第五章刚体力学基础
- 格式:ppt
- 大小:4.14 MB
- 文档页数:39
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。
5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。
积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。
则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。
刚体也是物体的一种理想模型。
5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。
这种运动称为刚体的平动或平移。
6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。
如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。
如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。
刚体的一般运动,可以看作平动和转动所合成。
7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。
对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。
质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。
对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A端并嵌入其内。
那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
第五章 刚体力学参考答案(2014)一、 选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的X 力 (A)处处相等.(B) 左边大于右边. (C)右边大于左边.(D) 哪边大无法判断.【提示】:逆时针转动时角速度方向垂直于纸面向外,由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J β[D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大(A) 为41mg cos θ.(B)为21mg tg θ.(C)为mg sin θ.(D)不能唯一确定图5-8【提示】:因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩也是平衡的,则有:A B N f =A B f N mg +=θθθlcon N l f lmgA A +=sin sin 2三个独立方程有四个未知数,不能唯一确定。
[ C ]3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变.(C) 减小. (D) 不能确定.【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与O 点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒m 2m 1O 图5-7 O Mm m图5-11定律有:00()J L L J J J J J ωωωωω+-=+=<+子弹子弹[ C ]4、【自测提高4】光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)L 32v .(B) L 54v . (C) L 76v . (D) L 98v . (E) L712v .图5-19【提示】:视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,所以2221[(2)]12lmv lmv ml ml m l ω+=++可得答案(C )[ A ]5、【自测提高7】质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:0Rmv J ω=-可得2()Rmv mR v J J Rω==。
第五章 刚体力学基础 动量矩班级______________学号____________姓名________________一、选择题1、力kNj i F )53(+=,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩大小为 ( B )(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。
2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。
由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。
圆柱体损失的动能和所受力矩的大小为( D ) (A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。
3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( D )(A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。
4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。
绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。
将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。
( D )(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。
5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。
若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 (A )(A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。
6、关于力矩有以下几种说法,其中正确的是 ( B )(A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零;(C )角速度的方向一定与外力矩的方向相同;(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。