整式的加减知识点总结
- 格式:docx
- 大小:37.06 KB
- 文档页数:2
整式及其加减知识点总结一、整式的概念整式是由数字、字母和它们的乘积或商从而可以化简成(即分母不含字母的)整数幂次的代数和所组成的代数表达式叫做整式。
(a、b是常数,x是变量)二、整式的表达形式整式的表达形式主要有以下几种:1. 单项式:一个单独的数字、字母或者它们的乘积或商。
例如:3x、-5、a、bc、-7m^2n^32. 二项式:由两个单项式相加或相减而成。
例如:2x+3y、a^2-5b、-3x^2+4y^33. 多项式:由两个以上的单项式相加或相减而成。
例如:5x+3y-7、4a^2b+2ab^2+6、-2m^2n^2+3mn三、整式的基本性质1. 整式相加:只有同类项才能相加。
2. 整式相减:也只有同类项才能相减。
3. 同类项:具有相同的字母变量和其指数的项叫做同类项。
4. 单项式的加减法:单项式相加减时,先合并同类项,再进行加减运算。
四、整式的加减运算1. 合并同类项:将同类项合并成一项,系数相加。
例如:3x+2x+5x=10x2. 加减运算:合并同类项后,进行系数的加减运算。
例如:2x^2-3x^2= -x^2五、整式的乘法1. 单项式的乘法:用单项式乘以多项式时,将单项式的每一项与多项式进行乘法运算。
例如:2x(3x+5)=6x^2+10x2. 多项式的乘法:用多项式乘以多项式时,将每一项与另一个多项式进行乘法运算,然后将结果合并。
例如:(3x+2)(4x-7)=12x^2-21x+8x-14=12x^2-13x-14六、整式的除法整式的除法相对来说较为复杂,主要需要将被除式与除数进行长除法运算,得到商和余数。
例如:(3x^2+2x-5)/(x-3)=3x+11+28/(x-3)七、整式的加减乘除综合运算整式的加减乘除综合运算需要遵循一定的运算法则,主要是化整法、分解因式、提公因式、分项分式等运算方法。
八、整式方程整式方程是指含有未知数的整式的等式,例如:2x+3=7,4x^2-5x=0。
整式的加减知识点归纳及练习一、代数式概念代数式:用基本的运算符号(包括加+、减-、乘×、除÷、乘方、开方等)把数、表示数的字母连结而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
代数式书写规范:① 数及字母、字母及字母相乘时乘号省略不写,数字要写在字母前面,如12ab ;数字因数是1或-1时,“1”省略不写,如-mn ;② 除号要改写成分数线,如:a ÷b 要写成ba ; ③ 带分数及字母相乘时,带分数要化成假分数;如:ab 211要写成ab 23的形式;④ 若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来,如(12ab +2R )平方米。
二、整式的相关概念:单项式:表示数及字母的乘积的代数式叫单项式。
单独的一个数或一个字母也是代数式。
单项式的系数:单项式中的数字因数。
说明:在单项式中,系数只及数字因数有关;单项式的次数:一个单项式中,所有字母的指数和.。
说明:在单项式中,次数只及字母有关注意:(1)单项式表示数及字母相乘时,通常把数放在字母的前面; (2)单项式的系数包括前面的符号;(3)当一个单项式的系数是1或-1时,“1”通常省略不写; (4)单项式的系数是带分数时,通常写成假分数; (5)单项式中不含有加减运算,分母中也不能有字母。
多项式:几个单项式的和叫做多项式。
说明:多项式是由几个单项式相加得到的多项式的项数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;不含字母的项叫做常数项。
说明:多项式的项,包括符号.如多项式5-3x 2中,二次项是-3x 2.多项式的次数:多项式里,次数最高项的次数叫多项式的次数;说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.常数项的次数为0。
多项式的命名:若多项式里次数最高项的次数是n次,并且有m项,那么它就是n次m项式。
整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。
整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子,其中只包含乘法运算,不能有加、减、除等运算符号。
单项式分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。
知识点2:单项式的系数单项式中的数字因数称为这个单项式的系数。
系数可以是整数、分数或小数,并且有正有负。
确定一个单项式的系数要注意包含在它前面的符号。
对于只含有字母因素的单项式,其系数是1或-1.表示圆周率的π在单项式中应作为系数的一部分。
知识点3:单项式的次数一个单项式中,所有字母的指数和称为这个单项式的次数。
计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
单项式是一个单独字母时,它的指数是1.单项式的指数只和字母的指数有关,与系数的指数无关。
单项式通常根据指数进行命名。
知识点4:多项式的有关概念多项式是几个单项式的和,其中每个单项式称为多项式的项。
不含字母的项叫做常数项。
多项式里次数最高项的次数称为多项式的次数。
单项式与多项式统称整式。
B。
多项式是由单项式组成的,每一项都包含符号。
例如,多项式-2xy+6a-9由三个单项式-2xy、6a、-9组成,因此它是一个三项式。
多项式的次数是由组成它的单项式中次数最高的那个单项式的次数决定的。
例如,多项式-2xy+6a-9的次数是4,因为其中最高次项是-2xy,它的次数是4.这是一个四次三项式。
C。
在书写含乘法运算的式子时,需要注意以下几点:省略乘号时要小心,数字与字母相乘时数字必须写在字母前面,带分数要化成假分数。
在书写含除法运算的式子时,一般用分数线代替÷符号。
当书写含单位名称的式子时,遇到和差时要加括号,是积商时直接放。
D。
同类项指的是含有相同字母和相同指数的项。
同类项的系数和字母排列顺序不影响它们的同类性。
所有的常数项都是同类项,但单独的一项不能称为同类项,同类项至少要有两项。
整式的加减全章知识点总结整式的加减是代数中的基本运算之一,也是代数学习中的基础内容。
下面是整式的加减全章知识点总结,包括定义、规律、方法等详细内容。
1.定义整式是指由常数和未知量的系数与幂的乘积相加或相减得到的代数式。
其中,未知量的幂必须是非负整数。
例如,3x² - 5x + 2和4y³ - 2y² + y - 1都是整式。
2.规律(1) 同类项相加或相减同类项指未知量的幂和次数相同的项。
将同类项的系数相加或相减,然后将同类项的系数与该项的幂相乘,得到新的同类项。
例如,3x² - 5x + 2和2x² + 4x - 1是同类项,将它们相加,得到5x² - x + 1。
(2) 加减法的性质加减法有以下性质:加减法的顺序可以随意交换,不影响结果。
相同的式子相加减,结果为0。
例如,(3x² - 5x + 2) + (2x² + 4x - 1) = 5x² - x + 1,(3x² - 5x + 2) - (3x² - 2x + 1) = -3x + 1。
3.方法(1) 垂直加减法将同类项对齐,按照加减法的规则逐项计算,然后将结果写在下面,得到新的整式。
例如:3x² - 5x + 22x² + 4x - 15x² - x + 1(2) 括号展开法将括号内的每一项与另一个括号内的每一项相乘,然后将所得的每一项相加或相减,得到新的整式。
例如,将(3x - 2)(2x + 5)展开得到6x² + 11x - 10。
(3) 合并同类项将给定的整式中同类项合并,并按照同类项的系数大小进行排序,得到新的整式。
例如,将3x² + 2x + 4 + 2x² - 3x - 1合并同类项,得到5x² - x + 3。
4.注意事项(1) 一定要注意每一项的系数和幂,判断是否为同类项。
整式的加减全章知识点总结整式是数学中的一个概念,它是由常数和变量经过加法和减法运算组成的代数式。
在学习整式的加减运算时,我们需要掌握一些基本的知识点。
本文将对整式的加减运算进行全面总结,以帮助读者更好地理解和掌握这一知识。
1. 整式的定义整式是由常数项和各个变量项的系数乘积相加减而成的代数式。
常数项是没有变量的项,变量项是由变量的幂次方和系数相乘的项,系数是指变量项中的常数因子。
2. 整式的加法整式的加法是指将两个或多个整式相加得到一个新的整式。
在进行整式的加法运算时,需要按照变量的幂次从高到低的顺序进行相加,同类项的系数相加保持不变,如果没有同类项则直接相加。
3. 整式的减法整式的减法是指将一个整式减去另一个整式得到一个新的整式。
在进行整式的减法运算时,需要按照变量的幂次从高到低的顺序进行相减,同类项的系数相减保持不变,如果没有同类项则直接相减。
4. 同类项的合并在整式的加减运算中,如果存在相同的变量项,我们称它们为同类项。
在进行合并同类项时,需要将它们的系数相加保持不变,变量的幂次保持不变。
5. 单项式和多项式单项式是只有一个变量项的整式,例如3x、-5xy²等。
多项式是由多个单项式相加减而成的整式,例如2x²+3xy+1、-4x²y²+5xy。
6. 整式的加减乘法运算整式的加减运算已经在前面进行了详细介绍。
整式的乘法是指将两个整式相乘得到一个新的整式。
在进行整式的乘法运算时,要将每个变量项按照幂次进行相乘,同时将系数相乘。
7. 完全平方公式完全平方公式是整式中的一个重要概念。
对于一个二次整式a²+2ab+b²,它可以写成(a+b)²的形式,称为完全平方公式。
8. 整式的应用整式的加减运算是代数学中非常重要的一部分,它在各个学科的应用中都起到了重要的作用。
在物理、经济学等领域,整式的加减运算被广泛应用于问题的建模和解决。
通过对整式的加减运算的全面总结,我们对整式的概念、加减法的运算规则以及应用进行了详细的了解。
初一数学整式的加减的知识点_知识点总结初一数学整式的加减的知识点 - 知识点总结在初一数学学习中,整式的加减是一个重要的知识点。
掌握了整式的加减运算规则,将有助于我们解决各种复杂的数学问题。
本文将对初一数学整式的加减的知识点进行总结和归纳。
一、整式的基本概念整式是指由数字、字母及其乘积按照代数运算法则相加减构成的代数式。
整式的加减运算是指按照相同变量的幂次相同的原则进行合并和化简。
二、整式的加法1. 同类项合并在整式的加法中,首先需要将同类项进行合并。
所谓同类项,是指它们具有相同的字母或常数因子。
例如:2x + 3x - 5x + 4y - 2y,将变量x和y的系数相同的项合并,得到:2x - 5x - 2y。
2. 合并同类项后的化简合并同类项后,我们可以对整式进行进一步的化简。
将同类项相加减得到一个系数,并保留原有的字母部分。
例如:2x - 5x - 2y 可进一步化简为 -3x - 2y。
三、整式的减法整式的减法也是按照相同变量的幂次相同的原则进行合并和化简,与加法类似。
例如:(2x + 3y) - (x - y),将括号内的加法运算符变为减法运算符,然后进行同类项合并,得到:2x + 4y。
四、整式加减混合运算整式的加减运算可以与其他运算符混合进行运算。
具体的计算顺序是按照数学运算的规则进行,先进行括号内的计算,然后按照乘方、乘法、除法、加法、减法的顺序进行计算。
例如:(2x^2 + 3xy) - (x^2 - 2xy) + 4y^2,首先进行括号内的运算,得到:2x^2 + 3xy - x^2 + 2xy + 4y^2,然后进行同类项合并,得到:x^2 + 5xy + 4y^2。
五、整式加减的注意事项1. 不同变量之间的项不能合并。
例如:2x + 3y - x,2x和-x是同类项,可以合并为x,但是3y是与其他项不同类的项,不能与其它项合并。
所以最终结果为:x + 3y。
2. 注意减法的特殊处理。
整式其加减知识点总结一、整式的基本概念1. 整式:由正整数幂、变量和它们的积(包括系数)以及它们的和或差组成的式子称为整式。
2. 字母的幂:整式中的变量乘方。
3. 项:整式中的单个元素,可以是常数、变量或者它们的乘积。
4. 系数:整式中变量的乘方的系数,可以是数字或者其他变量的多项式。
5. 次数:整式中变量的幂次的最高指数。
二、整式的加法1. 整式的加法公式:将同类项相加,即将具有相同字母幂的项相加,并将结果写成一个整式。
2. 同类项:具有相同字母幂的项即为同类项。
3. 加法运算规则:将同类项的系数相加,并将相同的字母幂保持不变。
三、整式的减法1. 整式的减法公式:与整式的加法类似,只是将同类项相减,并将结果写成一个整式。
2. 减法运算规则:将同类项的系数相减,并将相同的字母幂保持不变。
四、整式的加减混合运算1. 整式的加减混合运算:将整式的加法和减法相结合,首先将同类项相加或相减,然后将结果写成一个整式。
2. 加减混合运算规则:先将同类项相加或相减,然后将结果整理成一个整式。
3. 注意事项:注意符号的加减变换,并且要注意合并同类项时系数的变化。
五、整式加减的化简1. 整式加减的化简:将整式中的同类项相加或相减,然后将结果整理成一个简化的整式。
2. 通常包括的步骤:合并同类项、整理系数、整理变量。
六、整式加减的应用1. 代数方程式的整理:将代数方程式中的整式进行加减混合运算,将同类项进行合并后化简方程式。
2. 代数方程式的解:通过整式的加减混合运算,可以更方便地求解代数方程式,从而得到方程的解。
七、整式加减的补充1. 整式的系数:整式中变量的乘方的系数可以是数字,也可以是其他变量的多项式。
2. 多项式的次数:整式中变量的幂次的最高指数即为整式的次数。
3. 整式的导数:整式的导数表示对整式中的变量求导数。
4. 整式的积分:整式的积分表示对整式中的变量求不定积分。
综上所述,整式的加减是代数中的基础运算,需要掌握多项式的各种形式以及相关运算规则。
整式的运算》知识点总结一、整式的加减运算整式的加减运算是指对两个或多个整式进行加法或减法运算。
整式的加减运算可以分为以下几种情况:1. 同类项的加减运算同类项是指含有相同字母的变量,并且这些变量的指数相同的项。
同类项的加减运算可按如下步骤进行:a) 把括号内的加减式化简为同类项;b) 把同类项的系数相加或者相减;c) 合并同类项。
例如:(2x^2 + 3x + 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 22. 整式的加法整式的加法是指对两个或多个整式进行加法运算。
a) 把各个整式的同类项相加;b) 将合并后的结果写在一起。
例如:(2x^2 + 3x + 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 23. 整式的减法整式的减法是指对两个整式进行减法运算。
a) 把被减式变成它的相反数;b) 将变号后的被减式写成加法;c) 把变号后的被减式和减数进行加法运算;d) 把同类项相加。
例如:(2x^2 + 3x + 5) - (4x^2 + 2x - 3)变号得:(2x^2 - 3x - 5) + (4x^2 + 2x - 3)合并同类项得:(2x^2 + 4x^2) + (3x + 2x) + (5 - 3) = 6x^2 + 5x + 2二、整式的乘法运算整式的乘法运算是指对两个整式进行乘法运算。
整式的乘法运算是比较复杂的,需要遵循以下规则进行计算:1. 同类项的乘法同类项的乘法是指对两个同类项进行乘法运算。
乘法运算时,同类项的系数相乘,变量的指数相加。
例如:(2x^2)(3x^2) = 6x^42. 乘法分配律整式的乘法运算满足乘法分配律,即a(b + c) = ab + ac。
其中a为整式,b和c为单项式或者多项式。
整式的加减知识点总结整式的加减知识点总结一、整式的加法整式是指由常数、变量和它们的乘积及乘方组成的代数式。
整式的加法是指将同类项相加的运算。
1. 同类项同类项是指具有相同字母和相同指数的项。
例如,a^2b和2a^2b是同类项,但a^2b和ab^2不是同类项。
2. 加法法则将同类项的系数相加,字母和指数保持不变。
例如,将3ab+2ab相加时,可将系数相加得到5ab,字母和指数保持不变。
3. 零多项式零多项式是指系数为0的整式。
将零多项式与任何整式相加的结果都是原来的整式。
例如,将3ab+(-3ab)相加,结果为0。
二、整式的减法整式的减法是指将两个整式相减的运算。
1. 减法法则将减数改变符号后,再按照加法法则进行运算。
例如,将3ab-2ab相减,可将减数改变符号得到-2ab,然后按照加法法则将同类项相减得到ab。
2. 减法的特例减法的特例是指减数和被减数相等的情况,结果为零多项式。
例如,a^2b-a^2b的结果为0。
三、整式的加减混合运算整式的加减混合运算是指包含加法和减法的整式运算。
1. 先化简同类项在进行加减混合运算时,首先将同类项按照加法法则化简。
例如,将3ab-2ab+5ab-4ab化简为(3-2+5-4)ab。
2. 再合并同类项化简后,将同类项的系数相加,字母和指数保持不变。
例如,将(3-2+5-4)ab合并为2ab。
3. 注意符号在进行加减混合运算时,注意同类项前的正负号。
对于同类项之间的减法,可以看作是将减数改变符号后与被减数进行加法运算。
例如,将3ab+(-2ab)相加,得到ab。
四、实例分析下面通过一些实例来对整式的加减进行更详细的说明。
例1:将4a^2b-3ab+2b^2-5a^2b化简为最简整式。
解:首先化简同类项,得到(4-5)a^2b+(-3)b^2。
然后合并同类项,得到(-1)a^2b+(-3)b^2。
最终结果为-a^2b-3b^2。
例2:将a^3+2a^2-3ab+4b^2-5a^3+6ab-7b^2化简为最简整式。
可编辑修改精选全文完整版第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点2、单项式的系数 单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2. (3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π. 知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.。
(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式-43242z y x 的次数是字母z y x ,,的指数和,即2+3+4=9而不是13次 (4)单项式通常根据字母的次数进行命名。
整式加减知识点总结大全整式是由数字、字母和它们的积与商的有限次加减所组成的代数式。
整式是代数的基础,它在各种代数计算中起着非常重要的作用。
整式加减是整式的基本运算,掌握整式加减的知识对于学习代数具有重要意义,下面就整式加减的知识点进行总结。
一、整式的分类整式根据其项的形式可以分为单项式、多项式和零项式。
1. 单项式单项式是由一个或几个变量的乘积组成的代数式,其中每个变量的指数只能是非负整数。
例如:3x、-5xy、2x²y³等都是单项式。
2. 多项式多项式是由单项式的有限和组成的代数式,其中每一项的指数可以是非负整数,其形式为:P(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ,其中a₀、a₁、a₂...aₙ为常数,x为变量。
3. 零项式零项式是不包含变量的常数,其值为0。
例如:0、-2、3a-3a等都是零项式。
二、整式加减的运算法则1. 单项式的加减单项式的加减法规则是将同类项的系数相加或相减,保持字母部分不变。
例如:3x - 2x = x、-5xy + 3xy = -2xy。
2. 多项式的加减多项式的加减法规则是将同类项的系数相加或相减,保持字母部分不变。
例如:(3x² + 4x - 2) + (-2x² + 3x + 5) = x² + 7x + 3。
3. 零项式的加减零项式与非零项式相加或相减时,不改变非零项式的值。
例如:3x + 0 = 3x、4y - 0 = 4y。
三、整式加减的步骤整式的加减运算步骤如下:1. 将整式按照变量的指数从高到低排列;2. 整理同类项,即将同类项的系数相加或相减;3. 合并同类项,得到最终的结果。
四、整式加减的应用整式加减是代数中的基本运算,它在各种代数计算中都有着重要的应用,例如:1. 方程的加减变形;2. 不定方程的整理;3. 代数式的化简等。
五、整式加减的练习为了更好地掌握整式加减的知识,可以通过大量的练习来加深理解和提高运算能力。
整式的加减全章知识点总结一、整式的基本概念1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如,单项式 5x 的系数是 5,次数是 1;单项式-3xy²的系数是-3,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里,次数最高项的次数,就是这个多项式的次数。
例如,多项式 2x² 3x + 1 有三项,分别是 2x²、-3x、1,其中 1是常数项,次数最高项是2x²,次数为2,所以这个多项式的次数是2。
3、整式单项式和多项式统称为整式。
二、整式的加减1、同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如,5x²y 和-3x²y 是同类项,4 和-7 是同类项。
2、合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如,计算 3x²+ 2x²,因为 3x²和 2x²是同类项,所以合并同类项后结果为 5x²。
3、去括号法则(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“ ”号,把括号和它前面的“ ”号去掉后,原括号里各项的符号都要改变。
例如,a +(b c) = a + b c;a (b c) = a b + c 。
4、整式的加减运算一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
例如,计算(2x² 3x + 1) (x²+ 2x 5) ,先去括号得到 2x² 3x +1 x² 2x + 5 ,然后合并同类项得到 x² 5x + 6 。
整式的加减知识点表格式总结一、整式的概念1. 整式的定义整式是由数字、字母和它们的积、商以及各种加、减、乘、除运算符号连接而成的代数式。
2. 整式的分类- 单项式:只包含一个项的整式,如3x、-5y、2xy等。
- 多项式:包含两个或两个以上的项的整式,如3x+4y、2x^2-5xy+7等。
二、整式的加减运算1. 单项式的加减运算规则对同类项合并,即对权相同、同类项的系数进行加减运算。
2. 多项式的加减运算规则先对同类项进行合并,然后按照新的系数和字母的次数写出结果。
三、整式加减的步骤1. 找同类项对于多项式,首先找出所有的同类项,即具有相同字母和字母次数的项。
2. 合并同类项对于单项式或多项式,合并同类项,即将同类项的系数相加或相减,并保持字母部分不变。
四、整式的加减练习1. 简单的单项式加减练习计算3x-5x+2x的结果。
解:3x-5x+2x = 02. 复杂的多项式加减练习计算2x^2-3xy+5x^2-2xy的结果。
解:2x^2-3xy+5x^2-2xy = 7x^2-5xy五、个人观点和理解整式的加减运算需要注意找同类项、合并同类项的步骤,而且对于多项式的加减需要更加细心和耐心。
通过练习和实践,我逐渐领会了整式加减运算的规律,也提高了自己的代数运算能力。
在本文中,我们总结了整式的加减知识点,并给出了相关的练习和个人观点。
希望通过这篇文章,你能更加深入地理解整式的加减运算,并且能够灵活运用这一知识点。
整式的加减运算是代数学中的基础知识,对于学习代数的同学来说是非常重要的。
在进行整式的加减运算时,我们需要掌握一些基本的规则和步骤,同时也需要通过大量的练习来加深对整式加减运算的理解和掌握。
在这里,我将进一步扩展整式的加减知识点,并通过具体的例题来帮助大家更加深入地理解这一知识点。
我们再次回顾一下整式的定义和分类。
整式是由数字、字母和它们的积、商以及各种加、减、乘、除运算符号连接而成的代数式。
而整式又分为单项式和多项式两种,单项式只包含一个项,而多项式包含两个或两个以上的项。
整式的加减专题知识点常考(典型)题型重难点题型(含详细答案)一、目录二、知识点1.整式的加减定义2.整式的加减原则3.整式的加减步骤三、常考题型1.基础练题2.提高练题四、重难点题型1.含有分式的整式加减2.含有根式的整式加减3.含有绝对值的整式加减五、详细答案二、知识点1.整式的加减定义整式加减是指将同类项合并,最终得到一个简化的整式的过程。
整式是由各种数的积和和式构成,包括常数项、一次项、二次项等。
2.整式的加减原则在整式加减中,只有同类项才能相加减。
同类项是指变量的指数相同的项,例如2x^2和5x^2就是同类项,但2x^2和5x^3不是同类项。
3.整式的加减步骤整式加减的步骤如下:1.将同类项放在一起。
2.对同类项的系数进行加减运算。
3.将结果合并,得到简化后的整式。
三、常考题型1.基础练题例题:将3x^2+5x-2和2x^2-3x+1相加。
解题思路:将同类项放在一起,得到5x^2+2x-1,即为答案。
答案:5x^2+2x-12.提高练题例题:将4x^2+3x-1和2x^2-5x+3相减。
解题思路:将同类项放在一起,得到2x^2+8x-4,即为答案。
答案:2x^2+8x-4四、重难点题型1.含有分式的整式加减例题:将(2x^2+3)/(x+1)和(3x-1)/(x+1)相加。
解题思路:先将分式化简为同分母,得到(2x^2+3+3x-1)/(x+1),化简后得到(2x^2+3x+2)/(x+1),即为答案。
答案:(2x^2+3x+2)/(x+1)2.含有根式的整式加减例题:将3√2x+5和5√2x-2相减。
解题思路:将同类项放在一起,得到(3-5)√2x+7,化简后得到-2√2x+7,即为答案。
答案:-2√2x+73.含有绝对值的整式加减例题:将|2x+1|+|3x-2|和|4x-3|相减。
解题思路:考虑绝对值的取值范围,将式子拆分为两部分,得到(2x+1+3x-2)-(4x-3)和(4x-3)-(2x+1+3x-2),化简后得到5x-1和-x,即为答案。
整式加减运算知识点总结一、基本概念1. 整式:由字母和数字以及加减乘除运算符号组成的代数表达式。
2. 同类项:指整式中具有相同字母和相同指数的项,可以进行合并或者加减运算。
3. 合并同类项:将整式中的同类项合并在一起,相同字母和相同指数的项相加或相减合并成一个项。
4. 去括号:整式中的加减运算可以通过去括号的方法进行简化。
5. 加减运算法则:整式的加减运算要遵循加减法法则,即同类项之间可以相互加减,非同类项不能相加减。
6. 幂的加减法则:指出两个同底数的幂相加减时,将底数不变,指数加减。
二、加减整式的步骤加减整式的步骤主要分为以下几个:1. 去括号:首先将整式中的括号去掉,展开整式。
2. 合并同类项:将整式中的同类项合并在一起。
3. 化简:对合并后的整式进行简化,得到最简形式。
4. 检查:最后检查整式是否还有合并的同类项,如果有则继续合并直至无法合并。
例题一:(3x+5y)-(2x-3y)解:1. 去括号,展开整式,得到3x+5y-2x+3y。
2. 合并同类项,得到3x-2x+5y+3y。
3. 化简,得到x+8y。
4. 检查,已经没有同类项可以合并,所以最终结果为x+8y。
例题二:(6m^2-4n^2)+(5m^2-3n^2)-(2m^2+7n^2)解:1. 去括号,展开整式,得到6m^2-4n^2+5m^2-3n^2-2m^2-7n^2。
2. 合并同类项,得到6m^2+5m^2-2m^2-4n^2-3n^2-7n^2。
3. 化简,得到9m^2-14n^2。
4. 检查,已经没有同类项可以合并,所以最终结果为9m^2-14n^2。
三、应用题在实际问题中, 我们经常会遇到需要用整式进行加减运算的情况。
例题三:假设甲、乙两人相约齐合作种树,甲种了a棵树,乙种了b棵树,现在想统一收拾,问他们共种了多少棵树?解:这个问题可以用整式来表示和解决。
甲、乙两人共种的树的数量可以表示为a+b。
这是一个整式的加法运算。
整式的加减知识要点归纳一、根底知识:知识点一:用字母表示数用字母表示数就是用字母或含字母的式子表示数和数量关系,它是从算术到代数的重要转变。
而用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了.举例:如果用a 、b 表示任意两个有理数,那么加法交换律可以用字母表示为:a +b =b +a .乘法交换律可以用字母表示为:ab =ba要点诠释:〔1〕当数字与字母相乘时,乘号通常省略不写或简写为“·〞,且数字在前,字母在后,假设数字是带分数,要化为假分数,如112 ×a 写成32 ·a 或32 a ;〔2〕字母与字母相乘时,乘号通常省略不写或简写为“·〞,如a ×b 写成a ·b 或ba ;〔3〕除法运算写成分数形式,如1÷a 通常写作1a (a ≠0) 知识点二:单项式 由数与字母的积组成的式子叫做单项式,例如, 13 r 2h 、、abc 、-m 都是单项式.其中,单项式中的数字因数叫做这个单项式的系数,所有字母的指数的和叫做这个单项式的次数。
例如,13 r 2h 的系数是13 ,次数是3;的系数是,次数是1;abc 的系数是1,次数是3;-m 的系数是-1,次数是1.要点诠释:1、特别地,单独一个数或一个字母也是单项式.2、单项式的系数包括它前面的符号。
3、单项式的系数是1或-1时,通常1省略不写,如-k ,pq 2等,单项式的系数是带分数时,通常化成假分数。
如写成4、单项式的次数仅仅与字母有关,是单项式中所有字母的指数的和。
特别地,单项式b 的次数是1,常数-5的次数是0,而9×103a 2b 3c 的次数是6,与103无关。
5、要正确区分单项式的次数与单项式中字母的次数,如6p 2q 的次数是3,其中字母p 的次数是2。
6、圆周率π是常数。
知识点三:多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式有三项,它们是,-2x,5.其中5是常数项.多项式的项数与次数:一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式是一个二次三项式.要点诠释:1、多项式的每一项都包括它前面的符号。
整式的加减知识点总结
整式的加减知识点总结
一、引言
整式是在代数学中常见的一种表达形式,也是解决各种代数问题的基础工具。
整式的加减运算是整式运算中最基础、最常见的操作之一,掌握整式的加减运算规则对于学习代数学非常重要。
本文将从整式的定义、整式的加减运算规则、练习题与解析等方面,对整式的加减运算知识点进行总结。
二、整式的定义
整式是由字母、常数及其乘方以及它们的积与和组成的代数表达式。
整式的一般形式为:
aₙxⁿ + aₙ₋₁xⁿ⁻¹ + … + a₁x + a₀
其中,aₙ、aₙ₋₁…、a₁和a₀是常数系数,x是字母。
三、整式的加减运算规则
1. 相同的字母幂相加减:当两个整式的相同字母幂相加减时,直接把系数相加减即可。
例如:3x² + 5x² = 8x²;6x³ - 2x³ = 4x³
2. 不同的字母幂相加减:当两个整式中的字母幂不相同时,
无法进行直接加减运算,需要按照字母幂的大小进行整理。
例如:4x³ - 2x² + 3x⁴ - 5 = 3x⁴ + 4x³ - 2x² - 5
3. 加减运算的性质:
(1) 交换律:a + b = b + a,a - b ≠ b - a
(2) 结合律:(a + b) + c = a + (b + c),(a - b) - c ≠
a - (
b - c)
(3) 分配律:a(b + c) = ab + ac,a(b - c) = ab - ac
针对整式的加减运算规则,需要注意运算符的使用和字母幂的
整理。
四、练习题与解析
1. 计算下列整式的和:2x² + 3 - 5x + 4x² + 7
解析:同类项相加,得到:(2x² + 4x²) + (3 + 7) - 5x =
6x² + 10 - 5x = 6x² - 5x + 10
2. 计算下列整式的差:6x³ - 4x² + 2x - 8 - 2x³ + 5x² - 7x + 6
解析:同类项相加,得到:(6x³ - 2x³) + (-4x² + 5x²) + (2x - 7x) + (-8 + 6) = 4x³ + x² - 5x - 2
五、总结
整式的加减运算是代数学中重要的基础知识点,常见的代数问题中都需要用到整式的加减运算。
在进行整式的加减运算时,需要注意同类项的相加减和不同字母幂的整理。
同时,利用加减运算的性质和分配律,可以更加灵活地计算整式的和差。
通过大量的练习,掌握整式的加减运算规则,能够更好地应用于解决实际问题。
希望本文的总结对于学习整式的加减运算有所帮助
整式的加减运算是代数学中的基础操作,需要注意运算符的使用和同类项的相加减。
在进行整式的加减运算时,要将同类项进行合并,并整理字母幂。
通过加减运算的性质和分配律,可以更加灵活地计算整式的和差。
掌握整式的加减运算规则对于解决代数问题非常重要。
通过大量的练习,能够提高对整式加减运算的熟练程度,从而更好地应用于实际问题的解决。
整式的加减运算是代数学中的基础知识,对于学习代数学有着重要的意义。