生化问答题
- 格式:doc
- 大小:35.50 KB
- 文档页数:14
1.蛋白质的基本单位是?氨基酸的结构通式和结构特点分别是?答:①基本单位:氨基酸②结构通式:HR-C-COOHNH2③结构特点:组成蛋白质的20种氨基酸都属于a-氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L-氨基酸(甘氨酸除外)2.维持蛋白质各级结构稳定的化学键分别是?答:①维持级结构的键是肽键②维持二级结构的键是氢键③维持三级结构的键主要是氢键、离子键和疏水相互作用④维持四级结构的键主要是氢键、离子键和疏水相互作用3.蛋白质的元素组成N的含量是多少?如果用氮含量计算蛋白质的含量?答:①16%②所测含氮量乘以6.254.蛋白质二级结构主要形式有哪些?答:a-螺旋、β-折叠、β-转角和无规卷曲5.、如何用生物化学的知识解释镰刀形红细胞贫血的发病机制?答:因为蛋白质的-级结构是空间结构的基础,也是蛋白质行使功能的基础,而镰刀形红细胞贫血患者的血红蛋白B键第6位谷氨酸被缬氨酸取代,一级结构中重要部位的氨基酸改变会引起功能的改变,使血红蛋白表面产生-一个疏水小区,引起血红蛋白聚集成不落性的纤维素,导致红细胞变性成镰刀型而极易破碎,产生贫血.6、核酸的基本单位和基本组成成分分别是?答:①基本单位:核苷②成分:碱基、戊糖、磷酸7、维持DNA双螺旋结构的稳定的化学键分别是?答:主要是碱基对之间的氢键和碱基平面之间的碱基堆积力.8.mRNA、tRNA、rRNA的功能分别是?tRNA的二级结构和三级结构分别是?答:①功能:mRNA:指导蛋白质生物合成的模板tRNA:在蛋白质生物合成中转运氨基酸rRNA:蛋白质生物合成的场所②二级结构:三叶草形(四臂四环组成)三级结构:倒L形9、酶促反应的特点是?答:高效性,特异性,可调节性,高度不稳定性10.酶原的定义、酶原微活的实质、酶原与酶原激活的生理意义?举例说明答①定义:有些酶在细胞内合成或初分泌时,没有催化活性,这种酶的无活性前体称为酶原②实质:切断酶原分子中特异肽键或去除部分肽段3.生理意义(举例),酶奶是无活性的酶的前体,经水解激活后才表现出活性。
名词解释:1 、蛋白质:蛋白质是由许多氨基酸通过肽键联系起来的含氮高分子化合物,是机体表现生理功能的基础。
2 、蛋白质的变性:在某些物理和化学因素的作用下,蛋白质的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失称为蛋白质变性。
3 、蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序。
4 、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
5 、蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置,即整条肽链所有原子在三维空间的排布位置。
6 、蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用。
7 、蛋白质的等电点:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
8 、DNA的变性:在某些理化因素的作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,称DNA变性。
9 、DNA的复性:变性DNA在适当条件下,两条互补链可以重新恢复天然的双螺旋构象,称为DNA的复性。
10 、核酸酶:所有可以水解核酸的酶。
可分为DNA酶和RNA酶。
11 、酶:由活细胞合成的,对其特异底物起高效催化作用的蛋白质,是机体内催化各种代谢反应最主要的催化剂。
12 、核酶:是具有高效,特异催化作用的核酸,是近年发现的一类新的生物催化剂。
13 、酶原:无活性的酶的前体称为酶原。
14 、酶的必需基团:酶分子结构中与酶的活性密切相关的基团称为酶的必需基团。
15、同工酶:指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
16、糖酵解:缺氧情况下,葡萄糖生成乳糖的过程。
17 、酵解途径:由葡萄糖分解成丙酮酸的过程。
18 必需脂酸:某些不饱和脂肪酸,动物机体自身不能合成,需要从植物油摄取,是动物不可缺少的营养素,称为必需脂酸。
医学生物化学复习题各章节问答题小集1.试述肽链中α–螺旋的结构特点。
答:①α-螺旋外观似棒状,肽链的主链形成紧密的螺旋,侧链伸向外侧;②肽链中全部NH都和CO生成氢键,使α-螺旋的结构十分牢固;③螺旋的一圈由3.6个aa残基组成,螺距为0.54 nm;④螺旋的走向都为顺时针方向,所谓右手螺旋。
2. 什么是蛋白质的四级结构? 什么是均一四级结构和不均一四级结构?答:蛋白质分子中各个亚基的空间分布及亚基接触部位的布局和相互作用称为蛋白质的四级结构。
由相同的亚基构成的四级结构称为均一四级结构,由不同亚基构成的,则称为不均一四级结构。
3. 以血红蛋白与O2的结合为例,说明什么是协同效应?答:协同效应是指一个亚基与其配体结合后,能影响此寡聚体中另一亚基与配体的结合能力,如果是促进作用,则称为正协同效应,反之则为负协同效应。
以血红蛋白为例,当Hb的第一个亚基与O2结合以后,促进第二及第三个亚基与O2的结合,当第三个亚基与O2结合后,又大大促进了第四个亚基与O2结合,这种效应为正协同效应。
4.举例说明蛋白质一级结构和功能的关系。
答:蛋白质的一级结构(即氨基酸残基排列顺序)是空间结构和性质的基础,蛋白质分子中的氨基酸残基的改变有的会严重影响其功能,有的则影响甚微。
有的结构相似的功能也相似。
①结构相似的具有相似的功能:例如从哺乳动物胰脏中分离出来的胰岛素,都由A链和B链组成,不同来源的胰岛素氨基酸排列顺序不完全相同,但相似,分子量也几乎相等,均具有降低血糖的生物学功能。
②一级结构与分子病:血红蛋白是由四个亚基构成的四聚体。
珠蛋白有两条α-链和两条β链,它们分别由141和146个氨基酸残基组成。
由于基因突变使珠蛋白多肽链的氨基酸残基改变所致的异常血红蛋白近400种。
其中只有某些残基改变才影响该蛋白带O2功能。
例如正常珠蛋白β链上第6位的谷氨酸被缬氨酸取代,使血红蛋白溶解度改变而导致镰刀状红细胞贫血。
5.试述如何分析多肽链中氨基酸的顺序?答:首先分析已纯化蛋白质的氨基酸残基的组成。
特别感谢一班:闫怡田时静曾婉舒陈果宋俊龙王荣1.酶作为生物催化剂有哪些特性?影响酶活性的因素有哪些?酶在医学中主要有哪些作用?答:①酶具有在温和条件下极高的催化效率;高度专一性(绝对专一性和相对专一性;立体异构体专一性;光学异构体专一性);酶活性对环境因素的敏感性;酶活性的可调节性。
②影响酶活性的因素有哪些:酶浓度,底物浓度,PH,温度,抑制剂,激活剂等. ③酶可以参与疾病的诊断;作为药物用于临床治疗;作为药物靶点用于临床治疗;酶在生物医学研究方面也有一定作用,利用酶催化专一性进行高选择性酶法分析,没作为工具用于科学研究与生产。
2.写出体内两条呼吸链的简单组成及排列顺序,并说明其生理意义。
答:呼吸链由4个酶复合体和2个游离存在的电子传递体(CoQ和Cytc):NADH-Q还原酶(复合体I),辅酶Q(COQ),琥珀酸-Q还原酶,细胞色素还原酶,细胞色素C,细胞色素氧化酶。
排列顺序:NADH氧化呼吸链:NADH→FM N→CoQ→Cytb→Cytc1→Cytc→Cytaa3→O2FADH2氧化呼吸链:FADH2→CoQ→Cytb→Cytc1→Cytc→Cytaa3→O2意义:以传递电子和H+形式传递代谢物氧化脱下的氢原子(2H),最后使活化的氢与活化的氧结合生成水。
3.什么是乳酸循环?乳酸循环有何生理意义?糖异生葡萄糖糖酵解乳酸 肝脏血液 肌肉生理意义:促进乳酸的再利用;防止乳酸性酸中毒的发生; 4.血糖的来源和去路食物糖(主)消化吸收肝糖原 分解非糖物质异生>8.89-10.00mmol/L尿糖排除体外5.体内氨基酸的来源与去路有哪些?一、来源:①从食物吸收的;②体内蛋白质的分解;③体内合成的:二、去路:①合成蛋白质;②脱氨基生成酮酸和氨;③脱羧基生成二氧化碳和胺;④合成其它含氮物质,嘌呤和嘧啶6.简述体内氨基的来源、转运方式与去路一、氨的来源:从肠道吸收的氨;体内氨基酸和胺类物质降解产生的氨,谷氨酰餿在肾水解产生的氨;二、转运方式:肌肉氨基酸脱胺基产生的氨主要通过转氨基作用生成丙氨酸,通过丙氨酸—葡萄糖循环运输至肝;脑组织产生的氨主要通过全成谷氨酰胺,通过血液将谷氨酰胺运输至肝、肾。
生化问答题集1、试述血浆脂蛋白的分类及主要生理功能?CM(乳糜微粒):转运来自食物的外源性甘油三酯。
VLDL(极低密度脂蛋白):转运肝脏合成的内源性甘油三酯。
LDL(低密度脂蛋白;):从肝脏向肝外组织转运胆固醇。
HDL(高密度脂蛋白)从肝外组织向肝脏转运胆固醇。
IDL(中密度脂蛋白)2、血糖的来源于去路有哪些?试述胰岛素、胰高血糖素、肾上腺素对血糖浓度额调节作用。
来源:①食物糖消化吸收②肝糖原分解③肝脏内糖异生作用去路:①氧化分解供能②合成糖原③转化成其他糖类或非糖类物质④血糖过高时随尿液排出肝脏调节:肝糖原合成与分解、糖异生;肾脏调节:肾小管的重吸收能力;神经和激素的调节:⑴神经调节⑵激素调。
3、什么是解链温度?影响DNATm值大小的因素有哪些?为什么?解链温度是指核酸在加热变性过程中,紫外吸收值达到最大值的一半的温度,也称为Tm值。
因素:DNA分子中碱基的组成、比例、DNA分子的长度。
原因:在DNA分子中,如果G-C含量较多,Tm值则较大,A-T含量较多,Tm值则较小,因G-C间有三个氢键,A-T间有两个氢键,G-C较A-T稳定。
DNA分子越长,在解链时所需的能量也越高,所以Tm值也越大4、何为蛋白质变性作用?试举例说明其在临床上的应用,以及避免蛋白质变性的例子。
答:蛋白质的变性是指蛋白质在某些理化因素的作用下,严格的空间构象受到破坏,从而改变理化性质并失去生物活性的现象称为蛋白质的变性。
(1)利用酒精、加热煮沸、紫外线照射等方法来消毒灭菌;(2)口服大量牛奶抢救重金属中毒的病人;(3)临床检验中在稀醋酸作用下加热促进蛋白质在pI时凝固反应检查尿液中的蛋白质;(4)加热煮沸蛋白质食品,有利于蛋白酶的催化作用,促进蛋白质食品的消化吸收等。
5、简述tRNA二级结构的基本特点及各种RNA的生物学功能。
答:tRNA典型的二级结构为三叶草型结构,是由一条核糖核苷酸链折叠、盘绕而成,在分子单链的某些区域回折时,因存在彼此配对的碱基构成局部双螺旋区,不能配对的碱基则:形成突环而排斥在双螺旋之外,形成了tRNA的三叶草结构。
1、为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?①三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。
②糖代谢过程中一分子已糖经糖酵解分解成二分子丙酮酸,在有氧的情况下丙酮酸进入线粒体,通过三羧酸循环彻底氧化分解③脂肪分解的脂肪酸经β-氧化产生乙酰CoA可进入三羧酸循环彻底氧化,脂肪分解的甘油也可通过糖有氧氧化进入三羧酸循环氧化分解;同时,三羧酸循环中产生的乙酰CoA和其他中间产物也可用于合成脂肪;④蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受NH3后合成氨基酸。
例如草酰乙酸和α酮戊二酸分别是天冬氨酸和谷氨酸合成的碳架,延胡索酸是苯丙氨酸和酪氨酸合成的前体等。
所以,三羧酸循环是三大物质代谢的共同通路。
2、蛋白质变性天然蛋白质受物理或化学因素的影响,分子内部原有的高度规则性的空间排列发生变化,致使其原有性质和功能发生部分或全部丧失,这种作用称蛋白质的变性作用。
3、酶的活性中心酶的活性中心是指酶分子中能同底物结合并起催化反应的空间部位。
4、DNA的半保留复制在复制时DNA的两条链先分开,然后分别以每条DNA链为模板,根据碱基互补配对原则合成新的互补链,以组成新的DNA分子。
因此子代DNA的一条链来自亲代,另一条是新合成的,这种复制方式称为半保留复制。
5、中心法则中心法则认为DNA指导其自身复制及转录为RNA,然后翻译成蛋白质。
遗传信息的流向是从DNA到RNA,再到蛋白质(DNA→RNA→蛋白质)。
同时有些病遗传信息是从RNA传递到DNA的反转录。
这些规则就构成了遗传学的中心法则。
中心法则应表示为DNA⇌RNA →蛋白质。
6、核酸杂交两种来源不同的具有互补碱基序列的核苷酸片段在溶液中冷却时可以再形成双螺旋结构(不同来源的DNA单链与DNA或RNA链彼此可有互补的碱基序列,可以通过变性、复性以形成局部的双链,即所谓杂化双链)7、写出糖酵解途径中三个关键限速酶及其催化的生化反应。
10 核苷酸代谢1.嘧啶核苷酸分子中各原子的来源及合成特点怎样?2.嘌呤核苷酸分子中各原子的来源及合成特点怎样?3.嘌呤和嘧啶碱基是真核生物的主要能源吗,为什么?4.用两组人作一个实验,一组人的饮食主要是肉食,另一组人主要是米饭。
哪一组人发生痛风病的可能性大?为什么?5.为什么一种嘌呤和嘧啶生物合成的抑制剂往往可以用作抗癌药和/或抗病毒药?6.不同种类的生物分解嘌呤的能力不同,为什么?参考答案四、问答题1.答:(1)各原子的来源:N1、C4、C5、C6-天冬氨酸;C2-二氧化碳;N3-氨;核糖-磷酸戊糖途径的5′磷酸核糖。
(2)合成特点:氨甲酰磷酸 + 天冬氨酸→乳清酸乳清酸 + PRPP →乳清酸核苷-5′-磷酸→尿苷酸2.答:(1)各原子的来源:N1-天冬氨酸;C2和C8-甲酸盐;N7、C4和C5-甘氨酸;C6-二氧化碳;N3和N9-谷氨酰胺;核糖-磷酸戊糖途径的5′磷酸核糖(2)合成特点:5′磷酸核糖开始→5′磷酸核糖焦磷酸(PRPP)→5′磷酸核糖胺(N9)→甘氨酰胺核苷酸(C4、C5 、N7)→甲酰甘氨酰胺核苷酸(C8)→5′氨基咪唑核苷酸(C3)→5′氨基咪唑-4-羧酸核苷酸(C6)5′氨基咪唑甲酰胺核苷酸(N1)→次黄嘌呤核苷酸(C2)。
3. 答:在真核生物中,嘌呤和嘧啶不是主要的能源。
脂肪酸和糖中碳原子能够被氧化产生ATP,相比较而言含氮的嘌呤和嘧啶没有合适的产能途径。
通常核苷酸降解可释放出碱基,但碱基又能通过补救途径重新生成核苷酸,碱基不能完全被降解。
另外无论是在嘌呤降解成尿酸或氨的过程还是嘧啶降解的过程中都没有通过底物水平的磷酸化产生ATP。
碱基中的低的C:N 比使得它们是比较贫瘠的能源。
然而在次黄嘌呤转变为尿酸的过程中生成的NADH也许能够通过氧化磷酸化间接产生ATP。
4. 答: 痛风是由于尿酸的非正常代谢引起的,尿酸是人体内嘌呤分解代谢的终产物,由于氨基酸是嘌呤和嘧啶合成的前体,所以食用富含蛋白质饮食有可能会导致过量尿酸的生成,引起痛风病。
1.简述蛋白质的各级结构层次。
蛋白质的一级结构:蛋白质分子中所有原子在三维空间的排列分布和肽链的走向。
主要维持键是肽键。
蛋白质的二级结构:指蛋白质多肽链主链的折叠和盘绕方式,不包括R基的构象,也不包括与其它多肽链之间的构象。
包括:α-螺旋、β-折叠、β-转角、无规卷曲。
主要维持键是氢键。
蛋白质的三级结构:指多肽链上的所有原子(包括主链和侧链)在三维空间的分布。
维系这种特定结构的力主要有氢键、疏水键、离子键和范德华力等。
蛋白质的四级结构:蛋白质的四级结构是指亚基的种类、数量以及各个亚基在寡聚蛋白质中的空间排布和亚基间的相互作用。
维持亚基之间的化学键主要是疏水键。
2.蛋白质的基本结构与高级结构之间存在的关系如何?一般把一级结构看做是基本结构,他经过折叠,形成的空间构像是高级结构。
其中通过二硫键,非共价键等维系空间结构3.何谓蛋白质等电点?等电点时蛋白质的存在特点是什么?使蛋白质净电荷为零的PH值即等电点。
等电点时蛋白质极的溶解度最低,且在电场中无电泳形成。
4.何谓盐析?分段盐析粗分蛋白质的原理是什么?盐析一般是指溶液中加入无机盐类而使某种物质溶解度降低而析出的过程。
原理:随着离子浓度的增加,由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转化为盐离子的水化水。
5.哪些因素可引起蛋白质变性?变性后蛋白质的性质有哪些改变?物理因素:高温、紫外线等化学因素:强酸、强碱、甲醛、重金属盐(Ba2+、Hg2+、Cu2+、Ag+等)等蛋白质性质的改变:1、生物活性丧失(这是主要特征)2、一些侧链基团暴露:构象改变3、一些物化性质改变:溶解度下降、易凝聚沉淀、旋光性改变、粘度增加光吸收性质增加、失去结晶能力等4、生物化学性质改变:易被酶水解等6.蛋白质分离分析技术常用的有哪几种,简述凝胶过滤、电泳基本原理。
密度梯度离心、等电点沉淀、胶凝过滤、电泳。
凝胶过滤的原理:利用被分离物质分子大小不同及固定相(凝胶)具有分子筛的特点,将被分离物质各成分按分子大小分开,达到分离的目的。
请列举细胞内乙酰CoA的代谢去向。
答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。
酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。
请写出在细胞内葡萄糖转化为乙醇的代谢途径。
答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。
乙醛继而在乙醇脱氢酶的催化下被NADH还原形成乙醇。
葡萄糖+2Pi+2ADP+2H+ 生成2乙醇+2CO2+2ATP+2H2O(6分)脱氢反应的酶:3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分)试述mRNA、tRNA和rRNA在蛋白质合成中的作用。
答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路!!!!!!!!!哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节!!!!!!!!!为什么答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。
②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分)写出天冬氨酸在体内彻底氧化成CO2和H20的反应历程,注明其中催化脱氢反应的酶及其辅助因子,并计算1mol天冬氨酸彻底氧化分解所净生成的ATP 的摩尔数。
答案及要点:天冬氨酸+α酮戊二酸--→(谷草转氨酶)草酰乙酸+谷氨酸谷氨酸+NAD+H2O→(L谷氨酸脱氢酶)α酮戊二酸+NH3+NADH 草酰乙酸+GTP→(Mg、PEP羧激酶)PEP+GDP+CO2PEP+ADP→(丙酮酸激酶)丙酮酸+ATP 丙酮酸+NAD+COASH→(丙酮酸脱氢酶系)乙酰COA+NADH+H+CO2 乙酰COA+3NAD+FAD+GDP+Pi+2H2O→(TCA循环)2CO2+COASH+3NADH+3H+FADH2+GTP ①耗1ATP 生2ATP5NADH+1FADH2+1GTP=1ATP净生成1+2+2.5×5+1.5×1=15ATP②耗1ATP生成2ATP+3NADH+1FADH+1NADPH净生成1+2+2.5×4+1•5×1=12.5ATP 脱氢反应的酶:L-谷氨酸脱氢酶(NAD+),丙酮酸脱氢酶系(CoA,TPP,硫辛酸,FAD,Mg2+),异柠檬酸脱氢酶(NAD+,Mg2+),a-酮戊二酸脱氢酶系(CoA,TPP,硫辛酸,NAD+,Mg2+),琥珀酸脱氢酶(FAD,Fe3+),苹果酸脱氢酶(NAD+)。
第七章脂质和生物膜一、问答题1. 构成生物膜的化学成分有那些?解答:化学分析表明,所有的生物膜几乎都是由蛋白质(包括酶)和脂类(主要是磷脂)两大类物质组成,此外,还含有糖(糖蛋白及糖脂)、微量的核酸、无机元素等。
在各种生物膜中,蛋白与脂类含量的比例大体上有三种情况:在神经髓鞘膜中,脂类含量高,约占79%,蛋白质含量低,约占18%;在线粒体的内膜和细菌的质膜上,则相反,蛋白质含量高,约占75,脂类含量低,约占25%;在其他一些膜中,蛋白质与脂类含量差不多,约占50%。
2. 为什么说生物膜具有不对称性和流动性?什么是“流动镶嵌”模型?解答:20世纪60年代以后,由于新的实验技术的发展,对生物膜结构有了更深的了解,认为生物膜的结构是不对称的,并且具有流动性。
不对称主要表现在两个方面,一是膜蛋白分布不对称,二是膜脂分布不对称。
膜上蛋白质有数十种,通常占膜重50%以上,研究证明,蛋白质分子在膜上分布是不均一的,在膜的某些区域内,外侧分布比较多,内侧少;而在另一些区域内,则外侧分布少,内侧分布多。
有的部位蛋白质分子分布很密集,有的部位则很稀疏,像呼吸链酶系和光合链酶系,就是有序地密集于膜的一定部位中。
有的蛋白质如糖蛋白,多分布在膜的外侧,糖链伸出膜外,造成膜两侧蛋白质分布极不均一现象。
膜脂分布也是不对称的,例如在红细胞膜的脂质双层中,外层含神经鞘磷脂和卵磷脂较多而内层则含脑磷脂和丝氨酸磷脂较多。
膜的流动性:膜的流动性决定于磷脂分子的性质或者说决定于不饱和脂肪酸的含量。
不饱和脂肪酸在常温下处于液态,使膜蛋白和膜脂分子均有可能发生流动。
镶嵌在脂质双分子层中的蛋白质分子,可作侧向扩散和旋转扩散运动,即沿着双分子层的平面移动,据推算,蛋白质分子每分钟可移动数微米。
磷脂分子也可以发生扩散运动和围绕与膜平面相垂直的轴左右摆动及旋转运动。
磷脂分子较蛋白质分子小,因此移动速度较蛋白质分子快。
有人计算,翻转运动速度比侧向运动的速度要慢10亿倍,几乎不能进行翻转运动。
名词解释1、血糖:血液中的单糖,主要是葡萄糖2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成;糖原分解成葡萄糖的过程称糖原分解。
3、糖异生:由非糖物质合成葡萄糖的过程4、有氧氧化:在供氧充足时,葡萄糖在胞液中分解生成的丙酮酸进入线粒体,彻底氧化生成CO2和H2O,并释放大量能量5、三羧酸循环:在线粒体内,乙酰CoA和草酰乙酸缩合成生成柠檬酸, 柠檬酸经一系列酶促反应之后又生成成草酰乙酸,形成一个循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环6、糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。
7、血脂:血浆中脂类的总称。
主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。
8、血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。
包括脂类和载脂蛋白。
9、脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。
10、酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。
11、必需脂肪酸:人体生命活动所必不可少的几种多不饱和脂肪酸,在人体内不能合成,必需由食物来供给。
有亚油酸、亚麻酸及花生四烯酸三种。
12、必需氨基酸:体内需要而自身又不能合成、必需由食物供给的氨基酸。
包括异亮氨酸、苯丙氨酸、色氨酸、苏氨酸、亮氨酸、甲硫氨酸、赖氨酸和缬氨酸。
13、蛋白质互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。
14、转氨基作用:是指由氨基转移酶催化,将氨基酸的α- 氨基转移到一个α- 酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。
该过程只发生氨基转移,不产生游离的NH3。
15、一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称为一碳单位。
16、遗传密码子:从mRNA编码区5’端向3’端按每3个相邻碱基为一组连续分组,每组碱基构成一个遗传密码,称为密码子或三联体密码。
第三章3第四章8第五章7第七章4第八章17第九章11第十章12第十三章7第十五章6第十八章5简述氨基酸的分类简述蛋白质的结构层次及其维持力简述导致蛋白质变性的因素简述核苷酸的功能简述Chargaff法则简述B-DNA右手双螺旋结构的基本内容从以下几方面对蛋白质及DNA进行比较:①分子组成;②一、二级结构;③主要生理功能简述tRNA的一级结构简述tRNA的二级结构试比较真核生物与原核生物核糖体简述DNA变性及其影响因素简述酶的活性中心及其所含的必需基团简述酶的辅助因子简述酶促反应的特点简述酶的特异性及其分类简述抑制剂对酶的可逆抑制作用及其特点试比较变构调节和化学修饰调节的异同点酶以酶原形式存在有何生理意义?简述生物氧化的特点简述生物氧化三个阶段的特点生物体内典型的呼吸链有哪几种?其组成怎样?简述生物体内ATP生成的两种主要方式、在真核细胞中生成部位葡萄糖的分解代谢途径主要有哪些?试从下列各点比较糖酵解与糖的有氧氧化的不同:反应条件、反应场所、终产物、释放能量简述人体内6-磷酸葡萄糖的来源和去路简述人体内丙酮酸的来源和去路糖酵解有何生理意义?写出糖酵解和糖异生过程中涉及的不可逆反应和关键酶简述糖的有氧氧化乙酰辅酶A的来源、去路有哪些?一分子葡萄糖完全氧化能产生多少个ATP一分子丙酮酸完全氧化能产生多少个ATP磷酸戊糖途径有何生理意义?简述糖原代谢生理意义试述丙氨酸、天冬氨酸生糖过程试述乳酸、草酰乙酸生糖过程糖异生有何生理意义?血糖有哪些来源与去路?机体如何对血糖进行调节简述脂类在体内的分布简述脂肪动员及其影响因素甘油如何氧化成二氧化碳和水?以中文物质名称及箭头图写出其氧化途径,并计算ATP生成数量脂肪酸是如何通过线粒体膜的?试述一分子软脂酸(或硬脂酸)彻底氧化为二氧化碳和水的详细反应过程及所需酶,计算净生成ATP的分子数列表比较软脂酸β氧化与软脂酸合成试述酮体代谢的生理意义乙酰辅酶A是如何通过线粒体膜的?简述柠檬酸在脂肪酸合成中的作用简述胆固醇代谢过程(摄入、转运、合成、转化、调节)简述各类血浆脂蛋白的功能假如膳食中含有丰富的丙氨酸,但缺乏天冬氨酸,机体是否会出现天冬氨酸缺乏的现象?为什么?简述肝昏迷的假神经递质学说简述肝细胞内联合脱氨基作用全过程(包括参与的酶和辅助因子)及其意义血氨主要有哪些来源和去路?简述氨在血液中的转运机制简述鸟氨酸循环过程及其意义简述肝昏迷的氨中毒学说分析一分子谷氨酸完全氧化能产生的ATP数分析一分子天冬氨酸完全氧化能产生的ATP数简述甲硫氨酸循环过程及其意义简述维生素B12缺乏导致巨幼红细胞性贫血的生化机制请写出四种由甘氨酸参与合成的不同类型的生物活性物质,并分别说明它们的主要功能简述DNA复制的基本特征怎样知道DNA的复制是半保留式而不是全保留式的?请解释Meselson和Stahl关于大肠杆菌DNA复制实验的结果参加原核生物DNA半保留复制的酶和蛋白质有哪些?简述其作用简述DNA聚合酶、RNA聚合酶、逆转录酶、氨酰-tRNA合成酶的作用及特点简述大肠杆菌DNA聚合酶I的活性与功能试述大肠杆菌DNA半保留复制的基本过程简述逆转录酶的生物学意义。
.什么是生物化学?它的研究对象和目的是什么?答:①生物化学是研究生物体内化学分子和化学反应的基础生命科学,从分子水平探讨生命现象的本质。
②生物化学的研究对象是生物体的分子,研究目的是从分子水平探讨生命现象的本质。
2.什么是分子生物学?它与生物化学的关系是什么?答:①分子生物学是研究核酸、蛋白质等生物大分子的结构、功能及基因结构、表达与调控的科学。
②分子生物学是生物化学的重要组成部分,是生物化学的发展和延续。
3.当代生物化学与分子生物学研究的主要内容是什么?生物化学与分子生物学和医学的关系是什么?答:①当代生物化学与分子生物学研究的主要内容是:生物分子的结构和功能、物质代谢及其调节、基因信息传递及其调控等三方面。
②生物化学与分子生物学是重要的医学基础学科,与医学的发展密切相关、相互促进。
各种疾病发病机制的阐明,诊断手段、治疗方案、预防措施等的实施,无一不依据生物化学与分子生物学的理论和技术。
生物化学与分子生物学的发展必将对基础医学、临床医学、预防医学、护理学、影像学、检验学和药学等领域产生重大影响。
蛋白质1.生物样品的含氮量能表示其蛋白质含量,为什么?试验中是如何计算的。
答:由于蛋白质是体内的主要含氮物,且平均含氮量为16%,因此测定生物样品的含氮量就可以按照下列公式推算出蛋白质的大致含量:每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%)2.什么是蛋白质的两性解离?利用此性质分离纯化蛋白质的常用方法有哪些?答:蛋白质分子除了两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,如谷氨酸残基中的γ-羧基、天冬氨酸残基中的β-羧基、赖氨酸残基中的ε-氨基、精氨酸残基中的胍基和组氨酸残基中的咪唑基,在一定的pH条件下均可解离成带负电荷或正电荷的基团,此种性质称蛋白质的两性解离。
利用蛋白质的两性解离性质分离纯化蛋白质的常用方法有用电泳法和离子交换层析法。
3.简述蛋白质的一、二、三、四级结构的概念及其维持稳定的化学键。
⽣化问答题⽣化问答题1.以镰状红细胞性贫⾎为例简述⼀级结构决定⾼级结构的原因。
患者⾎红蛋⽩中有⼀个氨基酸残基发⽣改变,HbA(正常⾎红蛋⽩) β链的第6位为⾕氨酸,⽽HbS(患者⾎红蛋⽩)β链的第6位为缬氨酸,亲⽔侧链被⾮极性的疏⽔侧链所取代,出现了⼀个因疏⽔作⽤⽽形成的局部结构。
⾎红蛋⽩聚集成丝,相互黏着,红细胞形状改变,脆性增加,氧结合能⼒⼤⼤降低→红细胞破碎,溶⾎性贫⾎2.⽶⽒⽅程中动⼒学参数的意义1)Km值在数值上等于酶促反应速度为最⼤反应速度⼀半时对应的底物浓度2)Km值反应了酶对底物的亲和⼒,Km值越⼤,亲和⼒越⼩3)Km是酶对其底物的特征常数,取决于酶⾃⾝和底物的结构,与酶和底物浓度⽆关4)酶的转换数5)天然底物和限速步骤的推断3.酶动⼒学对反应速度的影响酶浓度:(初速度)底物浓度:⽶⽒⽅程抑制剂:不可逆抑制剂:专⼀性和⾮专⼀性可逆性抑制剂:○1竞争性抑制作⽤:取决于抑制剂浓度与底物浓度的⽐例和酶的亲和⼒K m↑,Vmax不变○2⾮竞争性抑制作⽤:Km不变,Vmax↓○3反竞争性抑制作⽤:与酶底物复合物的特定空间结合 Km↓,Vmax↓激活剂:必需激活剂:⽆活性→有活性⾮必需激活剂:有活性→⽆活性温度:影响酶与它们的亲和⼒。
影响酶蛋⽩、底物、酶与底物复合物的解离。
4.酶原激活的意义。
○1保护消化器官本⾝受蛋⽩酶⽔解被破坏。
○2保证酶在其特定的部位与环境发挥其催化作⽤○3酶的存储形式6.糖酵解的⽣理意义。
1.少数组织在氧化条件下的能量来源。
2.某些情况下,在缺氧状态下的能量补充。
3.某些病理情况下获取能量的⽅式。
7.糖的有氧氧化反应过程。
葡萄糖、糖原(胞液)→6-P-G→2丙酮酸(线粒体)→2⼄酰辅酶A→三羧酸循环8.三羧酸循环的途径总结:1个分解:⼄酰CoA分解2次脱氢:异柠檬酸→a-酮戊⼆酸→琥珀酰CoA3个关键酶:柠檬酸合酶、异柠檬酸合酶、a-酮戊⼆酸脱氢酶复合体4次脱氢:见图,⽣成12分⼦ATP5次能量⽣成:3NADH +FADH2+底物磷酸化↓↓↓3ATP*3 + 2ATP + GTP→ATP=12ATP9.糖有氧氧化的⽣理意义。
05 糖代谢四、问答题1.糖代谢和脂代谢是通过那些反应联系起来的?答:(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。
(2)有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料。
(3)脂肪酸分解产生的乙酰CoA最终进入三羧酸循环氧化。
(4)酮体氧化产生的乙酰CoA最终进入三羧酸循环氧化。
(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。
2.什么是乙醛酸循环?有何意义?答:乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,可分为五步反应,由于乙醛酸循环与三羧酸循环有一些共同的酶系和反应,将其看成是三羧酸循环的一个支路。
循环每一圈消耗2分子乙酰CoA,同时产生1分子琥珀酸。
琥珀酸产生后,可进入三羧酸循环代谢,或经糖异生途径转变为葡萄糖乙醛酸循环的意义:(1)乙酰CoA经乙醛酸循环可以和三羧酸循环相偶联,补充三羧酸循环中间产物的缺失。
(2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一。
(3)乙醛酸循环是油料植物将脂肪转变为糖和氨基酸的途径。
3.磷酸戊糖途径有什么生理意义?答:(1)产生的5-磷酸核糖是生成核糖,多种核苷酸,核苷酸辅酶和核酸的原料。
(2)生成的NADPH+H+是脂肪酸合成等许多反应的供氢体。
(3)此途径产生的4-磷酸赤藓糖与3-磷酸甘油酸可以可成莽草酸,进而转变为芳香族氨基酸。
(4)途径产生的NADPH+H+可转变为NADH+H+,进一步氧化产生ATP,提供部分能量。
4.为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?答:(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。
(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。
(3)脂肪分解产生的甘油通过酵解产生丙酮酸,后者转化成乙酰CoA后再进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA也需进入三羧酸循环才能氧化。
(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。
生化问答题1.简述糖酵解的途径。
答案:1.迅速供能,这对肌肉收缩更为重要,当机体缺氧或剧烈运动肌肉局部血流不足时,能量主要通过糖酵解途径获得。
2.是某些组织获能的必要途径。
如:神经白细胞骨髓组织等。
即使再有氧时也进行强烈的酵解而获能3 成熟的红细胞无线粒体仅靠无氧酵解供能。
2.简述三羧酸循环的特点及生理意义。
答案:TAC 反应的特点:从草酰乙酸和乙酰辅酶A结合成柠檬酸开始,每次循环消耗一分子乙酰基。
反应过程中有4次脱氢,2.。
TAC 在线粒体中进行,有三个催化不可逆反应的关键酶,分别是柠檬酸合酶异柠檬酸脱氢酶,a-酮戊2酸脱氢酶复合体 3 的中间产物包括草酰乙酸再循环中起催化作用不会因参与循环而被消耗掉。
生理意义:1是三大营养物质代谢的最终通路2是三大营养物质互相转变的枢纽。
3为其他物质合成提供小分子前提物质为氧化磷酸化提供还原当量。
3.试述磷酸戊糖途径的生理意义答案 1 提供5-磷酸核糖作为体内合成各种核苷酸及核酸的原料。
2 提供代谢所需要的还原型辅酶2 NADPH>4 试述酮体的生理意义酮体是脂肪酸在肝脏氧化分解的特有产物,包括乙酰乙酸Β-羟丁酸和丙酮。
1酮体分子小极性大易溶于水能通过血脑屏障及肌肉的毛细血管壁是脑心肌和骨骼肌等组织的重要能源2 长期饥饿或糖供给不足时酮体利用的增加可减少糖的利用利于维持血糖节省蛋白质的消耗 3 严重饥饿或糖尿病时可作为脑组织的主要能源。
5 试述脂肪酸β氧化的过程1 脂肪酸在胞液中活化为脂酰辅酶A2 脂酰辅酶A 进入线粒体3 脂酰辅酶A进行Β氧化包括4步连续反应:脱氢加水脱氢和硫解 4 产生的乙酰辅酶A彻底氧化分解为co2 h2o 和能量。
影响酶促反应速率的因素有哪些答:1)温度:温度对酶促反应速率的影响曲线一般呈钟罩型,每种酶都有最适温度,在最适温度下反应速率最大。
2)PH:PH对酶促反应速率的影响一般呈钟罩型,每种酶都有最适PH,在最适PH下反应速率最大。
生化问答题1.试述糖异生与糖酵解代谢途径有哪些差异糖酵解:(1)葡萄糖(Glucose)磷酸化形成6-磷酸葡萄糖-G6P(2)6-磷酸果糖磷酸化形成1,6-磷酸果糖-FBP(3)磷酸烯醇式丙酮酸将磷2">转移给ADP形成ATP和丙酮酸糖异生(1)丙酮酸→草酰乙酸→磷酸烯醇式丙酮酸, 丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶催化(2)1,6-二磷酸果糖→6-磷酸果糖,果糖二磷酸酶催化 |(3)6-磷酸葡萄糖→葡萄糖,葡萄糖6磷酸酶催化2.糖异生途径中有哪些酶可以克服糖酵解的哪“三步能障”?丙酮酸羧化酶磷酸已糖异构酶葡萄糖6-磷酸酶糖异生途径和糖酵解是基本上是可逆反应但是有3个步骤是不可逆·,在糖异生途径之中须由另外的反应和酶代替。
这三步反应是:①丙酮酸转变成磷酸烯醇式丙酮酸,有2个反应组成,分别由丙酮酸所化酶和磷酸烯醇式丙酮酸羧激酶催化;② 1,6-双磷酸果糖转变成6-磷酸果糖,由磷酸已糖异构酶化;③ 6-磷酸葡萄糖水解为葡萄糖,由葡萄糖-6-磷酸酶催化。
3.试述无氧酵解、有氧氧化及磷酸戊糖旁路三条糖代谢途径之间的关系?1.在缺氧情况下进行的糖酵解。
糖酵解,又叫无氧呼吸。
在缺氧情况下,葡萄糖生成乳酸的过程称之为糖酵解。
糖酵解的反应部位:胞浆。
第一阶段:一分子葡萄糖分解成2分子的丙酮酸;第二阶段:由丙酮酸转变成乳酸。
由葡萄糖分解成丙酮酸,称之为糖酵解途径。
糖酵解的原料:葡萄糖。
糖酵解的产物:2丙酮酸(乳酸)+2ATP。
关键步骤(底物水平磷酸化)4.在氧供应充足时进行的有氧氧化。
有氧条件下,葡萄糖或糖原氧化成C02和H2O的过程称为糖的有氧氧化。
分为三个阶段:1》.葡萄糖或糖原的葡萄糖单位转变为丙酮酸。
2》.丙酮酸氧化生成乙酰CoA.在线粒体内膜进行,医学教`育网搜集整理由丙酮酸脱氢酶复合体催化。
3》.乙酰CoA进入三羧酸循环完全氧化生成CO2和H2O.四步脱氢生成3个NADH+H+、1个FADH2、一步底物水平磷酸化生成GTP.三种关键酶:①柠檬酸合酶;②异柠檬酸脱氢酶;③α-酮戊二酸脱氢酶复合体5.生成磷酸戊糖中间代谢物的磷酸戊糖途径。
戊糖磷酸途径(pentose phosphate pathway)也称之磷酸己糖支路(hexose monophosphate shunt)。
是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。
该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。
poly lys在ph7时为无规则线团,在ph10时为α-螺旋,为什么①α-螺旋的形成与氨基酸残基上的R基电荷性质及大小有关系。
②赖氨酸R 基上的-NH2的pKa值约为,在pH7时带正电形成-NH3+,R基之间会相互排斥,阻碍氢键的形成。
③当pH>10时,-NH3+开始解离成-NH2,氢键开始形成,poly lys自发的组成α-螺旋。
以上都是生物化学书本知识,具体的机理有待进一步的研究。
6.某一蛋白质的多肽链有一些区段为α-螺旋构象,另一些区段为β-折叠构象,蛋白质的分子量为240000,多肽链外形的长度为×10-5,试计算链中的α–螺旋构象占多肽分子的百分数?.该蛋白质共有的氨基酸残基数目为:240000/120=2000(个)设其中有n个氨基酸处于β-折叠构象,则:+ ×(2000 - n)=×10-5×108式中(2000-n)为处于α-螺旋的氨基酸数目 = 2060 n = 981 即有981个氨基酸处于β-折叠构象,所以α-螺旋的氨基酸数目为:2000 - 981 = 1019(个)所以α-螺旋氨基酸占总数的百分数为:1019/2000×100%=%7.核酸为什么是两性电解质,且可纯化得到DNA钠盐。
答:核酸带有酸性的磷酸基团和碱性的氨基,因而具有两性电解质性质。
DNA具有极性基团,微溶于水,但DNA钠盐在水中溶解度较大,所以经过抽提可以得到DNA钠盐8.从两种不同细菌提取得DNA样品,其腺嘌呤核苷酸分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种核苷酸的相对百分组成。
两种细菌中哪一种是从温泉(64℃)中分离出来的?为什么?第一种:A:32%、T:32%、G:18%、C:18%第二种:A:17%、T:17%、G:33%、C:33%由此可见,第二种细菌的GC含量比较高,热稳定性好,因为GC之间的作用力有三个氢键,而AT之间只有两个氢键。
所以第二种细菌更有可能是从温泉(64℃)中分离出来的9.计算在时,下列十肽所带的静电荷Ala-Met-Phe-Glu-Tyr-Val-Leu-Trp-Gly-Ile 带详细步骤在时,只有Glu带一个负电荷,其他都是不带电的,所以这个十肽静电荷为-1.这种带点问题,就是看组成多肽的AA的带电情况相加就好了,时,Glu,Asp带负电,Lys,Arg带正电。
10.计算分子量为3×105(5为上标,即10的5次方)的双股DNA分子的长度,这种DNA一分子占有的体积,这种DNA一分子占有的螺旋圈数(一个互补的脱氧核苷酸残基对的平均分子量为618)概念:DNA 双螺旋直径2nm;螺旋一周包含10个碱基队;螺距为;相邻碱基对平面的间距。
先求脱氧核苷酸对数:3×105/618=对DNA长度:脱氧核苷酸对数×间距×=体积:底面积乘高底面积:×[(2/2)的平方]=平方纳米高:体积: ×=立方纳米圈数:核苷酸对数/螺距 10=圈11.为什么用稀酸或高盐溶液处理染色质可以解离DNA与组蛋白组蛋白与DNA之间的结合依靠的是组蛋白带正电的碱性基团和DNA带负电的磷酸基团之间的静电作用,如果用稀酸处理染色质,磷酸基团质子化失去所带的电荷,复合物解离,如果用高盐溶液处理染色质,阳离子与磷酸基团结合取代了组蛋白,导致解离12.酶抑制有哪些?酶活力降低或丧失但没变性,此时的酶受抑制,包括:1,可逆的抑制作用竞争性抑制,即抑制物与底物竞争酶结合位点,从而导致底物与酶不能正常结合,造成酶抑制;非竞争性抑制,即抑制物与底物同时与酶结合,两者之间没有竞争作用,,酶与底物结合后仍可以与抑制剂结合,反之酶与抑制剂结合后也可以与底物结合,但他们三者形成的三元复合物不能进一步分解为底物,因此酶的活力降低。
反竞争性抑制,酶只有与底物结合后才能与抑制剂结合,此称为反竞争性抑制。
2,不可逆的抑制作用抑制剂与酶的必需基团以共价键结合而引起酶的活性丧失,不能用透析超滤等方法使酶的活性恢复,此称为不可逆的抑制作用。
13.酶活力测定为什么必须测定酶反应的初速度酶活力大小,不是要去表示酶催化效率的高低的。
它是酶含量的一个单位。
是因为在检查酶是否存在及含量的时候,不能直接用重量或者体积来衡量,通常是用催化某一化学烦赢得能力来表示,就是用酶活力大小表示。
酶促反应中,产物的生成量对反应时间的图形,它是一条类似“/~ ”型的曲线(我就不画图了,你自己找找这个曲线,教材上有的)。
曲线的斜率表示单位时间内产物生成量的变化,所以曲线上任何一点的斜率就是该相应时间的反应速率。
可以看出,在反应开始的一段时间内,斜率几乎不变,也就是你说的初始速度是不变的。
随着时间的延长,曲线逐渐平坦,斜率降低,反应速度也就降低,显然这个时候测得的酶活力不能代表真实的酶活力。
引起酶促反应速率随时间延长而降低的原因很多,如底物浓度降低,产物浓度增加加速了逆反应进行,产物对酶的抑制等等。
因此,测定酶活力,应该测定酶促反应的出速率,从而避免上述种种复杂因素对反应速率的影响。
最后,酶量和反应初速率呈线性关系,所以可以用初速率来测定制剂中的酶含量。
14.影响酶促反应的因素有哪些?用曲线表示他们的影响?为什么会产生这些影响?影响酶促反应的因素:分三个方面:1 浓度影响:酶浓度,底物浓度,产物浓度等。
2 外界因素(环境因素):压力,PH值,溶液的介电常数与离子强度,温度等。
3 内部因素(结构因素):底物浓度及效应物,酶结构等。
其中用到较多的是浓度影响,温度,PH值的影响等,结构因素就要从分子的角度去解释。
浓度的影响很容易解释,酶浓度和底物浓度高了,自然反应会快。
对于产物而言,经常会出现反馈抑制现象,所以产物浓度高了,往往会抑制反应的进行。
温度和PH值的影响,他们的曲线都是“钟形”的。
其中对于温度而言,一定的酶促反应都是由正向的酶促反应与酶的失活反应的复合。
当时间一定,随温度的升高,反应速率增大,转化率提高,但当温度高于某一值时,由于酶的热失活速率加快,当快于酶促反应速率上升的速度时,酶的总反应速率下降,最终降为零。
对某一反应时间,就有一与最高转化率对应的温度,该温度称为最适温度。
不同的反应时间,有不同的最适温度。
最适温度是温度对酶促反应速率和酶失活速率双重作用的结果15.酶催化的高效率有关的有因素有哪些、底物和酶的邻近效应与定向效应2、底物的变形和诱导契合3、酸碱催化4、共价催化5、金属离子的催化6、多元催化和协同效应7、活性部位微环境的影响16酶偶联受体介导的跨膜信号传导的特性酶偶联受体介导的信号转导途径:酶偶联受体具有和G蛋白偶联受体完全不同的分子结构和特性,受体分子的胞质侧自身具有酶的活性,或者可直接结合与激活胞质中的酶。
①酪氨酸激酶受体本身具有酪氨酸蛋白激酶(PTK)活性。
当激素与受体结合后,可使位于膜内区段上的PTK激活,进而使自身肽链和膜内蛋白底物中的酪氨酸残基磷酸化,经胞内一系列信息传递的级联反应,最终导致细胞核内基因转录过程的改变以及细胞内相应的生物效应。
大部分生长因子、胰岛素和一部分肽类激素都是通过该类受体信号转导。
②鸟苷酸环化酶受体与配体(心房钠尿肽)结合,将激活鸟苷酸环化酶(GC),GC使胞质内的GTP环化,生成cGMP,cGMP结合并激活蛋白激酶G(PKG),PKG 对底物蛋白磷酸化,从而实现信号转导17.离子通道型受体的结构特点和功能离子通道型受体(ion channel receptor),离子通道型受体是一类自身为离子通道的受体。
这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。
离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而影响细胞的功能的。
离子通道型受体是一类自身为离子通道的受体,即配体门通道(主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。
离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道,如甘氨酸和γ-氨基丁酸的受体。