高级微观经济学 第八章 博弈论
- 格式:doc
- 大小:4.36 MB
- 文档页数:54
博弈论知识总结博弈论概述:1、博弈论概念: 博弈论:就是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题。
博弈论研究的假设:1、 决策主体是理性的,最大化自己的收益。
2、 完全理性是共同知识3、 每个参与人被假定为可以对所处环境以及其他参与者的行为形成正确的信念与预期2、和博弈有关的变量:博弈参与人:博弈中选择行动以最大化自己受益的决策主体。
行动:参与人的决策选择 战略:参与人的行动规则,即事件与决策主体行动之间的映射,也是参与人行动的规则。
信息:参与人在博弈中的知识,尤其是其他决策主体的战略、收益、类型(不完全信息)等的信息。
完全信息:每个参与人对其他参与人的支付函数有准确的了解;完美信息:在博弈过程的任何时点每个参与人都能观察并记忆之前各局中人所选择的行动,否则为不完美信息。
不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信息,即存在着有关其他参与人的不确定性因素。
支付:决策主体在博弈中的收益。
在博弈中支付是所有决策主题所选择的行动的函数。
从经济学的角度讲,博弈是决策主体之间的相互作用,因此和传统个人决策存在着区别: 3、博弈论与传统决策的区别:1、 传统微观经济学的个人决策就是在给定市场价格、消费者收入条件下,最大化自己效用,研究工具是无差异曲线。
可表示为:maxU(P ,I),其中P 为市场价格,I 为消费者可支配收入。
2、 其他消费者对个人的综合影响表示为一个参数——市场价格,所以在市场价格既定下,消费者效用只依赖于自己的收入和偏好,不用考虑其他消费者的影响。
但是在博弈论理个人效用函数还依赖于其他决策者的选择和效用函数。
4、博弈的表示形式:战略式博弈和扩展式博弈战略式博弈:是博弈问题的一种规范性描述,有时亦称标准式博弈。
战略式博弈是一种假设每个参与人仅选择一次行动或战略,并且参与人同时进行选择的决策模型,因此,从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。
第八章博弈论一、重点和难点(一)重点1.博弈论及其基本概念2.纳什均衡3.占优策略均衡4.囚徒困境博弈(二)难点1.最小最大值(或最大最小值)策略2.子博弈精炼纳什均衡3.动态博弈战略行动4.不完全信息静态博弈5.不完全信息动态博弈二、关键概念博弈零和博弈非常和博弈囚徒困境纳什均衡支付子博弈精炼纳什均衡完全信息静态博弈占优策略均衡重复博弈战略移动可信威胁豪尔绍尼转换三、习题(一)单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。
A. 效用B. 支付C. 决策D. 利润2.博弈中通常包括下面的内容,除了()。
A.规则B.占优战略均衡C.策略D.结局3.在具有占优战略均衡的囚徒困境博弈中()。
A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力()。
A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是()。
A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。
A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的战略称为()。
A.一报还一报的战略B.激发战略C.双头战略D.主导企业战略8.在囚徒困境的博弈中,合作策略会导致()。
A.博弈双方都获胜B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在双寡头中存在联合协议可以实现整个行业的利润最大化,则()。
A.每个企业的产量必须相等B.该行业的产出水平是有效的C.该行业的边际收益必须等于总产出水平的边际成本D.如果没有联合协议,总产量会更大10.在什么时候,囚徒困境式博弈均衡最可能实现()。
第八章 博弈论前面章节对经济人最优决策的讨论,是在简单环境下进行的,没有考虑经济人之间决策相互影响的问题。
本章讨论这个问题,建立复杂环境下的决策理论。
开展这种研究的的理论叫做博弈论,也称为对策论(Game Theory)。
最近十几年来,博弈论在经济学中得到了广泛应用,在揭示经济行为相互制约性质方面取得了重大进展。
大部分经济行为都可视作博弈的特殊情况,比如把经济系统看成是一种博弈,把竞争均衡看成是该博弈的古诺-纳什均衡。
博弈论的思想精髓与方法,已成为经济分析基础的必要组成部分。
第一节 博弈事例博弈是一种日常现象,例如棋手下棋,双方都要根据对方的行动来决定自己的行动,双方的目的都是要战胜对方,互不相容,互相影响,互相制约。
一般来讲,博弈现象的特征表现为两个或两个以上具有利害冲突的当事人处于一种不相容的状态中,一方的行动取决于对方的行动,每个当事人的收益都取决于所有当事人的行动。
当所有当事人都拿定主意作出决策时,博弈的局势就暂时确定下来。
博弈论就是研究这种不相容现象的一种理论,并把当事人叫做局中人(player)。
博弈论推广了标准的一人决策理论。
在每个局中人的收益都依赖于其他局中人的选择的情况下,追求收益最大化的局中人应该如何采取行动?显然,为了确定出可行的策略,每个局中人都必须考虑其他局中人面临的问题。
下面来举例说明。
例1.便士匹配(Matching Pennies)(二人零和博弈)设博弈中有两个局中人甲和乙,每个局中人都有一块硬币,并且各自独立安排硬币是否正面朝上。
局中人的收益情况是这样的:如果两个局中人同时出示硬币正面或反面,那么甲赢得1元,乙输掉1元;如果一个局中人出示硬币正面,另一个局中人出示硬币反面,那么甲输掉1元,乙赢得1元。
对于这个博弈,每个局中人可选择的策略都有两种:正面朝上和反面朝上,即甲和乙的策略集合都是{正面,反面}。
当甲和乙都作出选择时,博弈的局势就确定了。
显然,该博弈的局势集合是{(正面,正面),(正面,反面),(反面,正面),(反面,反面)},即各种可能的局势的全体,也称为局势表,即表1。
第八章博弈论一、重点和难点(一)重点1.博弈论及其基本概念2.纳什均衡3.占优策略均衡4.囚徒困境博弈(二)难点1.最小最大值(或最大最小值)策略2.子博弈精炼纳什均衡3.动态博弈战略行动4.不完全信息静态博弈5.不完全信息动态博弈二、关键概念博弈零和博弈非常和博弈囚徒困境纳什均衡支付子博弈精炼纳什均衡完全信息静态博弈占优策略均衡重复博弈战略移动可信威胁豪尔绍尼转换三、习题(一)单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。
A. 效用B. 支付C. 决策D. 利润2.博弈中通常包括下面的内容,除了()。
A.规则B.占优战略均衡C.策略D.结局3.在具有占优战略均衡的囚徒困境博弈中()。
A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力()。
A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是()。
A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。
A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的战略称为()。
A.一报还一报的战略B.激发战略C.双头战略D.主导企业战略8.在囚徒困境的博弈中,合作策略会导致()。
A.博弈双方都获胜B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在双寡头中存在联合协议可以实现整个行业的利润最大化,则()。
A.每个企业的产量必须相等B.该行业的产出水平是有效的C.该行业的边际收益必须等于总产出水平的边际成本D.如果没有联合协议,总产量会更大10.在什么时候,囚徒困境式博弈均衡最可能实现()。
第8章 寡头市场与博弈论初步【练习及思考】参考答案要点1. 填空题(1)从博弈类型和决策变量的角度,我们可对寡头模型进行分类,经典寡头模型包括:古诺模型、伯川德模型、斯塔克尔伯格模型、价格领导模型、卡特尔模型等。
(2)伯川德模型假定两个寡头厂商通过选择价格而展开竞争,相互竞价的结果将使均衡价格等于边际成本,产量等于完全竞争产量,厂商的经济利润为零,此结果被称为伯川德悖论。
(3)博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的理论。
博弈的最基本要素包括:参与人、策略空间和支付,它们往往通过标准式进行表述。
2. 判断题(下列判断正确的在括号内打√,不正确的打 ×)(1)(×)古诺模型假定,行业中只有两个厂商,他们的边际成本既定,且每个厂商都假定另一个厂商的产出数量不变。
(2)(×)在伯川德寡头模型中,厂商的均衡价格大于边际成本。
(3)(×)当寡头厂商在竞争中勾结起来时,寡头市场的运行便相当于一个完全竞争市场。
(4)(×)利润最大化的卡特尔达到了稳定的均衡,因为在它控制下的任何一个厂商不打算做任何变动。
(5)(√)在斯塔克尔伯格模型中,领导企业的利润将大于古诺均衡利润。
(6)(×)寡头市场形成的必要条件之一是产品具有差别。
3. 选择题1)厂商之间关系最密切的市场是( B )。
A.完全竞争市场B.寡头垄断市场C.垄断竞争市场D.完全垄断市场2)根据古诺模型,在双头垄断条件下,厂商的产量是市场容量的( A )。
A.1/3倍B.2/3倍C.1倍D.不能确定3)寡头垄断就是( D )。
A.很多厂商生产不同的产品B.少数厂商生产不同的产品C.很多厂商生产同类的产品D.以上都不对4)博弈当中最基本的,揭示博弈最终结局的均衡是( B )。
A. 囚徒困境B. 纳什均衡C. 瓦尔拉斯均衡D. 古诺均衡5)寡头垄断市场的特点是(ABCDE )。
第八章 博弈论前面章节对经济人最优决策的讨论,是在简单环境下进行的,没有考虑经济人之间决策相互影响的问题。
本章讨论这个问题,建立复杂环境下的决策理论。
开展这种研究的的理论叫做博弈论,也称为对策论(Game Theory)。
最近十几年来,博弈论在经济学中得到了广泛应用,在揭示经济行为相互制约性质方面取得了重大进展。
大部分经济行为都可视作博弈的特殊情况,比如把经济系统看成是一种博弈,把竞争均衡看成是该博弈的古诺-纳什均衡。
博弈论的思想精髓与方法,已成为经济分析基础的必要组成部分。
第一节 博弈事例博弈是一种日常现象,例如棋手下棋,双方都要根据对方的行动来决定自己的行动,双方的目的都是要战胜对方,互不相容,互相影响,互相制约。
一般来讲,博弈现象的特征表现为两个或两个以上具有利害冲突的当事人处于一种不相容的状态中,一方的行动取决于对方的行动,每个当事人的收益都取决于所有当事人的行动。
当所有当事人都拿定主意作出决策时,博弈的局势就暂时确定下来。
博弈论就是研究这种不相容现象的一种理论,并把当事人叫做局中人(player)。
博弈论推广了标准的一人决策理论。
在每个局中人的收益都依赖于其他局中人的选择的情况下,追求收益最大化的局中人应该如何采取行动?显然,为了确定出可行的策略,每个局中人都必须考虑其他局中人面临的问题。
下面来举例说明。
例1.便士匹配(Matching Pennies)(二人零和博弈)设博弈中有两个局中人甲和乙,每个局中人都有一块硬币,并且各自独立安排硬币是否正面朝上。
局中人的收益情况是这样的:如果两个局中人同时出示硬币正面或反面,那么甲赢得1元,乙输掉1元;如果一个局中人出示硬币正面,另一个局中人出示硬币反面,那么甲输掉1元,乙赢得1元。
对于这个博弈,每个局中人可选择的策略都有两种:正面朝上和反面朝上,即甲和乙的策略集合都是{正面,反面}。
当甲和乙都作出选择时,博弈的局势就确定了。
显然,该博弈的局势集合是{(正面,正面),(正面,反面),(反面,正面),(反面,反面)},即各种可能的局势的全体,也称为局势表,即表1。
每个局中人的收益都取决于所有局中人的决策,也就是说,局中人的收益是博弈局势的函数。
本例中,甲的收益函数f 为:1)(,=正正f ,1)(,-=反正f ,1)(,-=正反f ,1)(,=反反f ;乙的收益函数g 为:1)(,-=正正g ,1)(,=反正g ,1)(,=正反g ,1)(,-=反反g 。
局中人的收益函数也可用表格或矩阵加以表示,并称其为收益表或收益矩阵。
表2中,甲的收益列在左边,乙的收益列在右边。
表2: 甲和乙的收益表该博弈的特点在于每个局中人的收益都是另一个局中人的付出,即甲和乙的收益之和为零,收支发生在局内,不涉及任何局外人。
这种博弈就是所谓的二人零和博弈。
习惯上,人们喜欢把二人博弈的第一个局中人甲叫做“列”,第二个局中人乙叫做“行”,而且总是把列的收益写在前面(即左边),行的收益写在后面(即右边)。
例2.囚徒难题(Prisoner's Delimma)(二人变和博弈)有两个狂徒甲和乙因共同参与了一起犯罪活动而被囚禁收审。
他们可以选择合作,拒绝供出任何犯罪事实;也可以选择背叛,供出对方的犯罪行径。
这就是所谓的囚徒博弈,也叫做囚徒难题。
博弈的局中人甲和乙都有两种可选择的策略:合作与背叛。
囚徒博弈的意义在于它可以解释寡头垄断厂商的行为,关键是赋予合作与背叛具体的经济含义。
比如在双头垄断的情况下,合作可以解释为“保持索要一个高价”,背叛可解释为“降价以争夺对手的市场”。
右表给出了囚徒博弈的局势表。
局中人可以事先讨论这局博弈,但实际决策必须独立地做出。
如果甲采取合作策略,不供出乙的犯罪事实,那么乙就能得到3000元的收益。
同样,如果乙采取合作策略,那么甲就能得到3000元的收益。
可见,如果甲乙双方都采取合作策略,双方各得3000元收益。
但是,审讯者用1000元奖赏来鼓励局中人采取背叛策略。
这样,只要局中人选择背叛,他就会得到1000元鼓励,而不管另一个局中人会采取什么策略。
需要注意的是,囚徒博弈中的货币支付来自第三方——局外人,这正是囚徒博弈同便士匹配博弈的不同之处。
奥曼(Aumann)1987年对囚徒博弈给出了一个特别简单的描述:每个局中人都可以对仲裁人简单地宣告“给我1000元”或“给对方3000元”。
简单分析一下就会发现,如果一个局中人采取合作策略,而另一个局中人采取背叛策略,那么采取合作策略的局中人的收益为零,而采取背叛策略的局中人的收益为4000元(3000元收益再加上1000元的背叛鼓励)。
如果双方都采取背叛策略,则双方的收益各为1000元。
表4列出了甲乙双方的收益情况。
从收益表可以看出,甲乙双方的收益之和不为零,而且收益和是变化的。
因此,囚徒博弈是一种变和博弈。
直觉上看,甲和乙都应采取合作策略(互不供出对方的犯罪事实),各得3000元收益。
但从收益表可以得出这样的结论:如果一个局中人认为另一个局中人将合作,从而他将得到3000元收益,那么他若采取背叛策略,就将总共能获得4000元的收益;如果他认为另一个局中人为了得到1000元鼓励而将背叛,那么他也就只好为了自己也取得1000元鼓励而采取背叛策略(否则,他将一无所获)。
总之,在收益最大化动机的驱使下,局中人的最优选择是背叛。
这样一来,甲乙双方都采取背叛策略,各得1000元收益;而不是都采取合作策略,各得3000元。
这是一个典型的博弈悖论,问题的关键在于每个局中人都有背叛的鼓励,而不管其他局中人将做什么。
例3.古诺博弈(双头垄断:产量较量)法国经济学家古诺(Cournot)于1838年以天然矿泉井为例,首次建立了简单的双头垄断博弈模型,其特点是,垄断厂商双方都天真地以为对方不会改变原有产量水平,双方都追求各自利润最大化。
古诺假定:①有两个天然矿泉在一起,分别为厂商甲和乙占有;②两个矿泉都为自流井,生产成本为零,边际成本也为零;③甲和乙面对相同的需求曲线,采用相同的价格;④双方都以为对方的产量水平不会改变。
在这些假设前提下,甲和乙各自独立决定自己的产量表3: 囚徒博弈局势表表4: 甲和乙的收益表水平,以求利润最大化。
设)(Q P ϕ=是甲乙双方共同面临的反需求函数。
当甲的矿泉水产量为1Q ,乙的产量为2Q 时,矿泉水的市场价格为)(21Q Q P +=ϕ,甲的利润11PQ =π, 乙的利润为22PQ =π。
在这个博弈中,甲乙双方的策略都表现为选择产量水平,局中人的收益即为厂商的利润。
当甲的产量为1Q 时,乙以为甲不会改变这一产量,而选择一个合适的产量水平2Q 以使自己的利润2π达到最大。
同样,当乙的产量水平为2Q 时,甲以为乙不会改变这一产量,而选择一个合适的产量水平1Q 以使自己的利润1π达到最大。
为了说明这个博弈的结果,假设甲乙双方面临的反需求函数kQ P Q P -==0)(ϕ。
用1Q 表示这局博弈中甲选择的最优产量,2Q 表示乙选择的最优产量水平,则甲乙各自的收益分别为12101))((Q Q Q k P ++=π和22102))((Q Q Q k P ++=π。
由于实现了利润最大化,因此0,02211=∂∂=∂∂Q Q ππ 解之得:当乙的产量水平为2Q 时,甲决定的产量水平为2)(201Q Q Q -=(这是甲对乙的反应函数);当甲的产量水平为1Q 时,乙决定的产量水平为2)(102Q Q Q -=(这是乙对甲的反应函数)。
其中,k P Q 00=表示矿泉水市场容量(即价格为零时的矿泉水需求量)。
进一步求解可得:3021Q Q Q ==, 即博弈的结果是双方最终各占据矿泉市场的三分之一。
反应函数说明,古诺博弈中每个局中人的决策(选定的产量水平)不但依赖于其他局中人的决策,而且与市场的容量有关。
例4.贝特兰博弈(双头垄断:价格较量)古诺博弈模型描述了双头垄断厂商之间展开的产量较量。
实际上厂商之间的产量较量并不如价格较量那么普遍,寡头之间应该有激烈的价格竞争。
不论市场价格如何,只要某一厂商降低价格,而其他竞争对手保持原价格不变,那么降价厂商就能占有全部市场。
这就是说,我们假定消费者只从最低价格厂商那里购买产品。
为此,法国经济学家贝特兰(Bertrand)于1883年提出了以价格为选择策略的贝特兰博弈模型,反对古诺关于产量的博弈模型。
还以矿泉水为例,在贝特兰博弈模型中各厂商都预期对手不会改变价格,从而将自己的价格确定在利润最大化的水平之上。
这就是说,贝特兰博弈的构建同古诺博弈相似,所不同的是贝特兰博弈中局中人的策略是选择价格,而古诺博弈局中人的策略是选择产量水平。
贝特兰博弈中两个局中人甲和乙也是面临相同的市场需求函数,不过现在价格是自变量,产量为因变量(古诺模型正好相反)。
设市场需求函数为)(P D Q =, 为了分析上简单起见,进一步设bP Q Q -=0(这里,k P Q 00=,k b 1=,即与古诺模型中的市场需求相同)。
局中人的收益仍是他所获得的利润。
如果甲和乙不相互勾结串通,当乙采取了价格水平2P 时,甲认为乙不会改变这一价格水平,从而为了占领市场而要采取低于乙的价格水平2P 的价格1P ,于是甲的利润为)(111P D P =π,乙的利润为零;同样,当甲采取了价格水平1P 时,乙认为甲不会改变这一价格水平,从而为了占领市场而要采取低于甲的价格水平1P 的价格2P ,于是乙的利润为)(222P D P =π, 甲的利润为零。
如果甲和乙相互勾结串通起来,采取相同的价格策略,即21P P =,那么甲和乙就能索要一个垄断价格,并且每人可收取一半的垄断利润。
由此可见,甲和乙的利润函数分别为:⎪⎩⎪⎨⎧==>=<时当时当时当212121,0,2)(),(),(11112111P P P P P P P D P P D P P P ππ , ⎪⎩⎪⎨⎧==<=>时当时当时当212121,0,2)(),(),(22222122P P P P P P P D P P D P P P ππ如果甲和乙勾结串通,合作起来,那么双方就能按照最大利润价格)20b Q P =获得垄断价格,并且各得最大利润的一半。
这里,利润最大化价格是按照()02)(00=-=-∂∂=∂∂bP Q bP Q P PP π 确定的。
但是,占领市场的诱惑对每个局中人都存在,只要他稍微降价,他就能获得全部市场。
假如甲先进入该矿泉市场,那么甲就按照利润最大化价格$P_1=Q_o/(2b)$获取最大利润。
继而乙进入这个市场,且乙认为甲不会改变他的价格$P_1$,于是乙为了夺取市场而采取低于甲的价格水平1P 的一个价格2P ()12P P <。
由于乙夺走了市场,甲同样又会采取低于乙的价格水平2P 的价格3P ,以夺回市场。