【好题】高中必修五数学上期中试题(含答案)(5)
- 格式:doc
- 大小:1.28 MB
- 文档页数:17
扬大附中东部分校2012-2013学年度第一学期期中考试高二数学参考答案一、填空题1.6 2.x + 3y – 4 = 0 3.3x +2y -1=0 4.x 2 + y 2 – 2x – 4y – 20 = 05.(- 7,5) 6. x + 2y – 5 = 0或2x – y = 0 7. [0,34]8. [文科选做] 5 [理科选做]1440 9.[0,π6]∪[5π6,π)10.411.2|a | 12.()1125--,13. 23-3414.④二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.解:(1)点A(3,0),B(1,2),C(0,-3)………………………………………3分 (2)直线AC 方程为x - 3 y – 3 = 0, …………………………………………5分 点B 到AC 的距离d = 3 +1, ………………………………………………7分 所以△ABC 面积S = 3 + 3 …………………………………………………9分 (3)设△ABC 外接圆方程为x 2 + y 2 + Dx + Ey + F = 0……………………………10分所以⎪⎩⎪⎨⎧=+-=++++=++0330241039F E F E D F D …………………………………………………11分所以⎪⎩⎪⎨⎧-==-=302F E D ……………………………………………………………………13分所以△ABC 外接圆方程为x 2 + y 2 – 2x – 3 = 0 ………………………………14分16.解:(1)椭圆C 1的焦点坐标为F 1(-3,0)及F 2(3,0),…………………………2分 离心率e =32.……………………………………………………………4分△PF 1F 2面积S= 3y P ≤3…………………………………………………7分(2)由已知可设椭圆2C 的方程为2221(2)4y x a a +=> …………………………9分 其离心率为32,故2432a a -=,则4a = ………………………………12分 故椭圆的方程为221164y x += ………………………………………………14分17.解:(1)因为∠ACB = 120°,所以点C 到直线l 的距离是12r ,………………3分所以12= 12r ,………………………………………………………………5分所以r = 2,所以圆的面积为2π.…………………………………………7分(2)点C 到直线l 的距离是d = 22, …………………………………………10分所以AB = 24 - 12= 14, …………………………………………13分所以△ABC 周长为4+14.…………………………………………………15分18.解:以点A 为坐标原点,直线AP 、AQ 为x 轴和y 轴,建立平面直角坐标系,点C 坐标为(30,20)。
2020年高中必修五数学上期中试题(附答案)一、选择题1.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9002.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--3.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .34.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或55.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞6.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720207.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .68.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += ()22234S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒9.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8110.已知数列{}n a 中,3=2a ,7=1a .若数列1{}na 为等差数列,则9=a ( ) A .12B .54C .45D .45-11.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8012.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足11n n S S +-+=2(1)n S +,则10S 的值为__________14.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________.15.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________16.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 17.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.18.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos2C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .19.已知三角形中,边上的高与边长相等,则的最大值是__________.20.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.三、解答题21.已知数列{}n a 是一个公差为()0d d ≠的等差数列,前n 项和为245,,,n S a a a 成等比数列,且515=-S .(1)求数列{}n a 的通项公式; (2)求数列{nS n}的前10项和. 22.已知等差数列{}n a 满足1359a a a ++=,24612a a a ++=,等比数列{}n b 公比1q >,且2420b b a +=,38b a =.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c ,满足4nn n c b =-,且数列{}n c 的前n 项和为n B ,求证:数列n n b B ⎧⎫⎨⎬⎩⎭的前n 项和32n T <. 23.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.24.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 25.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6A π=,ABC V,求ABC V 的周长.26.在数列{}n a 中,n S 为{}n a 的前n 项和,223()n n S n a n N *+=∈.(1)求数列{}n a 的通项公式; (2)设11n n n n a b a a ++=⋅,数列{}n b 的前n 项和为n T ,证明14n T <.【参考答案】***试卷处理标记,请不要删除1.B解析:B【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+=,选B.2.B解析:B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【详解】作出不等式组110750310x yx yx y+-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y=+的几何意义表示直线的纵截距,即y ax z=-+,(1)当0a<时,直线z ax y=+的斜率为正,要使得z的最大值、最小值分别在,C A处取得,则直线z ax y=+的斜率不大于直线310x y--=的斜率,即3a-≤,30a∴-≤<.(2)当0a>时,直线z ax y=+的斜率为负,易知最小值在A处取得,要使得z的最大值在C处取得,则直线z ax y=+的斜率不小于直线110x y+-=的斜率01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.3.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B . 当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.4.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .5.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.6.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1na =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.7.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.8.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)2224S b a c =+-,得1sin 2cos 24ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.9.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.10.C解析:C 【解析】 【分析】由已知条件计算出等差数列的公差,然后再求出结果 【详解】依题意得:732,1a a ==,因为数列1{}na 为等差数列,所以7311111273738--===--a a d ,所以()9711159784a a =+-⨯=,所以945=a ,故选C . 【点睛】本题考查了求等差数列基本量,只需结合题意先求出公差,然后再求出结果,较为基础11.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。
2020-2021高中必修五数学上期中试题(含答案)一、选择题1.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9002.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20473.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( )A .12B .10C .D .4.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或75.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .166.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( )A .5B .25C D .7.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .138.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .149.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( )A .()3,-+∞B .()-+∞C .[)3,-+∞D .)⎡-+∞⎣10.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-11.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14B .21C .28D .3512.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .()22,10C .()22,10D .()10,8二、填空题13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,73b c +=,则ABC V 的面积为______.14.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.15.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 16.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.17.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.18.已知三角形中,边上的高与边长相等,则的最大值是__________.19.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 20.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,且3550S S +=,1a ,4a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设n n b a ⎧⎫⎨⎬⎩⎭是首项为1公比为2的等比数列,求数列{}n b 前n 项和n T .22.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式; (2)求12111nS S S ++⋯+. 23.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 24.已知{a n }是等差数列,{b n }是各项均为正数的等比数列,且b 1=a 1=1,b 3=a 4,b 1+b 2+b 3=a 3+a 4.(1)求数列{a n },{b n }的通项公式; (2)设c n =a n b n ,求数列{c n }的前n 项和T n .25.已知向量11,sin 22x x a ⎛⎫ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C,若有3f A π⎛⎫-= ⎪⎝⎭,边7BC B ==,求ABC ∆的面积. 26.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC Va ,c .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 2.C解析:C 【解析】 【分析】 根据叠加法求结果.【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.3.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.4.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.5.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sincos 3sin 222C C C C == ()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.6.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 7.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.8.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A .本题考查了等比中项的求法,属于基础题.9.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).10.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.11.C解析:C 【解析】试题分析:等差数列{}n a 中,34544123124a a a a a ++=⇒=∴=,则()()174127477272822a a a a a a a +⨯+++====L考点:等差数列的前n 项和12.B解析:B 【解析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩,由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.二、填空题13.【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值由余弦定理可求64=(b+c )2﹣bc 求bc 即可得三角形的面积【详解】∵在△ABC 中btanB+btanA=﹣2ctanB ∴由正弦【解析】 【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值,由余弦定理可求64=(b +c )2﹣bc ,求bc ,即可得三角形的面积. 【详解】∵在△ABC 中btanB +btanA=﹣2ctanB ,∴由正弦定理可得sinB (tanA +tanB )=﹣2sinCtanB ,∴sinB (tanA+tanB )=﹣2sinC•sinBcosB, ∴cosB (tanA+tanB )=﹣2sinC ,∴cosB (sinA cosA +sinBcosB)=﹣2sinC , ∴cosB•sinAcosB cosAsinBcosAcosB+=﹣2sinC ,∴cosB•()sin A B cosAcosB+=sinCcosA=﹣2sinC , 解得cosA=﹣12,A=23π;∵a=8,b c +=64=b 2+c 2+bc=(b+c )2﹣bc ,∴△ABC 的面积为S =12bcsinA=192⨯,. 【点睛】本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于中档题.14.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.15.【解析】【分析】设等比数列的公比为由数列为等比数列得出求出的值即可得出的值【详解】设等比数列的公比为由于数列为等比数列整理得即化简得解得因此故答案为:【点睛】本题考查等比数列基本量的计算同时也考查了 解析:12【解析】 【分析】设等比数列{}n a 的公比为q ,由数列{}12n S a -为等比数列,得出()()()2211131222S a S a S a -=--,求出q 的值,即可得出32aa 的值.【详解】设等比数列{}n a 的公比为q ,由于数列{}12n S a -为等比数列,()()()2211131222S a S a S a ∴-=--,整理得()()2211321a a a a a a -=-⋅+-,即()()2211q q q -=-+-,化简得220q q -=, 0q ≠Q ,解得12q =,因此,3212a q a ==. 故答案为:12. 【点睛】本题考查等比数列基本量的计算,同时也考查了等比中项的应用,考查运算求解能力,属于中等题.16.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴=()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6 【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果.17.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃【解析】 【分析】由无穷等比数列{}n a 的各项和为4得,141a q=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】 由题意可得,14,||11a q q=<- , 且0q ≠14(1)a q =- 108a ∴<<且14a ≠故答案为(0,4)(4,8)⋃ 【点睛】本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.18.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.19.【解析】【分析】【详解】试题分析:考点:正余弦定理解三角形 解析:1【解析】【分析】【详解】 试题分析:222sin 22sin cos 2cos 44cos 1sin sin 332A A A a A b c a A C C c bc+-====⨯= 考点:正余弦定理解三角形20.或【解析】【分析】先画出不等式组所代表的平面区域解释目标函数为直线在轴上的截距由目标函数取得最大值的最优解不唯一得直线应与直线或平行从而解出的值【详解】解:画出不等式组对应的平面区域如图中阴影所示将 解析:2或1-.【解析】【分析】先画出不等式组所代表的平面区域,解释目标函数为直线=+y ax z 在y 轴上的截距,由目标函数=+z ax y -取得最大值的最优解不唯一,得直线=+y ax z 应与直线20x y +-=或220x y -+=平行,从而解出a 的值.【详解】解:画出不等式组20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩对应的平面区域如图中阴影所示将=+z ax y -转化为=+y ax z ,所以目标函数z 代表直线=+y ax z 在y 轴上的截距 若目标函数=+z ax y -取得最大值的最优解不唯一则直线=+y ax z 应与直线20x y +-=或220x y -+=平行,如图中虚线所示 又直线20x y +-=和220x y -+=的斜率分别为1-和2所以2a =或1a =-故答案为:2或1-.【点睛】本题考查了简单线性规划,线性规划最优解不唯一,说明目标函数所代表的直线与不等式组某条边界线平行,注意区分最大值最优解和最小值最优解.三、解答题21.(1)21n a n =+;(2)()1212n n +-⋅【解析】【分析】()1由已知条件利用等差数列的前n 项和公式和通项公式以及等比数列的定义,求出首项和公差,由此能求出21n a n =+.(2()111)2,2212n n n n n n nb b a n a ---==⋅=+⋅,由此利用错位相减法能求出数列{}n b 前n 项和n T .【详解】解:(1)Q 等差数列{}n a 的前n 项和为n S ,公差0d ≠,且3550S S +=,1a ,4a ,13a 成等比数列.()()1121113254355022312a d a d a d a a d ⨯⨯⎧+++=⎪∴⎨⎪+=⋅+⎩,解得132a d =⎧⎨=⎩()()1132121n a a n d n n ∴=+-=+-=+,21n a n ∴=+(2)n n b a ⎧⎫⎨⎬⎩⎭Q 是首项为1公比为2的等比数列,()1112,2212n n n n n n nb b a n a ---∴==⋅=+⋅ ()0121325272212n n T n -∴=⨯+⨯+⨯+⋯++⋅...①()()12312325272212212n n n T n n -=⨯+⨯+⨯+⋯+-⋅++⋅...②两式相减得:()()12123221212n n n T n --=--⨯++⋅-()1212n n =+-⋅【点睛】本题主要考查了等差数列的通项公式,考查等差数列的前n 项和,还考查了错位相减法求和,考查计算能力,属于中档题。
2020-2021高中必修五数学上期中试题(及答案)(5)一、选择题1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD2.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭3.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-4)63a -≤≤的最大值为( )A .9B .92C.3 D .25.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .16.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .167.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .138.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40379.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦10.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A +=)222S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒11.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 二、填空题13.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.14.若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的取值范围为_______.15.设数列{}()1,n a n n N*≥∈满足122,6aa ==,且()()2112n n n n a a a a +++---=,若[]x 表示不超过x 的最大整数,则122019201920192019[]a a a +++=L ____________. 16.设0,0,25x y x y >>+=______.17.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足11n n S S +-+=2(1)n S +,则10S 的值为__________18.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)19.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .20.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______. 三、解答题21.已知函数()cos f x x x =-.(1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围.22.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.23.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L .24.在等比数列{}n b 中,公比为()01q q <<,13511111,,,,,,50322082b b b ∈⎧⎫⎨⎬⎩⎭. (1)求数列{}n b 的通项公式;(2)设()31n n c n b =-,求数列{}n c 的前n 项和n T .25.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V26.已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n n n a c b ++=+.求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】 【分析】:先设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。
高二数学期中考试必修5试题及答案一、选择题(每题5分,共40分)1. 有七名同学站成一排拍毕业照,其中甲必须站在正中间,乙和丙两位同学必须站在一起,则不同的站法一共有()A. 180种B. 90种C. 60种D. 30种2. 若集合A中元素的个数是4,集合B中元素的个数是3,则从集合A到集合B的不同映射的个数是()A. 12B. 64C. 81D. 2563. 设函数f(x) = log2(x - 1),下列结论正确的是()A. f(x)在(0, +∞)上是增函数B. f(x)在(1, +∞)上是增函数C. f(x)在(0, 1)上是减函数D. f(x)在(1, +∞)上是减函数4. 已知函数f(x) = x^2 - 2x + 3,则函数f(x)的单调递增区间是()A. (-∞, 1]B. [1, +∞)C. (-∞, 1)D. (1, +∞)5. 已知函数f(x) = x^3 - 3x,则f(x)在区间()内是减函数。
A. (-∞, 0)B. (0, 1)C. (1, 2)D. (2, +∞)6. 若等差数列{an}的前n项和为S_n,且S_n = 2n^2 - n,则该数列的通项公式为()A. an = 2n - 3B. an = 2n - 1C. an = 2n + 1D. an = 3n - 27. 若等比数列{an}的前n项和为S_n,且S_n = 2^n - 1,则该数列的通项公式为()A. an = 2n - 1B. an = 2n - 2C. an = 2n - 3D. an = 2n8. 一个长方体的长、宽、高分别是3,4,5,则它的对角线长度的平方是()A. 50B. 64C. 36D. 25二、填空题(每题5分,共30分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调递减区间。
10. 已知等差数列{an}的通项公式为an = 2n + 1,求该数列的前10项和。
新高中必修五数学上期中试卷(含答案)一、选择题1.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1 B .32C .2D .32)63a -≤≤的最大值为( )A .9B .92C.3 D .23.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .84.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .215.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b cc+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形6.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40377.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A 33B 53C 73D 838.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .69.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,3a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒11.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4012.已知正项数列{}n a *12(1)()2n n n a a a n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.14.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.15.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.16.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.17.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______18.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________19.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).20.在△ABC 中,2BC =,7AC =3B π=,则AB =______;△ABC 的面积是______.三、解答题21.已知数列{}n a 的前n 项和22n n nS +=.(1)求数列{}n a 通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n T . 22.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.23.已知数列{}n a 的前n 项和为n S ,且1,n a ,n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n a b na =+,求数列{}n b 的前n 项和n T . 24.在等比数列{}n a 中,()*10a n N >∈,且328aa -=,又15,a a 的等比中项为16.(1)求数列{}n a 的通项公式:(2)设4log n n b a =,数列{}n b 的前n 项和为n S ,是否存在正整数k ,使得1231111nk S S S S ++++<L 对任意*n N ∈恒成立.若存在,求出正整数k 的最小值;若不存在,请说明理由.25.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c ,若3asinB bcosA =. (1)求角A ;(2)若ABC ∆的面积为235a =,,求ABC ∆的周长.26.已知函数()f x a b =⋅v ,其中()()2cos ,32,cos ,1,a x sin x b x x R ==∈v v.(1)求函数()y f x =的单调递增区间;(2)在ABC ∆中,角,,A B C 所对的边分别为(),,,2,7a b c f A a ==,且2b c =,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.2.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.3.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.4.A解析:A 【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以114)PB t=--u u u r (,,14)PC t =--u u u r (,,因此PB PC ⋅u u u r u u u r11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.5.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b cc+=,所以1cosA 22b cc ++=,()ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.6.C解析:C 【解析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.7.B解析:B 【解析】 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,3534623v ==(米/秒). 故选B . 【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.8.B解析:B 【解析】【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.9.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.10.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒Q ,3a=4b =由正弦定理得:sin 1sin 243b A B a === a b >Q60B ∴<︒ 30B ∴=︒故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.11.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.12.B解析:B 【解析】 【分析】()()1122n n n n +-=-的表达式,可得出数列{}n a 的通项公式. 【详解】(1)(1),(2)22n n n n n n +-=-=≥1=,所以2,(1),n n n a n =≥= ,选B.【点睛】给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.二、填空题13.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay+1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围. 【详解】因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1,即a ≤x+y+1x y+,令t=x +y ∈[5,+∞),则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增, 所以y min =5+15=265, 所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.14.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <, 再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.15.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.16.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦L()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++; 【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;17.-2+)【解析】【分析】根据题意分x=0与x≠0两种情况讨论①x=0时易得原不等式恒成立②x≠0时原式可变形为a≥-(|x|+)由基本不等式的性质易得a 的范围综合两种情况可得答案【详解】根据题意分两 解析:[-2,+∞)【解析】 【分析】根据题意,分x=0与x≠0两种情况讨论,①x=0时,易得原不等式恒成立,②x≠0时,原式可变形为a≥-(|x|+ 1x),由基本不等式的性质,易得a 的范围,综合两种情况可得答案. 【详解】根据题意,分两种情况讨论;①x=0时,原式为1≥0,恒成立,则a∈R;②x≠0时,原式可化为a|x|≥-(x 2+1),即a≥-(|x|+ 1x),又由|x|+1x ≥2,则-(|x|+1x)≤-2;要使不等式x 2+a|x|+1≥0恒成立,需有a≥-2即可; 综上可得,a 的取值范围是[-2,+∞); 故答案为[-2,+∞). 【点睛】本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.18.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.19.或【解析】【分析】根据同侧同号列不等式解得结果【详解】因为原点和点在直线的同侧所以或即的取值范围是或【点睛】本题考查二元一次不等式区域问题考查基本应用求解能力属基本题解析:{|2020a a >或0}a < 【解析】 【分析】根据同侧同号列不等式,解得结果. 【详解】因为原点和点()1,2019-在直线0x y a -+=的同侧,所以(00)(12019)02020a a a -+--+>∴>或0a <,即a 的取值范围是{2020a a 或0}.a <【点睛】本题考查二元一次不等式区域问题,考查基本应用求解能力.属基本题.20.;【解析】试题分析:由余弦定理得即得考点:余弦定理三角形面积公式解析:;2【解析】试题分析:由余弦定理得22202cos60AC AB BC AB BC =+-⋅,即2174222AB AB =+-⋅⋅,得2230AB AB --=,31()AB ∴=-或舍,011sin 603222S AB BC =⋅=⨯⨯=考点:余弦定理,三角形面积公式.三、解答题21.(1)n a n =;(2)1n nT n =+ . 【解析】 【分析】(1)根据{}n a 和n S 关系得到答案.(2)首先计算数列{}n b 通项,再根据裂项求和得到答案. 【详解】解:(1)当1n =时,111a S ==当2n ≥时,()11n n n n a S S n n a n -=-==∴=时符合 (2)()11111n b n n n n ==-++11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭L L 【点睛】本题考查了{}n a 和n S 关系,裂项求和,是数列的常考题型. 22.(Ⅰ)120°;(Ⅱ)1. 【解析】 【分析】(Ⅰ)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小; (Ⅱ)由题意结合(Ⅰ)的结论和三角函数的性质可得sin sin B C +的最大值. 【详解】(Ⅰ)()()2sin 2sin 2sin a A b c B c b C =+++Q ,()()2222a b c b c b c ∴=+++,即222a b c bc =++.2221cos 22b c a A bc +-=-∴=,120A ∴=︒.(Ⅱ)sin sin sin sin(60)B C B B +=+︒-()1sin sin 6022B B B =+=︒+, 060B ︒<<︒Q ,∴当6090B ︒+=︒即30B =︒时,sin sin B C +取得最大值1.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.23.(1)12n n a -=;(2)21122n n n -++-【解析】 【分析】(1)利用数列的递推关系式推出数列{}n a 是以1为首项,2为公比的等比数列,然后求解通项公式.(2)化简数列的通项公式,利用分组求和法求和即可. 【详解】(1)由已知1,n a ,n S 成等差数列得21n n a S =+①, 当1n =时,1121a S =+,∴11a =, 当2n ≥时,203m/s B B BF m ga m μ-==②①─②得122n n n a a a --=即12n n a a -=,因110a =≠,所以0n a ≠,∴12nn a a -=, ∴数列{}n a 是以1为首项,2为公比的等比数列,∴11122n n n a --=⨯=.(2)由12n n n a b na =+得111222n n n b n n a -=+=+, 所以()12121111n n nT b b b n n a a a =+++=+++++L L ()()1111211211212n n n n n n -⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++=-++-. 【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.24.(1)12n n a +=(2)3.【解析】 试题分析:(1)由题意可得316a =,又328a a -=,故28a =,由此可得等比数列的公比2q =,因此可得12n n a +=.(2)由(1)得12n n b +=,所以()34n n n S +=,从而()14411333n S n n n n ⎛⎫==- ⎪++⎝⎭,求和可得123111141111141122113231233239n S S S S n n n L ⎛⎫⎛⎫++++=⨯++---<⨯++= ⎪ ⎪+++⎝⎭⎝⎭,所以可得229k ≥,故存在满足题意得k ,且k 的最小值为3. 试题解析:(1)设等比数列{}n a 的公比为q , ∵15a a ,的等比中项为16. ∴316a =, 又328a a -=,28a ∴=,∴322a q a ==, ∴21822n n n a -+=⨯==. (2)由(1)得141log 22n n n b ++==, ∴数列{}n b 为等差数列,且11b =.∴()113224n n n n n S +⎛⎫+ ⎪+⎝⎭==, ∴()14411333n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴123111141111111131425363n S S S S n n ⎛⎫++++=⨯-+-+-++- ⎪+⎝⎭L L 4111111323123n n n ⎛⎫=⨯++--- ⎪+++⎝⎭ 4112213239⎛⎫<⨯++= ⎪⎝⎭,∴229k ≥, ∴存在满足题意得k ,且k 的最小值为3. 点睛:用裂项法求和的原则及规律(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项,消项后的剩余部分具有对称性. 25.(1)3π;(2)12. 【解析】 【分析】(1)由正弦定理化简已知等式可得sin A sin B B cos A ,求得tan A A ∈(0,π),可求A =3π. (2)利用三角形的面积公式可求bc =8,由余弦定理解得b +c =7,即可得解△ABC 的周长的值. 【详解】(1)由题意,在ABC ∆中,因为asinB =,由正弦定理,可得sin A sin B sin B cos A , 又因为(0,)B π∈,可得sin B ≠0,所以sin A A ,即:tan A 因为A ∈(0,π),所以A =3π; (2)由(1)可知A =3π,且a =5,又由△ABC 的面积12bc sin A ,解得bc =8, 由余弦定理a 2=b 2+c 2-2bc cos A ,可得:25=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-24, 整理得(b +c )2=49,解得:b +c =7, 所以△ABC 的周长a +b +c =5+7=12. 【点睛】本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.26.(1)(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2.【解析】 【分析】(1)利用向量数量积的坐标运算公式、降次公式和辅助角公式,化简()f x 为()sin A x B ωϕ++的形式,将x ωϕ+代入ππ2π,2π22k k ⎡⎤-+⎢⎥⎣⎦中,解出x 的范围,由此求得函数的单调区间.(2)利用()2f A =求得角A 的大小,利用余弦定理和2b c =列方程组,解方程组求得2c 的值,由此求得三角形的面积. 【详解】 (1)=,令πππ2π22π,262k x k -≤+≤+解得,k ∈Z , 函数y=f (x )的单调递增区间是(k ∈Z ).(2)∵f (A )=2,∴,即,又∵0<A <π,∴,∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=7,①b=2c ,②, 由①②得, ∴.【点睛】本小题主要考查向量的数量积运算,考查三角函数降次公式、辅助角公式,考查利用余弦定理解三角形.属于中档题.。
2020-2021北京市高中必修五数学上期中试题含答案一、选择题1.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9002.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S3.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸 B .二尺五寸C .三尺五寸D .四尺五寸4)63a -≤≤的最大值为( )A .9B .92C.3 D .25.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B.25CD .6.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .147.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .98.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2310.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4012.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .80二、填空题13.设数列{a n }的首项a 1=32,前n 项和为Sn ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________. 14.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.15.已知数列{}n a 满足11a =,132n n a a +=+,则数列{}n a 的通项公式为________. 16.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________.17.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 18.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 .19.如图所示,在平面四边形ABCD 中,2AB =,3BC =,AB AD ⊥,AC CD ⊥,3AD AC =,则AC =__________.20.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.三、解答题21.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式;(2)设数列{}n n a b +是首项为1,公比为2的等比数列,求{}n b 的前n 项和n S .22.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且sin sin 3a B b A π⎛⎫=+ ⎪⎝⎭. (1)求A ; (2)若,,2b ac 成等差数列,ABC ∆的面积为a . 23.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,已知24sin 4sin sin 22A BA B -+=(1)求角C 的大小;(2)已知4b =,ABC ∆的面积为6,求边长c 的值.24.已知{a n }是等差数列,{b n }是各项均为正数的等比数列,且b 1=a 1=1,b 3=a 4,b 1+b 2+b 3=a 3+a 4.(1)求数列{a n },{b n }的通项公式; (2)设c n =a n b n ,求数列{c n }的前n 项和T n .25.在数列{}n a 中,n S 为{}n a 的前n 项和,223()n n S n a n N *+=∈.(1)求数列{}n a 的通项公式; (2)设11n n n n a b a a ++=⋅,数列{}n b 的前n 项和为n T ,证明14n T <.26.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 2.D【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.3.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
2019年高中必修五数学上期中试题(带答案)一、选择题1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD2.下列命题正确的是A .若 a >b,则a 2>b 2B .若a >b ,则 ac >bcC .若a >b ,则a 3>b 3D .若a>b ,则1a <1b3.在ABC V 中,4ABC π∠=,AB =3BC =,则sin BAC ∠=( )ABCD4.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .165.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .136.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-7.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .28.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .819.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13710.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( )A .32B .36C .38D .4011.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <12.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.14.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.15.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.16.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________. 17.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__18.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.19.数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为_____.20.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.三、解答题21.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且sin 31cos a Cc A=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积43ABC S ∆=a 的值.22.如图,在平面四边形ABCD 中,42AB =22BC =4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .23.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.24.已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n n n a c b ++=+.求数列{}n c 的前n 项和n T . 25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】:先设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。
2020-2021高中必修五数学上期中试卷含答案(5)一、选择题1.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④2.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+3.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或54.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S5.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .86.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A .2BC.2D .47.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .98.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<10.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2311.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12 B .12-C .14D .14-12.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.14.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________15.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .16.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.17.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 18.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 19.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =ABC ∆的面积;(2)若5sin 5CAD ∠=,4=AD ,求CD 的长. 22.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.23.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积. 24.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .25.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值. 26.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C.【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。
高中必修五数学上期中试卷带答案一、选择题1.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 2)63a -≤≤的最大值为( )A .9B .92C.3 D .23.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .1824.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .165.在ABC ∆中,,,a b c 分别是角,,A BC 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A.2BC .2D .46.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-7.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .58.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .1252439.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-10.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14B .21C .28D .3511.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++12.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.14.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.15.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________16.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.17.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______. 18.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 19.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.20.已知数列{}n a 满足1133,2,n n a a a n +=-=则na n的最小值为__________. 三、解答题21.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c +--=.(1)求A .(2)若2a =,ABC △的面积为3,求b ,c .22.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)令12n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.23.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .24.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 25.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).2.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.3.B解析:B 【解析】∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴13711313(6)13791S a a d ==+=⨯=,故选B .4.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.5.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 0B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.6.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=Q 或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.7.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。
【典型题】高中必修五数学上期中试卷附答案一、选择题1.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭2.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--3.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-4.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .1825.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.6.在ABC 中,4ABC π∠=,AB =3BC =,则sin BAC ∠=( )ABCD7.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或78.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .169.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .1310.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .2111.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .81二、填空题13.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 14.设0,0,25x y x y >>+=,则(1)(21)x y xy++的最小值为______.15.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)16.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .17.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.18.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.19.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos23C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .20.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.三、解答题21.在ABC 中,3B π∠=,7b =,________________,求BC 边上的高.从①21sin 7A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.22.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.23.已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n n n a c b ++=+.求数列{}n c 的前n 项和n T . 24.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .25.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围. 26.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .2.B解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤.故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.3.D解析:D 【解析】 【分析】 把已知2214S S S 用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S ,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.B解析:B 【解析】∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴13711313(6)13791S a a d ==+=⨯=,故选B .5.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.6.C解析:C 【解析】试题分析:由余弦定理得229223cos5,54b b π=+-⋅⋅⋅==.由正弦定理得35sin sin 4BAC π=∠,解得310sin 10BAC ∠=. 考点:解三角形.7.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.8.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.9.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.10.A解析:A 【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,10)4(0,1)(1,4)AP =+=(,,即14)P (,,所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.二、填空题13.【解析】【分析】根据等差数列中等差中项的性质将所求的再由等差数列的求和公式转化为从而得到答案【详解】因为数列均为等差数列所以【点睛】本题考查等差中项的性质等差数列的求和公式属于中档题 解析:238【解析】 【分析】根据等差数列中等差中项的性质,将所求的174417a a ab b b +=+,再由等差数列的求和公式,转化为77S T ,从而得到答案. 【详解】因为数列{}n a 、{}n b 均为等差数列所以7474141422a a b b a a b b ==++ ()()1771777272a a S b b T +==+37223718⨯+==+ 【点睛】本题考查等差中项的性质,等差数列的求和公式,属于中档题.14.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:【解析】 【分析】把分子展开化为26xy +,再利用基本不等式求最值. 【详解】(1)(2x xy +=0,0,25,0,x y x y xy >>+=>∴≥= 当且仅当3xy =,即3,1x y ==时成立, 故所求的最小值为 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.15.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题 解析:128【解析】 【分析】由1113()n nn N a a *+=+∈得1n a ⎧⎫⎪⎨⎬⎪⎭⎩为等差数列,求得1n a ⎧⎫⎪⎨⎬⎪⎭⎩通项公式,则10a 可求【详解】1113()n nn N a a *+=+∈则1n a ⎧⎫⎪⎨⎬⎪⎭⎩为以首项为1,公差为3的等差数列,则 ()10111313228n n n a a =+-=-∴= 故答案为:128【点睛】本题考查等差数列的定义及通项公式,意在考查计算能力,是基础题16.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式 解析:21n -【解析】 【分析】 【详解】由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3418a q a ==,所以2q ,因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.17.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;18.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式ax2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞) 【解析】 【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a-,b=1a ,即c=-b,则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -,当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b-≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞). 【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.19.【解析】试题分析:外接圆直径为由图可知当在垂直平分线上时面积取得最大值设高则由相交弦定理有解得故最大面积为考点:解三角形【思路点晴】本题主要考查解三角形三角函数恒等变换二倍角公式正弦定理化归与转化的【解析】试题分析:cos2C =,21cos 2cos 129C C =-=,sin C =cos cos 2a B b A c +==,外接圆直径为952sin 10c R C ==,由图可知,当C 在AB 垂直平分线上时,面积取得最大值.设高CE x =,则由相交弦定理有95110x x ⎛⎫-= ⎪ ⎪⎝⎭,解得52x =,故最大面积为1552222S =⋅⋅=.考点:解三角形.【思路点晴】本题主要考查解三角形、三角函数恒等变换、二倍角公式、正弦定理,化归与转化的数学思想方法,数形结合的数学思想方法.一开始题目给了C 的半角的余弦值,我们由二倍角公式可以求出单倍角的余弦值和正弦值.第二个条件cos cos 2a B b A +=我们结合图像,很容易知道这就是2c =.三角形一边和对角是固定的,也就是外接圆是固定的,所以面积最大也就是高最大,在圆上利用相交弦定理就可以求出高了.20.【解析】【分析】△ACD 中求出AC △ABD 中求出BC △ABC 中利用余弦定理可得结果【详解】解:由已知△ACD 中∠ACD =15°∠ADC =150°∴∠DAC=15°由正弦定理得△BCD 中∠BDC =15 解析:805【解析】 【分析】△ACD 中求出AC ,△ABD 中求出BC ,△ABC 中利用余弦定理可得结果. 【详解】解:由已知,△ACD 中,∠ACD =15°,∠ADC =150°, ∴∠DAC=15°由正弦定理得80sin1504062sin1562AC ===-,△BCD 中,∠BDC =15°,∠BCD =135°, ∴∠DBC=30°, 由正弦定理,CD BCsin CBD sin BDC=∠∠,所以BC 80sin15160154012CD sin BDC sin sin CBD⋅∠⨯︒===︒=∠;△ABC 中,由余弦定理,AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB=((08116008160216002-+++⨯⨯⨯16001616004160020=⨯+⨯=⨯解得:AB =则两目标A ,B间的距离为.故答案为. 【点睛】本题主要考查了正弦、余弦定理在解三角形中的应用问题,也考查了数形结合思想和转化思想,是中档题.三、解答题21.选择①,h =;选择②,h =;选择③,h =【解析】 【分析】 (1)选择①sin 7A =,可由sin sin a b A B =解得2a =,再由2222cos b a c ac B =+-解得3c =,最后由sin h c B =可得解;(2)选择②sin 3sin A C =,由sin sin()3sin A B C C =+=得5sin C C =,结合22sin cos 1C C +=得sin 14C =,最后由sin h b C =可得解. (3)选择③2a c -=,由2222cos b a c ac B =+-可得:227a c ac +-=,结合2a c -=解得1c =,最后由sin h c B =可得解. 【详解】(1)选择①sin 7A =,解答如下: 在ABC ,由正弦定理得:sin sin a b A B=,=2a =, 由余弦定理得2222cos b a c ac B =+-,2212222c c =+-⨯⨯,解得1c =-(舍去)或3c =,则BC边上的高sin h c B = (2)选择②sin 3sin A C =,解答如下:在ABC 中,[]sin sin ()sin()A B C B C π=-+=+, 由sin 3sin A C =可得:sin()3sin 3C C π+=,整理得5sin C C =┄①, 又22sin cos 1C C +=┄②,由①②得sin 14C =, 则BC边上的高sin h b C ===. (3)选择③2a c -=,解答如下:在ABC 中,由余弦定理得:2222cos b a c ac B =+-,3B π∠=,b =227a c ac ∴+-=┄①,又2a c -=┄②, 由①②解得1c =, 则BC边上的高sin h c B =. 【点睛】本题考查了正余弦定理解三角形,考查了计算能力,属于中档题.22.(1)2 12b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2) 2m <<. 【解析】试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2,40b c ma a bc +=-=. (1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;(2)()222222cos 22b c bc a b c a A bc bc+--+-===()222222232a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2322m <<,又由b c ma +=可得0m >,∴622m <<. 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 23.(Ⅰ);(Ⅱ)【解析】试题分析:(1)先由公式1n n n a S S -=-求出数列{}n a 的通项公式;进而列方程组求数列{}n b 的首项与公差,得数列{}n b 的通项公式;(2)由(1)可得()1312n n c n +=+⋅,再利用“错位相减法”求数列{}n c 的前n 项和n T .试题解析:(1)由题意知当2n ≥时,165n n n a S S n -=-=+, 当1n =时,1111a S ==,所以65n a n =+. 设数列{}n b 的公差为d ,由112223{a b b a b b =+=+,即11112{1723b d b d=+=+,可解得14,3b d ==, 所以31n b n =+.(2)由(1)知()()()116631233n n n nn c n n +++==+⋅+,又123n n T c c c c =+++⋅⋅⋅+,得()2341322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,()34522322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,两式作差,得()()()23412224213222221234123221n n n n n n T n n n ++++⎡⎤-⎡⎤⎢⎥-=⨯⨯+++⋅⋅⋅+-+⨯=⨯+-+⨯=-⋅⎣⎦-⎢⎥⎣⎦所以232n n T n +=⋅.考点 1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前n 项和. 【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前n 项和,属于难题. “错位相减法”求数列的前n 项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -. 24.(Ⅰ) 12n n a += (Ⅱ)见解析,234n n+【解析】 【分析】(1)利用2342248a a a q a q +=+=及28a =求得q ,从而得到通项公式.(2)利用定义证明{}n b 等差数列,并利用公式求和. 【详解】(Ⅰ)设等比数列{}n a 的公比为q ,依题意0q >.由2348,48a a a =+=得28848q q +=,解得2q .故21822n n n a -+=⨯= . (Ⅱ)证明:由(Ⅰ)得1441log log 22n n n n b a ++===. 故112n n b b --=,所以{}n b 是首项为1,公差为12的等差数列, 所以()21131224n n n n nS n -+=⨯+⨯=. 【点睛】一般地,判断一个数列是等差数列,可从两个角度去考虑:(1)证明1n n a a d --=;(2)证明:112n n n a a a -+=+. 25.(1)72(2)3a >- 【解析】 【分析】(1)由题得()122f x x x=++,再利用对勾函数的性质得到函数()f x 的最小值;(2)等价于22y x x a =++>0,再利用函数的单调性求函数的最小值即得解. 【详解】 (1)当12a =时,()122f x x x =++, ∵()f x 在区间[)1,+∞上为增函数,∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712f =.(2)在区间[)1,+∞上,()220x x af x x++=>恒成立220x x a ⇔++>恒成立.设22y x x a =++,[)1,x ∈+∞,因为()222+a=11y x x x a =+++-在[)1,+∞上递增, ∴当1x =时,min 3y a =+,于是,当且仅当min 30y a =+>时,函数()0f x >恒成立, 故3a >-. 【点睛】本题主要考查对勾函数的性质,考查不等式的恒成立问题和二次函数的性质,意在考查学生对这些知识的理解掌握水平. 26.(1)1232;2,122n n n n a b n n --==-⋯(=,,);(2)213312442n n T n n -=+-+. 【解析】 【分析】(1)根据等比数列的性质得到7a =64,2a =2,进而求出公比,得到数列{a n }的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可. 【详解】(1)设等比数列{a n }的公比为q .由等比数列的性质得a 4a 5=27a a =128,又2a =2,所以7a =64.所以公比2q ===. 所以数列{a n }的通项公式为a n =a 2q n -2=2×2n -2=2n -1. 设等差数列{12n n b a +}的公差为d . 由题意得,公差221111113221122222d b a b a ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+⨯-+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以等差数列{12n n b a +}的通项公式为()()11113331122222n n b a b a n d n n ⎛⎫+=++-=+-⋅= ⎪⎝⎭.所以数列{b n }的通项公式为12313132222222n n n n b n a n n --=-=-⋅=-(n =1,2,…). (2)设数列{b n }的前n 项和为T n .由(1)知,2322n n b n -=-(n =1,2,…). 记数列{32n }的前n 项和为A ,数列{2n -2}的前n 项和为B ,则()33322124n n A n n ⎛⎫+ ⎪⎝⎭==+,()1112122122nn B --==--. 所以数列{b n }的前n 项和为()1213133112242442n n n T A B n n n n --=-=+-+=+-+. 【点睛】这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等.。
2020-2021高中必修五数学上期中试题(附答案)(5)一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40362.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形3.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102004.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .9005.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .36.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25C .41D .527.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .7108.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a << D .b a c <<9.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5210.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13C .12+D .411.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)- 二、填空题13.若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的取值范围为_______. 14.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________.15.已知等比数列{a n}的前n项和为S n,若a3=32,S3=92,则a1的值为________.16.设0x>,则231x xx+++的最小值为______.17.已知三角形中,边上的高与边长相等,则的最大值是__________.18.在ABC∆中,,,a b c分别是角,,A B C的对边,已知,,a b c成等比数列,且22a c ac bc-=-,则sincb B的值为________.19.正项等比数列{}n a满足2418-=a a,6290-=a a,则{}n a前5项和为________. 20.设0x>,0y>,4x y+=,则14x y+的最小值为______.三、解答题21.在ABC∆中,内角、、A B C的对边分别为a b c,,,()2cos cos cos0C a B b A c++=.(Ⅰ)求角C的大小;(Ⅱ)若22a b==,,求()sin2B C-的值.22.如图,在平面四边形ABCD中,42AB=,22BC=,4AC=.(1)求cos BAC∠;(2)若45D∠=︒,90BAD∠=︒,求CD.23.已知数列{}n a的前n项和238nS n n=+,{}n b是等差数列,且1n n na b b+=+.(Ⅰ)求数列{}n b的通项公式;(Ⅱ)令1(1)(2)nnn nnacb++=+.求数列{}n c的前n项和n T.24.已知在ABCV中,角A,B,C的对边分别为a,b,c,且sin cos0a Bb A-=.(1)求角A的大小:(2)若5a=2b=.求ABCV的面积.25.已知{}n a为等差数列,前n项和为()*nS n N∈,{}n b是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}221n n a b -⋅的前n 项和. 26.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元).(Ⅰ)将y 表示为x 的函数;(Ⅱ)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.D解析:D【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.3.B解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.4.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 5.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.6.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 7.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o ,即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.8.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.9.B解析:B 【解析】 【分析】设f (x )1221x x=+-,根据形式将其化为f (x )()1152221x x x x-=++-.利用基本不等式求最值,可得当且仅当x 13=时()11221x x x x-+-的最小值为2,得到f (x )的最小值为f(13)92=,再由题中不等式恒成立可知m ≤(1221x x+-)min ,由此可得实数m 的最大值. 【详解】解:设f (x )11222211x x x x=+=+--(0<x <1) 而1221x x+=-[x +(1﹣x )](1221x x +-)()1152221x x x x -=++- ∵x ∈(0,1),得x >0且1﹣x >0∴()11221x x x x -+≥-=2, 当且仅当()112211x x x x -==-,即x 13=时()11221x x x x-+-的最小值为2∴f (x )1221x x =+-的最小值为f (13)92= 而不等式m 1221x x ≤+-当x ∈(0,1)时恒成立,即m ≤(1221x x+-)min 因此,可得实数m 的最大值为92故选:B . 【点睛】本题给出关于x 的不等式恒成立,求参数m 的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.10.A解析:A 【解析】 【分析】将函数()y f x =的解析式配凑为()()1222f x x x =-++-,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的x 值,可得出a 的值. 【详解】当2x >时,20x ->,则()()1122222f x x x x x =+=-++≥-- 4=, 当且仅当()1222x x x -=>-时,即当3x =时,等号成立,因此,3a =,故选A. 【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.11.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.A解析:A 【解析】 【分析】 将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可. 【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<. 因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题13.【解析】试题分析:由题意由可求得交点坐标为要使直线上存在点满足约束条件如图所示可得则实数m 的取值范围考点:线性规划 解析:(,1]-∞【解析】试题分析:由题意,由2{30y xx y =+-=,可求得交点坐标为(1,2),要使直线2y x =上存在点(,)x y 满足约束条件30,{230,,x y x y x m +-≤--≤≥,如图所示,可得1m ≤,则实数m 的取值范围(,1]-∞.考点:线性规划.14.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换 解析:92【解析】 【分析】 先化简11122(2)2(2)()22a b a b a b a b +=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值. 【详解】 由题得11121222(2)2(2)()(5)222a b a b a b a b a b b a+=⋅+⋅=⋅+⋅+=++ 1229(5222a b b a ≥+⋅=. 当且仅当221223222a b a ba b ⎧+=⎪==⎨⎪=⎩即时取等. 故答案为:92【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.15.或6【解析】【分析】由题意要分公比两种情况分类讨论当q =1时S3=3a1即可求解当q≠1时根据求和公式求解【详解】当q =1时S3=3a1=3a3=3×=符合题意所以a1=;当q≠1时S3==a1(1解析:32或6 【解析】 【分析】由题意,要分公比1,1q q =≠两种情况分类讨论,当q =1时,S 3=3a 1即可求解,当q ≠1时,根据求和公式求解. 【详解】当q =1时,S 3=3a 1=3a 3=3×32=92,符合题意,所以a 1=32; 当q ≠1时,S 3=()3111a q q--=a 1(1+q +q 2)=92,又a 3=a 1q 2=32得a 1=232q ,代入上式,得232q (1+q +q 2)=92,即21q +1q -2=0, 解得1q =-2或1q=1(舍去). 因为q =-12,所以a 1=23122⎛⎫⨯- ⎪⎝⎭ =6,综上可得a 1=32或6. 【点睛】本题主要考查了等比数列的性质及等比数列的求和公式,涉及分类讨论的思想,属于中档题.16.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在解析:1【解析】 【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值. 【详解】由0x >,可得11x +>.可令()11t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当3t =,31x =-时,等号成立.故答案为:231-. 【点睛】本题主要考查基本不等式求最值的方法,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.17.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.18.【解析】【分析】利用成等比数列得到再利用余弦定理可得而根据正弦定理和成等比数列有从而得到所求之值【详解】∵成等比数列∴又∵∴在中由余弦定理因∴由正弦定理得因为所以故故答案为【点睛】在解三角形中如果题 23【解析】 【分析】利用,,a b c 成等比数列得到222c b a bc +-=,再利用余弦定理可得60A =︒,而根据正弦定理和,,a b c 成等比数列有1sin sin c b B A=,从而得到所求之值. 【详解】∵,,a b c 成等比数列,∴2b ac =.又∵22a c ac bc -=-,∴222c b a bc +-=.在ABC ∆中,由余弦定理2221cos 22c b a A bc +-== ,因()0,A π∈,∴60A =︒. 由正弦定理得2sin sin sin sin sin sin c C Cb B B B B==, 因为2b ac =, 所以2sin sin sin B A C = ,故2sin sin 1sin sin sin sin C C B A C A ===.故答案为 3. 【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.19.93【解析】【分析】运用等比数列通项公式基本量的计算先求出首项和公比然后再运用等比数列前项和公式求出前项和【详解】正项等比数列满足即则有代入有又因为则故答案为【点睛】本题考查了求等比数列前项和等比数解析:93 【解析】 【分析】运用等比数列通项公式基本量的计算,先求出首项和公比,然后再运用等比数列前n 项和公式求出前5项和. 【详解】正项等比数列{}n a 满足2418-=a a ,6290-=a a ,即24222218,90a q a a q a -=-=则有()()()22222118,1190a q a q q -=-+= 代入有221=5,4q q +=又因为0q >,则212,6,3q a a =∴==()553129312S ⨯-∴==-故答案为93 【点睛】本题考查了求等比数列前n 项和等比数列通项公式的运用,需要熟记公式,并能灵活运用公式及等比数列的性质等进行解题,本题较为基础.20.【解析】【分析】变形之后用基本不等式:求解即可【详解】原式可变形为:当且仅当时取等故答案为:【点睛】本题考查了基本不等式及其应用属基础题在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等解析:94【解析】 【分析】变形14141444x y y x x y x y ⎛⎫⎛⎫++=+++ ⎪ ⎪⎝⎭⎝⎭之后用基本不等式:求解即可. 【详解】原式可变形为:()14141914544444x y y x x y x y ⎛⎫⎛⎫++=+++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当43x =,83y =时取等.故答案为:94【点睛】本题考查了基本不等式及其应用,属基础题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题21.(Ⅰ)34C π=(Ⅱ)10- 【解析】 【分析】(I )利用正弦定理化简已知条件,求得cos C 的值,由此求得C 的大小.(II )根据余弦定理求得c ,利用正弦定理求得sin B ,利用同角三角函数关系式求得cos B ,由二倍角公式求得sin 2,cos 2B B 的值,再由两角差的正弦公式求得()sin 2B C -的值. 【详解】()sin cos sin cos sin 0C A B B A C ++=sin sin 0C C C +=,∴cos 2C =-,∵0C π<<,∴34C π=(Ⅱ)因为2a b ==,34C π=,由余弦定理得2222cos 2422102c a b ab C ⎛⎫=+-=+-⨯-= ⎪ ⎪⎝⎭,∴c =由sin sin sin 5c b B C B =⇒=,因为B 为锐角,所以cos 5B =5254sin 22555B =⨯⨯=,223cos 2cos sin 5B B B =-= ()423272sin 2sin 2cos cos 2sin 525210B C B C B C ⎛⎫-=-=⨯--⨯=- ⎪ ⎪⎝⎭【点睛】本小题主要考查利用正弦定理和余弦定理解三角形,考查同角三角函数的基本关系式,考查二倍角公式以及两角差的正弦公式,属于中档题. 22.(1)52;(2)CD =5 【解析】 【分析】(1)直接利用余弦定理求cos∠BAC;(2)先求出sin∠DAC=52,再利用正弦定理求CD . 【详解】(1)在△ABC 中,由余弦定理得:222cos 2AB AC BC BAC AB AC+-∠=⋅522442==⨯⨯. (2)因为∠DAC=90°-∠BAC,所以sin∠DAC=cos∠BAC=528, 所以在△ACD 中由正弦定理得:sin sin45CD ACDAC =∠︒,52282=,所以CD =5. 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力. 23.(Ⅰ);(Ⅱ)【解析】试题分析:(1)先由公式1n n n a S S -=-求出数列{}n a 的通项公式;进而列方程组求数列{}n b 的首项与公差,得数列{}n b 的通项公式;(2)由(1)可得()1312n n c n +=+⋅,再利用“错位相减法”求数列{}n c 的前n 项和nT .试题解析:(1)由题意知当2n ≥时,165n n n a S S n -=-=+, 当1n =时,1111a S ==,所以65n a n =+. 设数列{}n b 的公差为d ,由112223{a b b a b b =+=+,即11112{1723b d b d=+=+,可解得14,3b d ==, 所以31n b n =+.(2)由(1)知()()()116631233n n n nn c n n +++==+⋅+,又123n n T c c c c =+++⋅⋅⋅+,得()2341322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,()34522322324212n n T n +⎡⎤=⨯⨯+⨯+⨯+⋅⋅⋅++⨯⎣⎦,两式作差,得()()()23412224213222221234123221nn n n n n T n n n ++++⎡⎤-⎡⎤⎢⎥-=⨯⨯+++⋅⋅⋅+-+⨯=⨯+-+⨯=-⋅⎣⎦-⎢⎥⎣⎦所以232n n T n +=⋅.考点 1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前n 项和. 【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前n 项和,属于难题. “错位相减法”求数列的前n 项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -. 24.(1)4A π=(2)4【解析】分析:(1)利用正弦定理化简已知等式,整理后根据sin 0B ≠求出sin cos 0A A -=,即可确定出A 的度数;(2)利用余弦定理列出关系式,把a ,b ,cosA 的值代入求出c 的值,再由b ,sinA 的值,利用三角形面积公式求出即可.详解:在ABC V 中,由正弦定理得sin sin sin cos 0A B B A -=. 即()sin sin cos 0B A A -=,又角B 为三角形内角,sin 0B ≠, 所以sin cos 0A A -=04A π⎛⎫-= ⎪⎝⎭, 又因为()0,A π∈,所以4A π=.(2)在ABC V 中,由余弦定理得:2222cos a b c bc A =+-⋅,则220442c c ⎛=+-⋅ ⎝⎭.即2160c -=.解得c =-c =所以1242S =⨯⨯=.·点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.25.(1)32n a n =-,2nn b =,*n N ∈;(2)()143283n n +-+,*n N ∈.【解析】 【分析】(1)由等差数列和等比数列的基本量法求数列的通项公式; (2)用错位相减法求和. 【详解】(1)数列{}n b 公比为q ,则2232212b b q q +=+=,∵0q >,∴2q =,∴2nn b =,{}n a 的公差为d ,首项是1a ,则41328a a b ==-,411411112176S b ==⨯=,∴1113281110111762a d a a d +-=⎧⎪⎨⨯+⨯=⎪⎩,解得113a d =⎧⎨=⎩. ∴13(1)32n a n n =+-=-.(2)21221(62)2n n n a b n --⋅=-⋅,数列{}221n n a b -⋅的前n 项和记为n T ,352142102162(62)2n n T n -=⨯+⨯+⨯++-⋅L ,①23572121242102162(68)2(62)2n n n T n n -+=⨯+⨯+⨯++-⋅+-⋅L ,②①-②得:35212138626262(62)2n n n T n -+-=+⨯+⨯++⨯--⨯L 1218(14)86(62)214n n n -+-=+⨯--⨯-14(23)8n n +=--,∴14(32)83n n n T +-+=.【点睛】本题考查等差数列和等比数列的通项公式,考查等差数列的前n 项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n 项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.26.(Ⅰ)y =225x +2360360(0)x x-〉n(Ⅱ)当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.【解析】试题分析:(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得360,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得ax到修建围墙的总费用y表示成x的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值试题解析:(1)如图,设矩形的另一边长为a m则45x+180(x-2)+180·2a=225x+360a-360由已知xa=360,得a=,所以y=225x+(2).当且仅当225x=时,等号成立.即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.考点:函数模型的选择与应用。
2020-2021苏州市高中必修五数学上期中试卷(带答案)一、选择题1.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--2.若不等式组0220y x y x y x y a ⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦ D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭U3.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④4.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S5.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40376.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( )A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦7.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<8.若a ,b ,c ,d∈R,则下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若a >b ,c >d ,则a+c >b+dC .若a >b >0,c >d >0,则c da b> D .若a >b ,c >d ,则a ﹣c >b ﹣d9.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.已知正项数列{}n a*(1)()2n n n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =12.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.14.设0,0,25x y x y >>+=______.15.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令114(1)n n n n nb a a -+=-,则数列{}n b 的前100的项和为______. 16.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.17.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.18.在无穷等比数列{}n a 中,123,1a a ==,则()1321lim n n a a a -→∞++⋯+=______. 19.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?20.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________.三、解答题21.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++(Ⅰ)求A 的大小; (Ⅱ)求sin sin B C +的最大值.22.已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)若1122log ,n n n n n b a a S b b b ==+++L ,求使1·262n nS n ++>成立的正整数n 的最小值.23.已知数列{}n a 满足:121n n a a n +=-+,13a =.(1)设数列{}n b 满足:n n b a n =-,求证:数列{}n b 是等比数列; (2)求出数列{}n a 的通项公式和前n 项和n S . 24.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 25.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围;(3)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤„.故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.2.D解析:D 【解析】 【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是否一个三角形,我们可以先画出0220y x y x y ⎧⎪+⎨⎪-⎩…„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩…„…表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫ ⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭U 故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.3.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.4.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列. 又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.5.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.6.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x ∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.7.B解析:B【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.8.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.9.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列.所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.10.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.B解析:B 【解析】 【分析】()()1122n n n n +-=-的表达式,可得出数列{}n a 的通项公式. 【详解】(1)(1),(2)22n n n n n n +-=-=≥1=,所以2,(1),n n n a n =≥= ,选B.【点睛】给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.12.A解析:A 【解析】 【分析】 分析题意,取3x y +倒数进而求3x y+的最小值即可;结合基本不等式中“1”的代换应用即可求解。
高中必修五数学上期中试卷附答案一、选择题1.若不等式组0220y x y x y x y a ⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦ D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭U2.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20473.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 4.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-5.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .166.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1407.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .148.已知正数x 、y 满足1x y +=,则141x y++的最小值为( )A .2B .92C .143D .59.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6610.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13+C .12+D .411.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________14.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________. 15.已知在△ABC 中,角,,A B C 的对边分别为,,a b c ,若2a b c +=,则C ∠的取值范围为________ 16.已知三角形中,边上的高与边长相等,则的最大值是__________.17.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢? 18.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 19.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.20.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.三、解答题21.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.22.已知向量11,sin 22x x a ⎛⎫ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C,若有3f A π⎛⎫-= ⎪⎝⎭,边BC B ==,求ABC ∆的面积. 23.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V24.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC Va ,c . 25.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .26.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c,若asinB =. (1)求角A ;(2)若ABC ∆的面积为5a =,求ABC ∆的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是否一个三角形,我们可以先画出0220y x y x y ⎧⎪+⎨⎪-⎩…„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩…„…表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭U 故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.2.C解析:C 【解析】根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.3.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).4.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.5.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.6.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值.【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x =所以n a =1na =1n S =L 1=,由110n S ==解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.7.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.8.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则1414412()[(1)]()559111x y x y x y x y y x ++=+++=++=+++…, 所以,14912x y ++…,当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.9.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.10.A解析:A 【解析】 【分析】将函数()y f x =的解析式配凑为()()1222f x x x =-++-,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的x 值,可得出a 的值.【详解】当2x >时,20x ->,则()()1122222f x x x x x =+=-++≥-- 4=, 当且仅当()1222x x x -=>-时,即当3x =时,等号成立,因此,3a =,故选A. 【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.11.D解析:D【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.12.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题13.【解析】【分析】对于当n=1代入得-4依次得发现规律利用求出【详解】由当n=1代入得-4依次得发现规律利用得b=-求出故答案为【点睛】本题考查的是在数列中给了递推公式不好求通项公式时可以列举几项再发 解析:20462047-【解析】 【分析】对于()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得345a =10a =-22a =46...,,发现规律, 利用()()112121n n n n a b ++=--,求出10S .【详解】 由()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得2345634567a =32-2a =-32+2a =32-2a =-32+2a =32-2...⨯⨯⨯⨯⨯,,,,发现规律, 利用()()112121n n nn a b ++=--,得b 1=-43,234510224694b =b =-b =b =-...3771515313163⨯⨯⨯⨯,,, ,求出1020462047S =-. 故答案为20462047- 【点睛】本题考查的是在数列中,给了递推公式不好求通项公式时,可以列举几项再发现规律,求出题中要求的前10项和,属于中档题.14.【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解详解:∵等差数列中∴∴设等差数列的公差为则点睛:等差数列的项的下标和的性质即若则这个性质经常和前n 项和公式结合在一起应用利用整体代换的方法可解析:613. 【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解. 详解:∵等差数列{}n a 中136S =, ∴()11371313132622a a a S +⨯===, ∴7613a =. 设等差数列{}n a 的公差为d ,则()9109109976322213a a a a a a d a -=-+=-==. 点睛:等差数列的项的下标和的性质,即若()*,,,,m n p q m n p q Z+=+∈,则m n p q a a a a +=+,这个性质经常和前n 项和公式()12n n n a a S +=结合在一起应用,利用整体代换的方法可使得运算简单.15.【解析】【分析】将已知条件平方后结合余弦定理及基本不等式求解出的范围得出角的范围【详解】解:在中即当且仅当是取等号由余弦定理知故答案为:【点睛】考查余弦定理与基本不等式三角函数范围问题切入点较难故属解析:(0,]3π【解析】 【分析】将已知条件平方后,结合余弦定理,及基本不等式求解出cos C 的范围.得出角C 的范围. 【详解】解:在ABC V 中,2a b c +=Q ,22()4a b c ∴+=,222422a b c ab ab ∴+=-≥,即2c ab ≥,当且仅当a b =是,取等号, 由余弦定理知,222223231cos 12222a b c c ab c C ab ab ab +--===-≥,03C π∴<≤.故答案为:(0,]3π.【点睛】考查余弦定理与基本不等式,三角函数范围问题,切入点较难,故属于中档题.16.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.17.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9 【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= ,解得:9n = .即二马相逢,需9日相逢 点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.18.【解析】【分析】【详解】试题分析:考点:正余弦定理解三角形 解析:1【解析】 【分析】 【详解】试题分析:222sin 22sin cos 2cos 44cos 1sin sin 332A A A a A b c a A C C c bc+-====⨯=考点:正余弦定理解三角形19.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6 【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线122zy x =-经过点A(0,3)时,直线的纵截距2z-最大,z 最小.所以min 023 6.z =-⨯=-故填-6. 20.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃【解析】 【分析】由无穷等比数列{}n a 的各项和为4得,141a q=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】 由题意可得,14,||11a q q=<- , 且0q ≠14(1)a q =- 108a ∴<<且14a ≠故答案为(0,4)(4,8)⋃ 【点睛】本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.三、解答题21.(1)1665;(2)83. 【解析】 【分析】(1)直接利用三角函数关系式的恒等变换求得结果;(2)利用正弦定理和三角形的面积公式求出结果. 【详解】(1)在ABC V 中,A B C π++=,由5cos 13A =-,2A ππ<<,得12sin 13A =, 由3cos 5B =,02B π<<,得4sin 5B =. 所以()16sin sin sin cos cos sin 65C A B A B A B =+=+=; (2)由正弦定理sin sin AC BCB A=, 解得:sin 13sin 3BC B AC A ⋅==,所以ABC V 的面积:1113168sin 5223653S BC AC C =⋅⋅⋅=⋅⋅⋅=. 【点睛】本题考查的知识点:三角函数关系式的恒等变换,三角形内角和定理,正弦定理的应用,三角形面积公式的应用及相关的运算问题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答。
2019年高中必修五数学上期中试题(含答案)一、选择题1.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④2.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+3.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( )A.12B .10C .D .4.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .35.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +6.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A 33B 53C 73D 837.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720208.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<9.若a ,b ,c ,d∈R,则下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若a >b ,c >d ,则a+c >b+dC .若a >b >0,c >d >0,则c da b> D .若a >b ,c >d ,则a ﹣c >b ﹣d10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,3a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒11.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <12.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 14.设0,0,25x y x y >>+=,则xy的最小值为______.15.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=L ,且13k a =,则k =_________.16.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.17.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.18.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________. 19.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin2ABC ∠=,则3AB BC +的最大值为______.20.已知数列{}n a 的通项1n n a n+=+,则其前15项的和等于_______.三、解答题21.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,()2cos cos cos 0C a B b A c ++=.(Ⅰ)求角C 的大小; (Ⅱ)若22a b ==,,求()sin 2B C -的值.22.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =ABC ∆的面积;(2)若5sin 5CAD ∠=,4=AD ,求CD 的长. 23.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L .24.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .25.已知在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=. (1)求角A 的大小:(2)若a =2b =.求ABC V 的面积. 26.数列{}n a 对任意*n ∈N ,满足131,2n n a a a +=+=. (1)求数列{}n a 通项公式;(2)若13na nb n ⎛⎫=+ ⎪⎝⎭,求{}n b 的通项公式及前n 项和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”;对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。
详细答案: 1.0321,sin ,30sin sin 2C C C B ===或0150C =,选C 。
2. 显然2.a b >选C 。
3.显然边2x +最大,2222(1)(2)23cos 02(1)2(1)x x x x x x x x x θ++-+--==<++, 且12x x x ++>+,1 3.x ∴<<选B.4. 由,3))((bc a c b c b a =-+++得222b c a bc +-=,01cos ,60.2A A ==选B. 5.画图可得4z x y =+过(2,3)点时取到最大值。
选B.6. 把220ax bx ++>变为220ax bx ---<,由解集1123x x ⎧⎫-<<⎨⎬⎩⎭得 11211,,12, 2.2323b a b a a -=-+=-⋅=-=-选D. 7. 2106122.a a a +=-=选B. 8.cos sin ,sin()0,.cos sin A AA B A B B B=-==选A. 9. 120032004200320040,0,.0a a a a a >+><200320040,0,a a ><20031400520,a a a =+>20041400720,a a a =+>40050S >,40070,S < 1400540071400620,2()0,a a a a a ++>+>,40060S >。
选B.10.设数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为n T ,则111111.1111nn n n n n n n q q q q T q S q q q q q--⎛⎫-- ⎪-⎝⎭===⋅=⋅---选C.11.22112(1)(1)(1),1,.222p q p q p q x p q x x ++++++⎛⎫+=++<+<< ⎪⎝⎭选A. 12.11()30,210,14.2n n n a a a a n ++===选B.13. 1141,.416x y xy xy +=≥≤≤14.1101,10.111n S n n =-==+ 15. 由1n n a a n +=+得100112...994951.a =++++=16.由4,2,a b a c b -=+=得.a b c >>且4,4,a b c b =+=-222216161cos ,10,14.22(4)2(4)2b c a b b b A b a bc b b b +---====-==--17解:443(3)333733a a a +=+-+≥==-- 当且仅当433a a =--即5a =时,等号成立. 18.19解:(Ⅰ)21sin sin cos cos =-C B C B Θ 21)cos(=+∴C B 又π<+<C B 0Θ,3π=+∴C Bπ=++C B A Θ,32π=∴A . (Ⅱ)由余弦定理A bc c b a cos 2222⋅-+= 得 32cos22)()32(22π⋅--+=bc bc c b 即:)21(221612-⋅--=bc bc ,4=∴bc323421sin 21=⋅⋅=⋅=∴∆A bc S ABC .20解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--. 所以2n =时,n S 取到最大值4.21解:(Ⅰ)由于21()(12)n n a n n a n λ+=+-=L ,,,且11a =. 所以当21a =-时,得12λ-=-, 故3λ=.从而23(223)(1)3a =+-⨯-=-.(Ⅱ)数列{}n a 不可能为等差数列,证明如下:由11a =,21()n n a n n a λ+=+-得22a λ=-,3(6)(2)a λλ=--,4(12)(6)(2)a λλλ=---.若存在λ,使{}n a 为等差数列,则3221a a a a -=-,即(5)(2)1λλλ--=-, 解得3λ=.于是2112a a λ-=-=-,43(11)(6)(2)24a a λλλ-=---=-. 这与{}n a 为等差数列矛盾.所以,对任意λ,{}n a 都不可能是等差数列. 22.解:(Ⅰ)设第n 年获取利润为y 万元n 年共收入租金30n 万元,付出装修费构成一个以1为首项,2为公差的等差数列, 共222)1(n n n n =⨯-+因此利润)81(302n n y +-=,令0>y 解得:273<<n所以从第4年开始获取纯利润.(Ⅱ)年平均利润n nn n n W --=+-=8130)81(302 1281230=-≤(当且仅当n n=81,即n=9时取等号)所以9年后共获利润:12469+⨯=154(万元) 利润144)15()81(3022+--=+-=n n n y所以15年后共获利润:144+ 10=154 (万元)两种方案获利一样多,而方案①时间比较短,所以选择方案①.。
2020-2021高中必修五数学上期中试题(含答案)(5)一、选择题1.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-2.已知0,0x y >>,且91x y +=,则11xy+的最小值是 A .10B .12?C .14D .163.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)4.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .85.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b cc+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形6.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-37.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A 33B 53C 73D 838.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13710.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)- 12.已知正项数列{}n a*(1)()2n n n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.14.已知函数()3af x x x=++,*x ∈N ,在5x =时取到最小值,则实数a 的所有取值的集合为______.15.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 16.若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围是____________ .17.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343nn S n T n -=-,则935784a ab b b b +++的值为_______. 18.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.19.在△ABC 中,2BC =,7AC =,3B π=,则AB =______;△ABC 的面积是______.20.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.三、解答题21.已知等差数列{}n a 满足1359a a a ++=,24612a a a ++=,等比数列{}n b 公比1q >,且2420b b a +=,38b a =.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c ,满足4nn n c b =-,且数列{}n c 的前n 项和为n B ,求证:数列n n b B ⎧⎫⎨⎬⎩⎭的前n 项和32n T <. 22.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L .23.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 24.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =;(2)若6A π=,ABC V ,求ABC V 的周长.25.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c ,若asinB =. (1)求角A ;(2)若ABC ∆的面积为5a =,求ABC ∆的周长. 26.等比数列{}n a 中,1752,4a a a ==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记n S 为{}n a 的前n 项和.若126m S =,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.2.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值.∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.3.A解析:A 【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。
【好题】高中必修五数学上期中试题(含答案)(5)一、选择题1.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102002.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1223.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20474.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .35.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-6.在ABC V 中,4ABC π∠=,AB =3BC =,则sin BAC ∠=( )ABCD7.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .38.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦9.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2310.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8011.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=.其中*m N ∈且2m ≥,则m =______.14.设0,0,25x y x y >>+=,则(1)(21)x y xy++的最小值为______.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.16.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.17.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos23C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .18.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 19.在中,若,则__________. 20.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.三、解答题21.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.22.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .23.已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 24.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =. (1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T . 25.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.26.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c,若asinB =. (1)求角A ;(2)若ABC ∆的面积为5a =,求ABC ∆的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.2.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.3.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.4.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.5.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.6.C解析:C 【解析】试题分析:由余弦定理得229223cos5,54b b π=+-⋅==.由正弦定理得35sin sin4BAC =∠310sin BAC ∠= 考点:解三角形.7.A解析:A 【解析】 【分析】根据题意先求出集合,A B ,然后求出=1,2A B -I (),再根据三个二次之间的关系求出,a b ,可得答案.【详解】由不等式2230x x --<有13x -<<,则(1,3)A =-. 由不等式260x x +-<有,则32x -<<,则(3,2)B =-. 所以=1,2A B -I ().因为不等式2+0x ax b +<的解集为A B I , 所以方程2+=0x ax b +的两个根为1,2-.由韦达定理有:1212a b -+=-⎧⎨-⨯=⎩,即=12a b -⎧⎨=-⎩. 所以3a b +=-. 故选:A. 【点睛】本题考查二次不等式的解法和三个二次之间的关系,属于中档题.8.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立, 设函数数()2f x x x=-,[]15x ∈,()2210f x x∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.9.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.10.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。