燃煤锅炉烟气的除尘脱硫工艺的设计说明书
- 格式:doc
- 大小:349.00 KB
- 文档页数:25
燃煤锅炉烟气除尘脱硫系统设计方案一、设计题目燃煤锅炉烟气除尘系统设计。
二、课程设计的目的通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。
通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD绘制工程图、使用技术资料、编写设计说明书的能力。
三、设计原始资料锅炉型号:SZL4-13型,1台排烟温度: 160℃烟气密度(标准状态下):1.34kg/m3空气过剩系数: =1.4排烟中飞灰占煤中不可燃成分的比例:16%烟气在锅炉出口前的阻力:800 Pa当地大气压力:97.86 Kpa冬季室外温度:-5℃空气中含水(排标准状态下):10g/kg 烟气其它性质按近似空气计算 燃料的工业分析值:YC =85% YH = 4% YS = 1% YO =5% Y N = 1% Y W = 6% Y A = 15% Y V =13%烟尘和SO 2排放标准按《锅炉大气污染物排放标准(GB13271—2001)》执行:烟尘浓度排放(标准标准状态下):200mg/m 3; 二氧化硫排放标准(标准标准状态下):900 mg/m 3。
四、计划安排1、资料查询和方案选定1天2、设计计算2天3、说明书编制及绘图2天五、设计内容和要求1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算2、净化系统设计方案的分析确定3、除尘器的选择和比较确定除尘器的类型、型号及规格,并确定其主要运行参数。
4、管布置及计算:确定各装置的位置及管道布置并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力5、风机及电机的选择设计根据净化系统所处理烟气量、烟气温度、系统阻力等计算选择风机种类、型号及电动机的种类和功率。
六、成果1、设计说明书设计说明书按设计程序编写,包括方案的确定、设计计算、设备选择和有关设计的简图(工艺管网简图和设备外形图)等内容。
燃煤锅炉烟气脱硫除尘治理项目工艺流程说明1.1脱硫工艺叙述四川某厂#5和#9燃煤锅炉烟气脱硫除尘治理项目配套的全烟气脱硫装置(以下简称FGD),采用二炉一塔的石灰石一石膏湿法脱硫工艺,脱硫效率按不小于96. 3%设计。
来自#5和#9锅炉电袋除尘器除尘的烟气经过入口挡板门进入脱硫塔,烟气中的S02与制浆系统制成的满足工艺要求的石灰石浆液发生一系列复杂的物理化学作用,生成亚硫酸钙和硫酸钙。
净化后的湿烟气由塔顶的烟囱直接排出。
由于亚硫酸钙不稳定,需进一步经氧化系统氧化成稳定的硫酸钙,硫酸钙结晶成石膏。
石膏浆液经石膏脱水系统制成石膏产品。
FGD工艺系统主要由石灰石浆液制备系统、烟气系统、吸收系统、浆液排空系统、石膏脱水系统、工艺水系统、压缩空气系统等组成。
工艺系统设计原则包括:(1)脱硫工艺采用湿式石灰石一石膏法。
(2)脱硫装置的烟气处理能力为#5炉和甘9炉二炉一塔的30~100%BMCR烟气量,脱硫效率按不低于96. 3%设计,处理后的烟气中S02含量不大于215mg/Nm3,烟尘浓度不大于30mg/Nm3o(3)脱硫系统设置100%烟气旁路,以保证脱硫装置在任何情况下不影响发电机组的安全运行。
装置所有可能的负荷范围。
1. 1. 5工艺水系统1. 1. 5. 1工艺描述为贯彻落实国家和重庆市的节水、节能降耗等环保要求,根据脱硫系统各用水点的需要,电厂分别为本工程提供工业水、循环冷却水和捞渣系统处理后回用水。
工艺水系统满足FGD装置正常运行和事故工况下整套FGD系统的用水。
脱硫工艺水泵出口水的主要用户为:氧化风机等设备冷却水、真空泵补水及密封水、脱硫系统冲洗水及所有浆液输送设备、输送管路、浆液箱的冲洗水等,并考虑了回收利用。
除雾器冲洗水泵出口水的主要用户为:除雾器的冲洗水(脱硫装置补充水)。
脱硫系统各用水点如下:•吸收塔除雾器冲洗;•各设备冷却水;•真空泵密封用水;•石灰石制浆和吸收塔氧化浆池液位调整;•石膏脱水建筑冲洗;•石膏及真空皮带脱水机冲洗;•脱硫场地冲洗;•设计中需要的各种其他用水。
DZL2-13型锅炉高硫无烟煤烟气袋式除尘湿式脱硫系统设计书1.工艺流程的选择及说明脱硫除尘工艺设计说明:双碱法烟气脱硫工艺主要包括吸收剂制备和补充系统,烟气系统,SO2吸收系统,脱硫产物处理系统四部分组成。
1.吸收剂制备和补充系统脱硫装置启动时用氢氧化钠作为吸收剂,氢氧化钠干粉料加入碱液罐中,加水配制成氢氧化钠碱液,在碱液罐中可以定期进行氢氧化钠的补充,以保证整个脱硫系统的正常运行及烟气的达标排放。
为避免再生生成的亚硫酸钙、硫酸钙也被打入脱硫塔容易造成管道及塔发生结垢、堵塞现象,可以加装瀑气装置进行强制氧化或特将水池做大,再生后的脱硫剂溶液经三级沉淀池充分沉淀保证大的颗粒物不被打回塔体。
另外,还可在循环泵前加装过滤器,过滤掉大颗粒物质和液体杂质。
2.烟气系统锅炉烟气经烟道进入除尘器进行除尘后进入脱硫塔,洗涤脱硫后的低温烟气经两级除雾器除去雾滴后进入主烟道,经过烟气再热后由烟囱排入大气。
当脱硫系统出现故障或检修停运时,系统关闭进出口挡板门,烟气经锅炉原烟道旁路进入烟囱排放。
3.SO2吸收系统锅炉烟气从烟道切向进入主塔底部,在塔螺旋上升中与沿塔下流的脱硫液接触,进行脱硫除尘,经脱水板除雾后,由引风机抽出排空。
脱硫液从螺旋板塔上部进入,在旋流板上被气流吹散,进行气叶两相的接触,完成脱硫除尘后从塔底流出,通过明渠流到综合循环池。
4. 脱硫产物处理系统脱硫系统的最终脱硫产物仍然是石膏浆,从曝气池底部排浆管排出,由排浆泵送入水力旋流器。
由于固体产物中掺杂有各种灰分及NaSO4,严重影响了石膏品质,所以一般以抛弃为主。
在水力旋流器,石膏浆被浓缩(固体含量约40%)之后用泵打到渣处理场,溢流液回流入再生池。
2.除尘器的设计及计算2.1燃煤锅炉烟气量、烟尘和二氧化硫浓度的计算2.1.1标准状况下理论空气量Qa'=4.67×(1.867C+5.56H+0.7S-0.7O)式中:C、H、S、O--分别为煤中各元素所含的质量分数Qa'=4.76×(1.867+0.65+5.56×0.04+0.7×0.03-0.7×0.02)=1.44×4.76=6.868(m3/㎏)2.1.2 标准状态下理论烟气量Qs'=1.867×(C+0.375S)+11.2H+1.24W+0.016 Qa¹+0.79 Qa¹+0.8N式中: Q a ′——标准状态下理论空气量 m 3/kg ; W ——煤中水分的的质量分数; N ——N 元素在煤中的质量分数。
燃煤锅炉烟气脱硫除尘设计1.设计依据1.1业主提供的设计技术参数:锅炉排气侧压力损18Pa1.2自然条件1.2.1气象最高气温℃,最低气温℃;夏季平均气压Hpa,冬季平均气压Hpa;最大风速m/s,平均风速m/s;最大降雨量mm,最小降雨量mm。
1.2.2水文地质地下水位高程为m。
最大冻土深度mm;地震烈度6度。
场地土类别3 类,海拔高度米。
1.3主机型号与参数锅炉型号:煤粉炉。
1.4技术要求①除尘效率:>99.8%;②脱硫效率:≥95%;③烟尘排放浓度:<mg/Nm3;④脱硫后的烟气温降:<65℃;⑤装置总阻力:<800pa;⑥碱液PH值:11~12.6 ;⑦排放烟气含湿率:≤6.5 %:⑧林格曼黑度1 级。
1.4.1国家对火电厂烟气SO2允许排放浓度:当燃煤含硫量S≤1.0%时,为2100mg/m3 ;当燃煤含硫量S>1.0%时,为1200mg/m3;1.4.2 国家现行SO2排放限值表新建、改建、扩建工程SO2排放限值1.5质量要求1.51烟气脱硫后含湿度控制在国家标准范围内,含湿率≤6.5 %,引风机不带水、不积灰,不震动;1.52主体设备正常使用寿命15年以上;1.53塔内设备不积灰、不结垢;1.54补水管、冲洗管为不锈钢厚壁管道或硬塑管;1.55主塔采用耐火阻燃玻璃钢材质制做。
2.技术规范与标准2.1技术要求按《HCRJ040-1999》规定执行;2.2火电厂大气污染物排放标准《GB13271-2001》;2.3小型火电厂设计规范《GB50049-94》;2.4国家环保局制定的《燃煤SO2排放污染防治技术政策》;2.5国家标准《GB13223—1996》,《JB/2Q4000.3-86》;2.6地方标准:按当地环保部门有关规定执行;2.7国家标准:《大气污染源综合排放标准》。
3.烟气脱硫技术方案3.1处理烟气量Q=132000m3/h。
根据国家环保局关于推广湿法脱硫的意见及企业现状,设计采用湿法脱硫工艺。
大气污染控制工程设计说明书某厂燃煤锅炉烟气除尘处理工程方案设计一、项目概述本工程的建设单位是某燃煤厂,旨在采用现代化工程技术,对燃煤锅炉的烟气进行全面的污染控制,实现烟气除尘处理的目的。
本项工程面临的主要污染物是固体颗粒物,中等颗粒物(PM10)和细颗粒物(PM2.5)。
本项工程项目得到了有关政府部门的批准。
二、设计方案2.1 工艺介绍本项工程采用电除尘工艺进行污染物的处理。
该工艺是基于静电原理,将烟气通过带电电极,使烟气中的颗粒物得到电荷,通过电场作用,将这些颗粒物聚集在带电电极上,从而达到除尘的目的。
该工艺具有高效、节能、环保、操作简单等特点,是烟气处理的主要方式之一。
2.2 设备组成本项工程采用两台电除尘器,主要包括以下设备:1) 烟道管道:由高温钢板制成,出口设置防爆门防止逆火、开启检修。
2) 电极:采用高强度硅钢板制成,经特殊加工成型而成,基本不生锈,同时可让烟气均匀地流过。
3) 输送系统:由脉冲式控制器、集尘罐、灰斗组成。
通过脉冲式控制器来控制电极的电压,从而达到除尘效果,集尘罐和灰斗则用来存放除尘后的粉尘。
4) 热风回收装置:通过烟气换热和废气处置设备,减少能源消耗。
2.3 工程参数1) 处理气体流量:36600Nm3/h;2) 处理的颗粒物类型:烟尘;3) 颗粒物排放浓度≤30mg/Nm3。
三、施工方案3.1 建设实施范围本项工程建设涉及的范围为燃煤锅炉污染控制系统。
3.2 施工工艺本项工程施工采用先预制后就地安装的方法,主要包括以下步骤:1) 电极的制作:将硅钢板进行特殊处理,使其成为带电的电极。
2) 设备的安装:根据设计要求,在燃煤锅炉污染控制系统中进行设备的安装和调试。
3) 烟道管道的制作和安装:根据设计要求,制作高温钢板烟道管道,并将其安装在燃煤锅炉污染控制系统中。
4) 输送系统的安装:安装脉冲式控制器、集尘罐、灰斗等输送系统。
3.3 施工周期本项工程的施工周期预计为45天。
某燃煤锅炉房烟气除尘脱硫系统设计一、背景介绍燃煤锅炉房是一个大型工业锅炉房,锅炉燃烧煤炭产生的烟气中含有大量的粉尘和二氧化硫等有害物质。
为了减少大气污染以及保护员工的健康和安全,需要对烟气进行除尘和脱硫处理。
二、整体设计思路该燃煤锅炉房烟气除尘脱硫系统设计的整体思路是先进行除尘处理,然后进行脱硫处理。
除尘设备选择电除尘器,脱硫设备选择湿法脱硫装置。
三、除尘系统设计除尘系统主要由电除尘器和风机组成。
电除尘器采用布袋式电除尘技术,布袋材料选择耐高温、耐腐蚀的玻璃纤维布袋。
根据锅炉燃烧煤炭产生的烟气量和粉尘浓度,确定了电除尘器的尺寸和数量。
电除尘器内部设置的高压电场通过高压直流电源供电,产生电场力使粉尘被捕集在布袋上,清洁的烟气经过排风管道排出。
为了保证系统的可靠性和运行效果,电除尘器需要定期清洗和维护。
脱硫系统主要由湿法脱硫装置、水泵和储液池组成。
湿法脱硫装置采用石灰石-石膏法脱硫技术。
石灰石经过破碎、磨细后与煤炭燃烧产生的二氧化硫反应生成石膏,同时产生大量的热量。
烟气经过预处理后进入湿法脱硫装置,与石灰石浆液进行反应,石膏经过沉淀后收集并处理。
水泵用于输送石灰石浆液和收集石膏产生的废水,储液池用于储存石灰石浆液。
五、控制系统设计控制系统主要由PLC控制系统和监控系统组成。
PLC控制系统用于对整个除尘脱硫系统进行自动化控制,包括设定相关参数、监测系统运行状态、报警,并实现与其他设备的联锁控制。
监控系统用于监测除尘脱硫系统的运行状态,包括各设备的工作状态、流量、压力等,并将数据发送到中央监控室进行实时监测和记录。
六、环境影响评价设计时需进行环境影响评价,包括对粉尘和二氧化硫排放浓度的限值、噪音和振动控制等方面的评估,并制定相应的环保措施和监测计划。
七、预算和进度计划根据以上设计要求,制定详细的预算和进度计划,包括设备采购、安装、调试和投产等工作。
以上是燃煤锅炉房烟气除尘脱硫系统的设计概述,详细设计需要进行更多的工程计算和技术选择,以及与相关部门和规范的沟通和协商。
目录一、引言 (1)1.1 烟气除尘脱硫的意义 (1)1.2 设计目的 (1)1.3 设计任务及容 (1)1.4 设计资料 (2)二、工艺方案的确定及说明 (3)2.1 工艺流程图 (3)2.2 基础资料的物料衡算 (3)2.3 工艺方案的初步选择与确定 (5)2.4 整体工艺方案说明 (5)三、主要处理单元的设计计算 (6)3.1 除尘器的选择和设计 (6)3.1.1 除尘器的选择 (6)3.1.2 袋式除尘器滤料的选择 (7)3.1.3 选择清灰方式 (9)3.1.4 袋式除尘器型号的选择 (10)3.2 脱硫设备设计 (11)3.2.1常见的烟气脱硫工艺 (11)3.2.2 比对脱硫技术 (12)3.2.3 脱硫技术的选择 (14)3.3 湿法脱硫简介和设计 (14)3.3.1 基本脱硫原理 (14)3.3.2 脱硫工艺流程 (15)3.3.3 脱硫影响因素 (15)3.4 脱硫中喷淋塔的计算 (16)3.4.1 塔流量计算 (16)3.4.2 喷淋塔径计算 (16)3.4.3 喷淋塔高计算 (17)3.4.4 氧化钙的用量 (18)3.5 烟囱设计 (19)3.5.1 烟囱高度计算 (19)3.5.2 烟囱直径计算 (19)3.5.3 烟囱温度降 (20)3.5.4 烟囱抽力计算 (20)四、官网的设置 (21)4.1 管道布置原则 (21)4.2 管道管径计算 (21)4.3 系统阻力计算 (22)五、风机和电动机的计算 (23)5.1 风机风量计算 (23)5.2风机风压计算 (23)5.3 电机功率计算 (25)六、总结 (26)七、主要参考文献 (27)一、引言1.1烟气除尘脱硫的意义目前,大气污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。
而大气污染可以说主要是人类活动造成的,大气污染对人体的舒适、健康的危害包括对人体的正常生活和生理的影响。
我国随着经济的快速发展,因燃煤排放的二氧化硫、颗粒物等有毒有害的污染物质急剧增多。
3×35t/h燃煤锅炉烟气脱硫工程设计方案目录第一章工程概况与总述 (4)1 概述 (4)2. 设计基础数据 (4)3. 锅炉及烟气系统现状 (5)4 主要设计原则 (9)5 安全与防火要求 (10)6 质量控制 (10)第二章FGD结构型式和技术性能 (14)1 FGD型式 (14)2 FGD布局原则 (14)3 FGD技术性能 (15)第三章脱硫工艺 (16)1 工艺技术 (16)2 工艺参数 (17)3 脱硫工艺系统 (18)4 工艺流程(详见施工图设计文件) (19)5烟气排放连续监测系统(CEMS) (21)6 工艺系统启动运行条件、运行特点和注意事项 (21)第四章电气系统 (22)1 供配电系统 (22)2 照明及检修系统 (23)第五章仪表和控制部分 (23)1 仪控系统 (23)2 仪控系统主要设备选型 (24)第六章消防、安全与环保 (24)1 脱硫系统构造 (24)2 生产原材料 (24)3 电气及仪控 (24)4 消防 (25)5 脱硫废液处置 (25)第七章运行费用 (25)第八章投资估算 (26)附件1:初步工期计划 (28)附件2:标准规范 (28)设计标准 (28)设备材料标准 (30)施工及验收标准 (33)运营检修标准 (34)第一章工程概况与总述1 概述1.1 工程概况鞍钢集团##业有限责任公司胡家庙子选矿厂是为胡家庙子铁矿配套而兴建的。
选矿厂装有SHL 35-1.27-AⅡ型35t/h燃煤蒸汽锅炉3台,供矿区生产、生活、采暖使用。
该热力工程2005年底建成。
据现场调查,该工程原设计烟气脱硫装置处于虚设状态。
为该热力系统建造正规有效的烟气脱硫装置,任务迫切。
本工程经过论证,可行性研究报告已通过鞍钢集团主管部门预审。
1.2 设计依据(1)《鞍钢胡家庙子选矿厂锅炉烟气脱硫工程可行性研究报告》(2)《胡家庙子选矿厂建设工程竣工环境保护验收调查报告》(3)现场调研、勘察数据和业主提供的相关资料。
题目:20t/h(蒸发量)燃煤锅炉烟气的除尘脱硫工艺设计班级:学号:姓名:指导老师:目录前言 (4)1设计任务书1.1课程设计题目1.2 设计原始材料 (6)2. 设计方案的选择确定 (7)2.1 除尘系统的论证选择 (7)2.1.1.2 旋风除尘器的结构设计及选用| (8)2.1.1 预除尘设备的论证选择 (8)2.1.1.1 旋风除尘器的工作原理、应用及特点 (8)2.1.1.2 旋风除尘器的结构设计及选用 (8)2.1.1.3 旋风除尘器分割粒径、分级效率和总效率的计算 (10)2.1.2 二级除尘设备的论证选择 (10)2.1.2.1二级除尘设备的工作原理、应用及特点 (15)2.1.2.2 二级除尘的结构设计 (17)2.1.3 除尘系统效果分析 (17)2.2 锅炉烟气脱硫工艺的论证选择 (17)2.3 风机和泵的选用及节能设备 (24)2.4 投资估算和经济分析 (24)2.5 设计结果综合评价 (25)3 附图1 旋风除尘器结构图附图2 烟气净化系统图我国大气治理概况我国大气污染严重,污染废气排放总量处于较高水平。
为控制和整治大气污染,“九五”以来,我国在污染排放控制技术等方面开展了大量研究开发工作,取得了许多新的成果,大气污染的防治也取得重要进展。
在“八五”、“九五”期间,国家辟出专款开展全球气候变化预测、影响和对策研究,在温室气体排放和温室效应机理、海洋对全球气候变化的影响、气候变化对社会经济与自然资源的影响等方面取得很大进展。
近年来,我国环境监测能力有了很大提高,初步形成了具有中国特色的环境监测技术和管理体系,环境监测工作的进展明显。
我国国民经济的高速发展推动了我国环保科技研究领域不断拓展,我国早期的环境科学偏重单纯研究污染引起的环境问题,现在扩展到全面研究生态系统、自然资源保护和全球性环境问题;特别是污染防治,由工业“三废”治理技术,扩展到综合防治技术,由点源的治理技术,扩展到区域性综合防治技术,并研究开发了无废少废的清洁生产工艺、废物资源化技术等。
设计(论文)说明书题目:20t/h锅炉烟气脱硫除尘工艺设计摘要本文通过对20t/h燃煤锅炉烟气脱硫除尘工艺及设备设计。
烟气的二氧化硫浓度为2000mg/N3m。
通过对脱硫工艺及除尘工艺的比选,最终确定使用钠碱法脱硫工艺及布袋除尘器除尘系统对锅炉烟气进行处理。
脱硫系统设备主要是脱硫塔。
通过对锅炉烟气成分进行分析,对脱硫系统工艺进行计算,最终计算整体脱硫工艺。
除尘器,通过计算过滤面积及分析粉尘性质,计算得到除尘器设备及选型。
关键词:锅炉烟气;钠碱脱硫工艺;布袋除尘器;设备计算ABSTRACTIn this paper, the process and equipment design of flue gas desulfurization and dust removal of 20t/h coal-fired boiler are introduced. The sulfur dioxide concentration of flue gas is 2000 mg /N3m. Through the comparison and selection of desulfurization process and dust removal process, it is finally determined to use sodium alkali desulfurization process and bag filter dust removal system to treat the boiler flue gas. Desulfurization system equipment is mainly desulfurization tower. Through the analysis of the components of boiler flue gas, the process of desulfurization system is calculated, and the overall desulfurization process is finally calculated. Through calculation of filter area and analysis of dust properties, deduster equipment and selection are calculated.Key words:Boiler flue gas;Sodium alkali desulfurization process;Bag filter;Equipment calculation目录第一章绪论 (1)第二章脱硫除尘工艺比选 (3)2.1脱硫工艺比选 (3)2.2除尘方案比选 (4)第三章锅炉烟气脱硫除尘系统工艺设计 (7)3.1设计依据和原则 (7)3.2技术要求 (8)3.3脱硫系统描述 (8)3.4除尘系统工艺描述 (10)3.5脱硫除尘工艺计算过程 (14)第四章脱硫除尘系统设备 (16)参考论文 (17)致谢 .............................................................................. 错误!未定义书签。
电厂2×125MW机组烟气脱硫工程设计说明书1总论1.1项目名称燃煤电厂2×125MW机组烟气脱硫系统设计。
1.2设计依据(1)设计任务书;(2)相关法律法规、技术标准及规范。
1.3设计范围和技术要求1.3.1 设计范围(1)燃煤电厂烟气脱硫的技术方案和工艺要求;(2)对烟气脱硫装置进行设计;(3)管道系统。
1.3.2技术要求达到国家排放标准及设计任务书中的要求。
1.4项目执行标准1.4.1本项目涉及的国家标准(1)环境空气质量标准GB 3095-1996。
其中二级标准规定SO2的浓度限值如下:年平均为0.06 mg/m3(标准状态),日平均为0.15mg/m3(标准状态),一个小时平均为0.5 mg/m3(标准状态)。
(2)火电厂大气污染排放标准GB 13223-2011。
其中规定如表1所示。
表1 火力发电锅炉及燃气轮机组大气污染物排放浓度限值单位:mg/m3(烟气黑度除外)度为100 mg/m3;锅炉烟尘最高允许排放浓度为30 mg/m31.4.2本项目执行国家标准及任务书中的排放要求。
2方案选择与工艺设计2.1设计目的通过本次设计,对石灰石-石膏湿法烟气脱硫工艺、双碱法、烟气循环流化床脱硫工艺优缺点进行比较,了解烟气脱硫工艺的基本流程以及在其过程中设计参数的选择、相应设备参数的计算,工艺流程图的绘制,以达到相应的国家或地方的相应标准。
2.2设计的参数本次设计参数如下:锅炉台数 2蒸发量 150t/h单台锅炉烟气量 53.2万m3/h锅炉排烟温度142℃锅炉排烟含尘量165 mg/ Nm3锅炉燃煤量 18t/h锅炉排烟含硫量 1346 mg/ Nm3要求脱硫效率达到90%,SO2允许排放浓度为100mg/m3;锅炉烟尘最高允许排放浓度为30 mg/m3。
2.3除尘器的选择由于电除尘器有一下特点:(1)除尘效率搞。
普遍使用的三个电场的除尘器,当叹气中的粉尘状态处于一般状态时,其捕集效率可达99%以上。
油田矿区供暖锅炉4X20t/h(1备)锅炉脱硫工程技术方案XXXXXXXXXX设备有限公司二0一七年八月十九日目录第一章概述第二章工程设计说明第三章脱硫除尘系统装置第四章人员配置及防护措施第五章环境保护第六章效益评估第七章主要技术经济指标第八章售后服务第一章概述1.工程简况锅炉运行时将排放一定量的粉尘和SO2,若不经处理直接外排,则会污染周边环境,危害周边居民的身体健康,产生酸雨,破坏生态平衡。
为了减少大气污染,保护环境,防止生态破坏,创造清洁适宜的环境,保护人体健康,需对其锅炉尾气进行治理。
我公司针对吉林油田矿区供暖锅炉的3台20吨(1备)锅炉烟气进行脱硫的方案设计。
根据现场勘查及实际安装位置,设计3台锅炉60t装机量共用一套脱硫器装置。
并且对过年第4台备用锅炉的脱硫处理,进行预先合理的设计和管路配接。
2.设计依据与设计目的2.1设计依据根据厂方提供的有关技术资料及要求为参考依据,并严格按照所有相关的设计规范与标准,编制本方案:§《锅炉大气污染物排放标准》GB13271-2001;§厂方提供的技术文件;§国家相关标准与规范。
2.2设计参数本工程的设计参数,主要依据厂方提供文件中的具体参数,其具体参数见表2-1。
表2-1 烟气参数2.3设计指标设计指标严格按照国家统一标准治理标准和业主的技术文件的要求,设计参数下表2-2。
表2-2 设计指标及要求2.4设计原则§认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准。
§选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。
§充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技术方案。
§系统设计布置要求实用性强、便于维护、低成本投资、长期运行平稳。
§设计采用钠钙双碱法脱硫工艺,该方法技术成熟、脱硫效率高、运行安全可靠、操作简便。
目录1、设计概论 (1)1.1 设计任务书 (1)1.2 通风除尘系统的设计程序、容和要求 (2)2、燃煤锅炉排烟量及烟尘和二氧化碳浓度的计算 (2)2.1 烟气量的计算 (2)2.2 烟气含尘浓度的计算 (4)2.3 烟气中二氧化硫浓度的计算 (4)3、净化系统设计方案的分析确定 (5)3.1 除尘器至少应达到的除尘效率 (6)3.2 除尘器的确定 (6)3.3 方案确定与论证 (8)4、除尘器、风机、烟囱的位置及管道布置 (9)4.1 各装置及管道布置的原则 (9)4.2 管径的确定 (10)5、烟囱的设计 (11)5.1 烟囱高度的确定 (11)5.2 烟囱直径的计算 (11)5.3 烟囱的抽力 (12)6、系统阻力计算 (13)6.1摩擦压力损失 (13)6.2 局部压力损失 (14)7、风机、电动机的选择及计算 (17)7.1 风机风量的计算 (17)7.2风机风压的计算 (17)8、系统中烟气温度的变化 (19)8.1 烟气在管道中的温度降 (19)8.2 烟气在烟囱中的温度降 (20)9、设备一览表 (21)10、净化处理设施的总平面布置图、立面图及剖面图 (22)参考文献 (24)总结 (25)辞 (26)1、设计概论1.1 设计任务书1.1.1设计题目:燃煤锅炉除尘系统设计1.1.2 设计原始资料(1) 锅炉房基本情况型号:SZL4—13型,共4台(每台2.8Mw)设计耗煤量:600kg/h(台)排烟温度:180℃烟气密度(标准状态下):1.34kg/ m3空气过剩系数:a=1.4排烟中飞灰占不可燃成分的比例:16%烟气在锅炉出口前阻力:800Pa当地大气压力:97.86kPa冬季室外温度:-1℃(2) 煤的工业分析值C Y=68% H Y=4% S Y=1% O Y=5%N Y=1% W Y=6% A Y=15%(3) 烟气性质空气含水(标准状态下)按0.01293kg/m3;烟气其他性质按空气计算(4) 处理要求按锅炉大气污染物排放标准(GB13271—2001)中二类区标准执行二氧化碳排放标准(标准状态下):900 mg/m3烟尘浓度排放标准(标准状态下):200 mg/m31.2 通风除尘系统的设计程序、容和要求(1) 燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。
学校:吉首大学院系:生物资源与环境科学学院专业:环境工程班级:2006 级环境工程*名:**学号:***********指导老师:史凯完成时间:2008 年12月31日目录第一章绪论 (4)1.1 工程概况 (4)1.2 国内外主流除脱硫工艺简介 (4)1.2.1 PS型燃煤锅炉烟气脱硫除尘技术 (4)1.2.2 GGT一Ⅰ型燃煤锅炉烟气脱硫器 (5)1.2.3 湿式冲旋脱硫除尘技术 (6)1.2.4 湿式旋风除尘脱硫技术 (6)1.2.5 麻石脱硫除尘技术 (6)1.2.6 湿式石灰石/石灰一石膏法 (7)1.2.7 几种脱硫技术的综合比较 (7)1.3 国内外主流除尘工艺技术现状 (8)第二章设计说明 (9)2.1 设计简介 (9)2.2 废气中所含污染物种类、浓度及温度 (10)2.3 设计规模 (10)2.4 设计范围 (10)2.5 设计指标 (10)第三章工艺设计 (11)3.1 总体设计准则 (11)3.2 废气处理方法选择 (11)3.2.1 除尘方法选择 (11)3.2.2 脱硫工艺选择 (13)3.3 系统工艺流程 (13)3.3.1 概述 (13)3.3.2 工艺流程图 (13)3.3.3 原理说明 (14)第四章治理工程内容 (14)4.1 除尘工艺 (14)4.1.1 工艺描述 (14)4.1.2 主要工艺设备功能简述 (15)4.1.3 相关设计参数计算 (18)4.2 脱硫工艺 (19)4.2.1 烟气系统 (20)4.2.2 SO2吸收系统 (22)4.2.3 石灰石浆液制备系统 (26)4.2.4 石膏脱水系统 (28)4.2.5 工艺水系统 (30)4.2.6 脱硫装置、烟道及浆液管道的防腐 (30)4.3 自动控制系统 (31)第五章劳动定员 (32)第六章投资估算 (32)第七章效益估算 (33)7.1 工艺系统物料消耗指标: (33)7.2 环境效益 (34)7.3 经济效益 (34)7.3.1 投入费用 (34)7.3.2 收益金额 (34)7.3.3 综合效益 (35)第八章后记 (35)参考文献及相关法规标准 (35)附图 (36)第一章绪论1.1 工程概况中国环境污染的规模居世界首位,大城市的环境污染状况在目前是世界上最严重的,全球大气污染最严重的20个城市中有10个在中国。
大气污染操纵工程课程设计燃煤锅炉烟尘脱硫除尘系统设计目录前言 (3)第1章设计依据 (3)、设计目的 (3)、设计原始资料 (4)、国家标准: (5)第2章锅炉气、尘有关数据计算 (5)燃煤锅炉烟气量、烟尘 (5)烟气量的计算 (5)标准状态下理论空气量 (5)标准状态下理论烟气量 (5)标准状态下实际烟气量 (5)工况下的烟气流量 (6)烟尘浓度和除尘效率 (6)烟尘浓度 (6)标准状态烟气浓度: (6)实际烟气浓度: (6)除尘效率 (6)二氧化硫的相关计算 (6)二氧化硫的浓度 (6)标准状态SO2的浓度: (6)脱硫效率 (6)第3章除硫方案的分析确信 (7)脱硫方案的确信 (7)吸收塔的相关计算 (7)吸收塔内流量计算 (7)吸收塔径的计算 (7)吸收塔径的高度 (7)第4章除尘方案的确信与选择 (9)除尘器的选择 (9)旋风除尘器的结构设计及选用 (10)袋式除尘器的选定 (12)第5章烟囱的设计及有关计算 (14)相关背景资料 (14)烟气释放热计算 (14)烟囱直径的计算 (14)烟囱的几何高度计算 (15)烟囱阻力计算 (15)第6章管道系统的设计计算 (16)管径的相关计算 (16)摩擦阻力损失计算 (16)系统总阻力计算 (17)第7章通风机、电动机的选择 (17)风机风量计算 (17)风机风压计算 (18)风机功率计算 (18)结论 (19)参考文献 (19)前言众所周知,大气污染已经变成了一个全世界性的问题,要紧有温室效应、臭氧层破坏和酸雨。
而大气污染能够说主若是人类活动造成的,大气污染对人体的舒适、健康的危害包括对人体的正常生活和生理的阻碍,大气污染已经直接阻碍到人们的躯体健康。
近百年来,西欧,美国,日本等工业发达国家大气污染事件日趋增多,本世纪50-60年代成为公害的泛滥时期,世界上由大气污染引发的公害事件接连发生,例如:英国伦敦烟雾事件,日本四日市哮喘事件,美国洛杉矶烟雾事件,印度博帕尔毒气泄漏事件等等,不仅严峻地危害居民健康,乃至造成数百人,数千人的死亡。
题目: 20t/h(蒸发量)燃煤锅炉烟气的除尘脱硫工艺设计班级:学号:姓名:指导老师:目录前言 (4)1设计任务书1.1课程设计题目1.2 设计原始材料 (6)2. 设计方案的选择确定 (7)2.1 除尘系统的论证选择 (7)2.1.1.2 旋风除尘器的结构设计及选用| (8)2.1.1 预除尘设备的论证选择 (8)2.1.1.1 旋风除尘器的工作原理、应用及特点 (8)2.1.1.2 旋风除尘器的结构设计及选用 (8)2.1.1.3 旋风除尘器分割粒径、分级效率和总效率的计算 (10)2.1.2 二级除尘设备的论证选择 (10)2.1.2.1二级除尘设备的工作原理、应用及特点 (15)2.1.2.2 二级除尘的结构设计 (17)2.1.3 除尘系统效果分析 (17)2.2 锅炉烟气脱硫工艺的论证选择 (17)2.3 风机和泵的选用及节能设备 (24)2.4 投资估算和经济分析 (24)2.5 设计结果综合评价 (25)3 附图1 旋风除尘器结构图附图2 烟气净化系统图我国大气治理概况我国大气污染严重,污染废气排放总量处于较高水平。
为控制和整治大气污染,“九五”以来,我国在污染排放控制技术等方面开展了大量研究开发工作,取得了许多新的成果,大气污染的防治也取得重要进展。
在“八五”、“九五”期间,国家辟出专款开展全球气候变化预测、影响和对策研究,在温室气体排放和温室效应机理、海洋对全球气候变化的影响、气候变化对社会经济与自然资源的影响等方面取得很大进展。
近年来,我国环境监测能力有了很大提高,初步形成了具有中国特色的环境监测技术和管理体系,环境监测工作的进展明显。
我国国民经济的高速发展推动了我国环保科技研究领域不断拓展,我国早期的环境科学偏重单纯研究污染引起的环境问题,现在扩展到全面研究生态系统、自然资源保护和全球性环境问题;特别是污染防治,由工业“三废”治理技术,扩展到综合防治技术,由点源的治理技术,扩展到区域性综合防治技术,并研究开发了无废少废的清洁生产工艺、废物资源化技术等。
在大气污染防治技术的研究开发方面,近年来我国取得众多成果,与此同时,如表1所列,大气污染的治理也取得了很大进展。
“九五”期间全国主要污染物排放总量控制计划基本完成。
在国内生产总值年均增长8.3%的情况下,在大气污染防治方面,2000年全国二氧化硫、烟尘、工业粉尘等项主要污染物的排放总量比“八五”末期分别下降了10~15%。
结合经济结构调整,国家取缔、关停了8.4万多家技术落后、浪费资源、质量低劣、污染环境和不符合安全生产条件的污染严重又没有治理前景的小煤矿、小钢铁、小水泥、小玻璃、小炼油、小火电等“十五小”企业,对高硫煤实行限产,有效地削减了污染物排放总量。
全国23万多家有污染的工业企业中,90%以上的企业实现了主要污染物达标排放。
46个考核的环境保护重点城市中,25个城市实现了大气质量按功能分区达标,有19个城市(区)被授予国家环境保护模范城市(区)。
重点区域的污染治理也取得了阶段性成果。
“两控区”二氧化硫排放总量降低,酸雨范围和频率得到控制,保持稳定。
北京市环境治理初见成效。
重点区域的污染治理带动了全国污染防治工作的全面展开。
大气污染防治技术为控制和整治大气污染,“九五”以来,我国在煤炭洁净加工开发技术、煤炭洁净高效燃烧技术、煤炭洁净转化技术、污染排放控制技术等方面开展了大量研究和开发,取得了许多新的成果。
与此同时,我国大气污染的防治也取得重要进展。
酸雨和二氧化硫控制区的污染防治工作已深入展开。
“两控区”内175个地市和电力、煤炭等行业编制了二氧化硫污染防治规划。
关停小火电机组198台(装机容量208万千瓦)。
8个省、自治区、直辖市开始限制燃煤含硫量。
目前,“两控区”年削减二氧化硫排放量近80万吨,93个城市二氧化硫的浓度达到国家环境质量标准。
如果中国的燃煤电站的烟气排放要达到目前发达国家规定的水平,SO2的排放量将从每年680万吨下降至170万吨,NOx的排放量将从100%下降至30%,CO2也将减排2500万吨。
中国控制和整治大气污染任重而道远。
设计标准主要参考《大气污染物排放限值》,工艺运行设计达到国家GB13271--91锅炉大气污染物排放标准。
除尘脱硫设计原则(1)脱硫率>80%。
除尘效率>97%;(2)技术较为成熟,运行费用低;(3)投资省;(4)能利用现有设施;(5)建造工期短,方便;(6)系统简便,易于操作管理;(7)主体设备的使用寿命>8a;(8)烟气脱硫以氧化镁为主要吸收剂,并充分利用锅炉排渣水的脱硫容量,达到以废治废,降低运行成本的目的。
能用于烟气脱硫和除尘的设备很多,但要满足运转稳定可靠、不影响生产同时去除且压力降较小等要求,以袋式除尘器和旋流板为宜。
1.设计任务书1.1课程设计题目设计蒸发量为20t/h 的燃煤锅炉烟气的除尘脱硫装置1.2. 设计原始材料1.煤的工业分析如下表(质量比,含N 量不计):2.锅炉型号:FG-35/3.82-M 型3.锅炉热效率:75%4.空气过剩系数:1.25.水的蒸发热:2570.8KJ/Kg6.烟尘的排放因子:30%7.烟气温度:473K8.烟气密度:1.18kg/m39.烟气粘度:2.4X10-5 pa ·s 10.尘粒密度:2250kg/m 3 11.烟气其他性质按空气计算12.烟气中烟尘颗粒粒径分布:13.按锅炉大气污染物排放标准(GB13217-2001)中二类区标准执行:标准状态下烟尘浓度排放标准:≤200mg/m3; 标准状态下SO2排放标准:≤900mg/m3;2.设计方案的选择确定2.1除尘系统的论证选择(1)锅炉烟气含尘、含硫量计算利用低位发热量、锅炉热效率、水的蒸发热求需煤量 蒸发量为20t/h 的锅炉所需热量为9.018.12.31.73.265.720939 水分 灰分 O S H C 低位发热需煤量设1kg 燃煤时理论烟气量:62.56+62.56×0.79/0.21=297.9 (mol/kg) 在标准状态下的体积为:297.9×22.4×10-3=6.67 (m 3/kg) 理论废气量:62.56×0.79/0.21+54.75+16+0.53+5=311.62mol/kg 在标准状态下理论废气体积:311.62×22.4×10-3=6.98 (m 3) 在标准状态下实际烟气体积:6.98+6.67×(1.2-1)=8.31 (m 3) SO2的浓度:C=4082 mg/m 3 烟尘的浓度:C=6534 mg/m 3在473T 时实际烟气量: Q=47951 m 3/h (2)烟尘的除尘效率计算按锅炉大气污染物排放标准(GB13217-2001),可以计算出 烟尘的除尘效率要达到:≧97﹪ (3) SO 2 的脱硫效率计算按锅炉大气污染物排放标准(GB13217-2001),计算出SO 2 的脱硫效率要达到:≧78﹪ (4)方案初步设计先用二级除尘系统除尘(一级预除尘用旋风除尘器、二级用袋式除尘器),再用旋流板塔氧化镁法脱硫。
注:考虑到压损过大对除尘器的不利影响和对操作的要求高,作为一级预除尘除尘要求不高,因h KJ /104.5110208.257063⨯=⨯⨯()ht h Kg /3.3/103.3%7520939104.5136=⨯=⨯⨯此,确定旋风除尘器型号时要求阻力不大于900Pa。
3.1 除尘系统的论证选择3.1.1 预除尘设备的论证选择烟气的预除尘设备一般选用重力沉降室、惯性除尘器、旋风除尘器、多管旋风除尘器和喷淋洗涤塔等。
它们基本性能如表2—1示。
表2—1 除尘设备的基本性能表2—2 各种除尘器设备费、耗钢量及能耗量指标表2—3较,旋风除尘器管理、制作方便,体积小、价格便宜,因此,选用旋风除尘器作为二级除尘系统中的预除尘。
2.1.1.1 旋风除尘器的工作原理、应用及特点旋风除尘器是利用旋转气流所产生的离心力将尘粒从合尘气流中分离出来的除尘装置。
它具有结构简单,体积较小,不需特殊的附属设备,造价较低.阻力中等,器内无运动部件,操作维修方便等优点。
旋风除尘器一般用于捕集5-15微米以上的颗粒.除尘效率可达80%以上,近年来经改进后的特制旋风除尘器.其除尘效率可达95%以上。
旋风除尘器的缺点是捕集微粒小于5微米的效率不高.旋风除尘器内气流与尘粒的运动概况:旋转气流的绝大部分沿器壁自圆简体,呈螺旋状由上向下向圆锥体底部运动,形成下降的外旋含尘气流,在强烈旋转过程中所产生的离心力将密度远远大于气体的尘粒甩向器壁,尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和自身的重力沿壁面下落进入集灰斗。
旋转下降的气流在到达圆锥体底部后.沿除尘器的轴心部位转而向上.形成上升的内旋气流,并由除尘器的排气管排出。
自进气口流人的另一小部分气流,则向旋风除尘器顶盖处流动,然后沿排气管外侧向下流动,当达到排气管下端时,即反转向上随上升的中心气流一同从诽气管排出,分散在其中的尘粒也随同被带走。
2.1.1.2 旋风除尘器的结构设计及选用1、尺寸计算(1)烟气处理量:Q=47951 (m3/h)(2)初步选用XLP/B型旋风除尘器,处理烟气量大,将选用10个并联,取ξ=5.8每个烟气处理量 47951/10=4795.1 (m3/h)u=(2△P/ρξ)0.5 =(2×900/(1.18×16.1))0.5=16.2m/s在这里取u=16m/s△P=876﹤900进口面积 A=Q/u=4795.1/16/3600=0.0832m2根据XLP/B型旋风除尘器尺寸比例入口宽度 b=(A/2)0.5=0.203m筒体直径 D=3.33b=0.676m参考XLP/B型旋风除尘器产品系列①,取D=700mm,则是XLP/B-7.0-Y型号参数见表2—4表2—4除尘器外形尺寸(3) 选型论证a×b=0.0882 m2u=Q/A=15.1 m/s△P=ξu2ρ/2=780.2因为采用的是并联,所以要乘一个压力系数变化 780.2×1.1=859 Pa﹤900 Pa 符合要求。
3.1.1.3 XLP/B型旋风除尘器的分割粒径、分级效率和总效率的计算b c50=0.27(μ D/3.14(ρp-ρ )u=6 (μm)表2—5经过预除尘后(一级处理),烟尘浓度是6534×(1-67.2﹪)=2144 mg/ m3二级除尘的效率将要达到:(2144-200)/2144=90.67 ﹪3.1.2 二级除尘设备的论证选择在选择除尘技术时,应充分考虑经济性、可靠性、适用性和社会性等方面的影响。