可以快速合并和拆分:将两个链表合并成一个链表只要调整指针的指向即可,时间复杂度为O(1)。
-链表排序:在排序算法中,链表归并排序利用链表快速合并的特性,使得归并排序在链表上更高效。
二、数组的应用场景:1.随机访问:数组可以根据索引快速访问元素,时间复杂度为O(1)。
-图像处理:图像通常以像素点的形式存储在数组中,可以通过索引快速访问某个特定像素点的颜色信息。
2.内存连续存储:数组的元素在内存中是连续存储的,可以利用硬件缓存机制提高访问效率。
-矩阵运算:矩阵可以通过二维数组来表示,利用矩阵的连续存储特性,可以高效地进行矩阵运算。
3.大数据存储:数组可以预先分配一块连续的内存空间,非常适合存储大量的数据。
-数据库中的数据表:数据库中的数据表通常使用数组来实现,可以快速存取和处理大量的数据。
链表生活中举例子链表是一种常见的数据结构,在生活中也有很多类似的例子可以来解释。
下面是符合要求的十个例子:1. 电线路:电线路可以看作是一条链表,电流从一端流向另一端。
每个电线都连接在一起,形成一个链式结构。
如果其中一个电线断开了,电流就无法顺利流通,就像链表中的节点断开一样。
2. 银行排队取款:在银行排队取款时,每个人按照先后顺序站在一起,形成一个队列。
当某个人取完款后,后面的人依次向前移动一个位置,就像链表中的节点删除和插入操作一样。
3. 图书馆书架:图书馆的书架上摆放着很多书籍,每本书都有自己的位置。
当有新书到达时,会被插入到合适的位置上,就像链表中的节点插入操作一样。
4. 手链:手链由一串串的珠子或者链节组成,每个珠子或链节都连接在一起。
当手链被拉伸时,每个珠子或链节都会依次移动,就像链表中的节点遍历一样。
5. 网络游戏中的队伍:在网络游戏中,玩家可以组队进行战斗。
每个队友按照先后顺序排列,形成一个队伍。
当队伍中有人离开或加入时,队伍的成员顺序会发生变化,就像链表中的节点删除和插入操作一样。
6. 交通信号灯:交通信号灯由红、黄、绿三个灯组成,每个灯都有自己的状态。
当信号灯的状态发生变化时,车辆会根据不同的灯光信号做出相应的动作,就像链表中的节点更新操作一样。
7. 餐厅的等候队列:在繁忙的餐厅,人们会排队等候就餐。
每个人按照先后顺序排列,形成一个等候队列。
当有桌子空出来时,排在队列最前面的人会被叫号,就像链表中的节点删除操作一样。
8. 航班座位预订系统:在航班座位预订系统中,每个座位都有自己的状态(已预订、空闲)。
当有人预订座位或取消预订时,座位的状态会发生变化,就像链表中的节点更新操作一样。
9. 电影院的座位安排:在电影院观影时,每个座位都有自己的位置。
当有人购买电影票时,会选择一个座位坐下,就像链表中的节点插入操作一样。
10. 城市地铁线路:城市地铁线路将不同的地铁站连接在一起,形成一个链式结构。
双向链表的应⽤实例管理单向链表的缺点分析:1. 单向链表,查找的⽅向只能是⼀个⽅向,⽽双向链表可以向前或者向后查找。
2. 单向链表不能⾃我删除,需要靠辅助节点,⽽双向链表,则可以⾃我删除,所以前⾯我们单链表删除节点时,总是找到 temp,temp 是待删除节点的前⼀个节点。
双向链表如何完成遍历,添加,修改和删除的思路 1) 遍历:和单链表⼀样,只是可以向前,也可以向后查找 2) 添加 (默认添加到双向链表的最后) (1)先找到双向链表的最后这个节点 (2) temp.next = newNode; (3) newNode.pre = temp; 3) 修改思路和原来的单向链表⼀样 4) 删除 (1) 因为是双向链表,因此,我们可以实现⾃我删除某个节点 (2) 直接找到要删除的这个节点,⽐如 temp temp.pre.next = temp.next; temp.next.pre = temp.pre;//若删除的是最后⼀个节点,会有空指针异常代码实现1. class doublelinkedlist {2. //先初始化⼀个头节点,头节点不能动,不存放具体数据3. private hero head = new hero(-1, "", "");4.5. //添加节点6. public void add(hero h) {7. //因为head节点不能动,因此我们需要⼀个辅助变量temp8. hero temp = head;9. //遍历链表,找到最后⼀个节点10. while (true) {11. if (temp.getNext() == null) {12. break;13. }14. //如果没有到最后,将temp后移15. temp = temp.getNext();16. }17. //当退出while循环时,temp就指向了链表的最后18. //将链表的最后⼀个节点的next指向要添加的这个节点19. //将要添加的这个节点的pre指向链表的最后⼀个节点20. temp.setNext(h);21. h.setPre(temp);22. }23.24. //第⼆种⽅式在添加英雄时,根据排名将英雄插⼊到指定位置25. //(如果有这个排名,则添加失败,并给出提⽰)26. public void addByOrder(hero h) {27. //因为头节点不能动,因此我们仍然通过⼀个辅助指针(变量)来帮助找到添加的位置28. hero temp = head;29. boolean flag = false;// flag 标志添加的编号是否存在,默认为 false30. while (true) {31. if (temp.getNext() == null) {//说明 temp 已经在链表的最后32. break;33. } else if (temp.getNext().getNum() > h.getNum()) {//位置找到,就在 temp 的后⾯插⼊34. break;35. } else if (temp.getNext().getNum() == h.getNum()) {//说明希望添加的 heroNode 的编号已然存在36. flag = true;37. break;38. }39. temp = temp.getNext();//后移,遍历当前链表40. }41. if (flag) { //不能添加,说明编号存在42. System.out.println("添加的序号为" + h.getNum() + "的英雄序号已经存在,添加失败。
学生成绩管理以单链表作为存储结构,设计和实现某班某门课程成绩管理的完整程序。
程序要求完成如下功能:(1)创建成绩链表,学生数据包含学生的学号、姓名和成绩。
(2)可以在指定学号学生前插入学生成绩数据。
(3)可以删除指定学号的学生数据。
(4)可以计算学生的总数。
(5)可以按学号和姓名查找学生。
(6)可以显示所有学生的成绩。
(7)可以把学生成绩按从高到低的顺序排列。
此处的设计思想基本与顺序表相同,只是对保存学生成绩的线性表采用不同的存储结构实现。
本例中用到的学生数据也是程序运行时由用户从键盘输入,保存到一个单链表中。
学生结构体类型的定义与顺序表应用举例处的定义相同,用C语言描述如下:typedef struct Student /*学生类型定义*/{ int score; /*成绩*/char sno[5],sname[8]; /*学号,姓名*/}Student;当学生的学号为“#”时,也是表示数据输入的结束。
单链表中保存的数据元素均为学生Student类型,则单链表定义如下:typedef struct Node /*结点类型定义*/{ Student studentInfo; /*学生信息*/struct Node *next; /*指向后继元素的指针域*/}LinkList;对学生的成绩按从高到低排序时,使用的也是直接插入排序思想。
此外,为了排序后还能在原单链表上继续进行操作,这里是把单链表中的内容复制到一个新单链表中,对新单链表排序,原单链表不变。
下面是以单链表作为存储结构实现的学生某门课程成绩管理的完整C语言程序。
#include<string.h>#include<malloc.h>#include <stdlib.h>#include <stdio.h>typedef struct Student /*学生类型定义*/{ int score; /*成绩*/char sno[5],sname[8]; /*学号,姓名*/}Student;typedef struct Node /*结点类型定义*/{ Student studentInfo; /*学生信息*/struct Node *next; /*指向后继元素的指针域*/}LinkList;void display(LinkList *p) /*在屏幕上显示一个学生的成绩信息*/{ printf("\n\n\nno\t\tname\t\tscore: ");printf("\n%s",p->studentInfo.sno); /*打印学号*/printf("\t\t ");printf("%s",p->studentInfo.sname); /*打印姓名*/printf("\t\t ");printf("%-4d\n",p->studentInfo.score); /*打印成绩*/}void displayAll(LinkList *L) /*在屏幕上显示所有学生的成绩信息*/ { LinkList *p;p=L->next;printf("\n\n\nno\t\tname\t\tscore: ");while(p){ printf("\n%s",p->studentInfo.sno); /*打印学号*/printf("\t\t ");printf("%s",p->studentInfo.sname); /*打印姓名*/printf("\t\t ");printf("%-4d\n",p->studentInfo.score);/*打印成绩*/p=p->next;}}LinkList *inputdata( ) /*输入学生信息*/{ LinkList *s=NULL ; /*s是指向新建结点的指针*/ char sno[5]; /*存储学号的数组*/printf("\n ");printf(" no: ");scanf("%s",sno); /*输入学号*/if(sno[0]=='#') /*#结束输入*/return s;s=( LinkList *)malloc(sizeof(LinkList));strcpy(s->studentInfo.sno,sno);if(strlen(sno)>4) /*如果sno字符个数大于等于5,因为字符串没有'\0'结束标志,在读数据时将把姓名字符一起读到sno数组,因此做了如下处理*/ s->studentInfo.sno[4]='\0';printf(" name: ");scanf("%s",s->studentInfo.sname); /*输入姓名*/printf("score: ");scanf("%d",&s->studentInfo.score);/*输入成绩*/return s;}LinkList *createTailList( ) /*以尾插法建立带头结点的学生信息单链表*/{ LinkList *L,*s, *r; /*L头指针,r尾指针,s是指向新建结点的指针*/ L=( LinkList *)malloc(sizeof (LinkList)); /*建立头结点,申请结点存储空间*/r=L; /*尾指针指向头结点*/printf("\请输入学生成绩,当学号no为\"#\"时结束:\n\n ");while (1) /*逐个输入学生的成绩*/{ s=inputdata( );if(!s) break; /*s为空时结束输入*/r->next=s; /*把新结点插入到尾指针后*/r=s; /*r 指向新的尾结点*/ }r->next=NULL; /*尾指针的指针域为空*/displayAll(L); /*显示所有学生信息*/return L;}Void locateElemByno(LinkList *L, char ch[5]) /*按学号查找学生的算法*/{ LinkList *p=L->next; /*从第一个结点开始查找*/ while ( p && (strcmp(p->studentInfo.sno,ch)!=0))/*p不空且输入学号与链表中学号不等*/ p = p ->next;if (!p){ printf("\n\n\tDon't find the student!\n" );}else{ display(p); /*显示查找到的学生信息*/}}void locateElemByname(LinkList *L, char sname[8])/*按姓名查找学生的算法*/{ LinkList *p=L->next; /*从第一个结点开始查找*/ while ( p&& (strcmp(p->studentInfo.sname,sname)!=0)) /*p不空且输入姓名与链表中姓名不等*/ p = p ->next;if (!p){ printf("\n\n\tDon't find the student!\n" ); }else{display(p); /*显示查找到的学生信息*/}}int lengthList (LinkList *L) /*求学生总人数的算法*/{ LinkList * p=L->next; /* p指向第一个结点*/int j=0;while (p){ p=p->next; j++ ;} /* p所指的是第j 个结点*/return j;}void insertElem ( LinkList *L, char ch[5]) /*在带头结点的单链表L中指定学号前插入学生*/ { LinkList *p,*s;p=L; /*从头结点开始查找学号为ch的结点的前趋结点p */while ((p->next) && (strcmp(p->next->studentInfo.sno,ch)!=0))p = p ->next;s=inputdata(); /*输入欲插入学生信息*/s->next=p->next;p->next=s;}void deleteElem (LinkList *L, char ch[5]) /*删除给定学号的学生信息的算法*/{ LinkList *p,*q;p=L;while ( (p->next)&&(strcmp(p->next->studentInfo.sno,ch)!=0 )){ p=p->next; /*从头结点开始查找学号为ch的结点的前趋结点p*/}if (!p->next) /* 已经扫描到表尾也没找到*/{ printf("\n\n\tDon't find the student!\n" );}else{ q=p->next; /*q指向学号为ch的结点*/printf("\n\ndeleted student's information:");display(q);p->next=q->next; /*改变指针*/free(q); /*释放q占用空间*/printf("\n\nall student's information :");displayAll(L);}}void insertSort(LinkList *L) /*用直接插入排序思想把学生的成绩按从高到低排序,结果保存在新有序链表中,原链表不变*/{ L inkList *L1,*p; /*L1有序链表的表头,p插入位置前结点*/ LinkList *q,*s; /*q欲插入L1中的结点*/int len;len=lengthList (L) ;L1=( LinkList *)malloc(sizeof (LinkList)); /*建立头结点,申请结点存储空间*/if (L->next) /*链表L非空*/{ /*生成有序链表的第一个结点*/s=( LinkList *)malloc(sizeof (LinkList)); /*建立结点,申请结点存储空间*/strcpy(s->studentInfo .sno ,L->next->studentInfo.sno);strcpy(s->studentInfo .sname,L->next->studentInfo.sname);s->studentInfo .score =L->next->studentInfo.score;s->next =NULL;L1->next=s; /*只有原单链表的第一个结点的有序链表L1*/q=L->next->next; /*原单链表的第二个结点,q即要插入有序链表L1中的结点*/ }else{ printf("\nthe student link list is empty\n");return;}while(q) /*链表L中有结点*/{ p=L1 ; /*从链表L1的第一个结点开始比较*/while((p->next) && (p->next->studentInfo.score>=q->studentInfo.score))p=p->next ; /*查找插入位置前结点*//*生成欲插入有序链表中的结点*/s=( LinkList *)malloc(sizeof (LinkList));/*建立结点,申请结点存储空间*/strcpy(s->studentInfo .sno ,q->studentInfo.sno);strcpy(s->studentInfo .sname ,q->studentInfo.sname);s->studentInfo .score =q->studentInfo.score;if(!p->next) /*p是有序链表的最后一个结点*/{ s->next =NULL ;p->next =s;}else{ s->next =p->next ;p->next =s;}q=q->next; /*下一个欲插入有序链表的结点*/ }/*while(!q)*/displayAll(L1); /*显示生成的有序链表*/}void main(){ printf("=============================================\n\n");printf(" 带头结点的学生成绩管理程序\n\n");printf("=============================================\n\n");LinkList *L;char ch[5],sname[8];int b=1;while(b){ int a;printf("\n\n");printf(" <1>创建(带头尾插)<2>指定学号前插入<3>按学号删除\n ");printf("<4>计算学生总数<5> 按学号查找<6> 按姓名查找\n");printf(" <7>显示所有学生<8>成绩排序<9> 退出\n");printf("\n请输入功能选项:");scanf("%d",&a);switch(a){case 1:L=CreateTailList();break;case 2:printf("\n输入欲在哪个学号前插入数据:");scanf("%s",ch);insertElem(L, ch) ;break;case 3:printf("\n输入欲删除学生的学号:");scanf("%s",ch);deleteElem(L, ch) ;break;case 4:printf(" \n学生总数为:%d \n",lengthList (L) );break;case 5:printf("\n输入欲查找学生的学号:");scanf("%s",ch);locateElemByno(L, ch) ;break;case 6:printf("\n输入欲查找学生的姓名:");scanf("%s",sname);locateElemByname(L, sname );break;case 7:displayAll(L);break;case 8:insertSort(L);break;case 9:printf("\n已退出\n");b=0;break;};}}上机运行程序后,程序执行结果如图2.31(a)~(i)所示。
链表的使用例子---完整版
分享
首次分享者:忘不了的人已被分享7次评论(0)复制链接分享转载举报#include<stdio.h>
#include<stdlib.h>
//**************以下为链表的节点定义**********************
typedef struct node *list_pointer;
typedef struct node{
int data;
struct node *link;
}list_node;
list_pointer init( );
void create( );
void display( );
void add( );
void delete( );
int main( ) {
list_pointer ptr = NULL;
ptr = init( );
create(ptr);
display(ptr);
add(ptr);
display(ptr);
delete(ptr);
display(ptr);
}
//***********************以下为链表的初始化********************* list_pointer init( )
{
list_pointer s;
s = (list_pointer) malloc (sizeof (list_node) );
printf("初始化链表\n");
if (s)
{
s->link = NULL;
return s;
}else
{ printf("空间不足");
return NULL;
}
}
//***********************以下为建表************************ void create(list_pointer ptr)
{
int i,n;
char tmp ;
list_pointer p;
printf ("请输入表的元素个数\n");
scanf ("%d", &n);
for (i = 0; i < n; i++)
{
printf("请输入第%d个元素\n",i+1);
fflush(stdin);
scanf("%d",&tmp);
p = (list_node *)malloc (sizeof (list_node) );
p->data = tmp;
p->link = (ptr)->link;
(ptr)->link = p;
}
}
//***********************展示元素*********************** void display (list_pointer ptr)
{
list_pointer pp;
pp = ptr->link;
printf("顺序表的结点分别是:\n");
while(pp) {
printf("%d\t",pp->data);
pp = pp->link;
}
}
//********************插入元素************************ void add(list_pointer ptr)
{
int n;
list_pointer p;
printf("请输入需要插入的结点:\n");
scanf("%d",&n);
p = (list_pointer) malloc (sizeof (list_node) );
p->data = n;
p->link = ptr->link;
ptr->link = p;
}
//*********************以下为删除元素******************* void delete(list_pointer ptr)
{
int i = 0,n;
list_pointer first,second;
do
{
printf("请输入要删除元素的位置:\n");
scanf("%d",&n);
}while(n < 0);
second = ptr;
while (i<n && second)
{
i++;
second = second->link;
first = second ->link;
printf("this is OK\n");
}
if (i < n)
{
printf("表中不存在此元素\n"); }else
{
printf("this is Ok\n"); second->link = first->link; printf("this is OK\n");
free(first);
}
}。