天津市南开区翔宇中学 2018年 八年级数学下册 二次根式 课后练习含答案(word版)
- 格式:doc
- 大小:77.00 KB
- 文档页数:3
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0 时,没有意义。
知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则 a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.a b b aba 知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数 a 是正数还是负数,若是正数或 0,则等于a 本身,即;若 a 是负数,则等于 a 的相反数-a,即;2、中的 a 的取值范围可以是任意实数,即不论 a 取何值,一定有意义;3、化简时,先将它化成 ,再根据绝对值的意义来进行化简。
知识点六: 与 的异同点1、不同点:与表示的意义是不同的,表示一个正数 a 的算术平方根的平方,而表示一个实数 a 的平方的算术平方根;在是正实数,0,负实数。
但 与 都是非负数,即 , 。
新人教版数学八年级下册第十六章第三节二次根式的加减课时练习一、单选题(共15小题)1.计算+75(12313)48-的结果是( ) A .6 B .43 C .23+6 D .12答案:D知识点:二次根式的加减法解析:解答:原式=23×(53+3-43)=23×23=12,故选D .分析:正确进行二次根式的加减法运算,要求运算正确,解题迅速.2.设a >0,b >0,则下列运算错误的是( )A.b a ab ⋅=B.b a b a +=+C.a a =2)(D.ba b a = 答案:B知识点:二次根式的加减法解析:解答:选项B 不符合二次根式的加减法运算法则,故选B ,其余的选项都是正确的. 分析:深刻掌握二次根式的加减法规律,明确同根相加减的实际意义。
3.估计184132+⨯的运算结果应在( ) A . 5到6之间 B . 6到7之间 C . 7到8之间 D . 8到9之间答案:C知识点:二次根式的加减法解析:解答:原式=8+18=22+32=52=50,因为49<50<64,所以7<50<8,故选C .分析:准确进行二次根式的加减法运算,并能运用平方法比较根号内的数估算根式的大小是本节的一个学习重点.4.若x ﹣y =12-,xy =2,则代数式(x ﹣1)(y +1)的值等于( )A.222+B.2-22C.22D.2答案:B知识点:二次根式的加减法 整式的化简解析:解答:(x-1)(y+1)=xy+(x-y)-1=2+2-1-1=22-2,故选B .分析:正确展开代数式,并代入数值,进行二次根式的加减法运算,合理利用已知条件是解题的关键.5.已知251-=a ,251+=b ,则722++b a 的值为( ) A .5 B .6C .3D .4答案:A知识点:分母有理化;二次根式的加减法解析:解答:因为a=251-=5+2,b=251+=5-2,所以722++b a =7)25()25(22+-++=25=5,故选A 。
2018年八年级数学下册二次根式基础题练习一、选择题:1、下列二次根式中属于最简二次根式的是()A. B. C. D.2、下列各式是最简二次根式的是()A. B. C. D.3、要使有意义,x的取值范围是()A.x≥5B.x≤5C.x>5D.x<54、若代数式在实数范围内有意义,则x的取值范围为()A.x<-3B.x≥-3C.x>2D.x≥-3,且x≠25、下列运算正确的是()A. B. C. D.6、使代数式有意义的自变量x的取值范围是()A.x≥3B.x>3且x≠4C.x≥3且x≠4D.x>37、函数中,x的取值范围是()A.x≠0B.x>﹣2C.x<﹣2D.x≠﹣28、函数y=中自变量x的取值范围是()A.x≥0B.x>4C.x<4D.x≥49、下列各式成立的是()A. B. C. D.10、下列二次根式中,属于最简二次根式的是()A. B. C. D.11、下列各式计算正确的是( )A.+=B.4-3=1C.=3D.2×3=612、下列计算正确的是()A. B. C. D.13、下列计算正确的是()A. B. C. D.14、下列计算错误的是()A. B. C. D.15、下列计算正确的是()A. B. C. D.16、下列运算正确的是()A. B. C. D.17、下列计算正确的是( )A. B. C. D.18、下列各根式中与是同类二次根式的是( )A. B. C. D.19、下列二次根式的运算:①,②,③,④;其中运算正确的有( )A.1个B.2个C.3个D.4个20、下列计算正确的是()A. B. C D.21、下列计算正确的是()A. B. C. D.22、下列根式中,不能与合并的是()A. B. C. D.23、下列计算正确的是()A. B. C. D.24、下列计算正确的是().A. B. C. D.25、化简的结果是( )A.3B.-3C.D.二、填空题:26、若在实数范围内有意义,则x .27、已知函数y=,则自变量x的取值范围是______.28、若有意义,则的取值范围是___________________.29、使有意义的x的取值范围是.30、函数中,自变量的取值范围是 .31、计算(﹣)2的结果等于.32、化简:,.33、计算:()()=___________.34、计算的结果是 .35、计算:的结果为 .36、化简:= .37、计算:.38、化简计算: = .39、计算:()2 .40、计算﹣的结果是______.参考答案1、A2、C.3、A4、D5、B6、C7、B8、D9、D10、D11、C12、A13、D14、A15、B16、C17、D18、B19、C20、B21、B22、C23、C24、D25、A26、答案为:<227、答案为:x>1.28、答案为:≥且29、答案为:x≥.30、答案为:x≤3且x≠1;31、答案为:8﹣2.32、答案为:2 ,33、答案为:334、答案为:2;35、答案为:2.36、答案为:;37、答案为:38、答案为:39、答案为:5.40、答案为:.。
5 0.5{ )1(4) 4-3x ;x -4 第十六章 二次根式 16.1 二次根式 第 1 课时 二次根式的概念01基础题知识点 1 二次根式的定义1. 下列式子不是二次根式的是( B )A. B .C. D. 2. 下列各式中,一定是二次根式的是( C )A. -7C . 1+x 2D . 3. 已知 a 是二次根式,则 a 的值可以是( C )A .-2B .-1C .2D .-54. 若 -3x 是二次根式,则 x 的值可以为答案不唯一,如:-1(写出一个即可).知识点 2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式 A .-2 B .0C .2D .4 x -3有意义(D )6.(2017·广安)要使二次根式 A. x >2 B .x ≥2 C .x <2 D .x =22x -4在实数范围内有意义,则 x 的取值范围是(B)7. 当 x 是怎样的实数时,下列各式在实数范围内有意义?解:由-x ≥0,得 x ≤0.解:由 2x +6≥0,得 x ≥-3.解:由 x 2≥0,得 x 为全体实数. 4解:由 4-3x>0,得 x<3. (5) x -3 .x -4 ≥ 0,解:由 x -3 ≠ 0 得 x ≥4.(3) x 2; (2) 2x +6;(1) -x ;3-π13B . m 32x6 3 (1) 2x -1;2 (2)1- x ; (3) 1-|x|;知识点 3 二次根式的实际应用8. 已知一个表面积为 12 dm 2 的正方体,则这个正方体的棱长为(B)A.1 dmB. 2 dmC. dm D .3 dm9. 若一个长方形的面积为 10cm 2,它的长与宽的比为 5∶1,则它的长为5 2cm ,宽为02中档题10. 下列各式中:①12;②2x ;③ x 3;④ -5.其中,二次根式的个数有(A ) A .1 个 B .2 个C .3 个D .4 个 11.(2017·济宁)若 1 A. x ≥2 12x -1+ 1 B. x ≤21-2x +1 在实数范围内有意义,则 x 满足的条件是(C)1C. x =2 1D. x ≠212. 使式子 x +3+ 4-3x 在实数范围内有意义的整数 x 有(C )A .5 个B .3 个C .4 个D .2 个113. 如果式子 a + ab 有意义,那么在平面直角坐标系中点 A(a ,b)的位置在(A) A .第一象限 B .第二象限C .第三象限 D .第四象限14. 使式子 -(x -5)2有意义的未知数 x 的值有 1 个.15. 若整数 x 满足|x|≤3,则使 7-x 为整数的 x 的值是 3 或-2.216. 要使二次根式 2-3x 有意义,则 x 的最大值是3.17. 当 x 是怎样的实数时,下列各式在实数范围内有意义?1解:x>2.解:x ≥0 且 x ≠1.2cm.解:-1≤x≤1.(4) x-3+4-x.解:3≤x≤4.03综合题3a-6+3 2-a,求此18.已知a,b 分别为等腰三角形的两条边长,且a,b 满足b=4+三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2 时,不符合实际情况,舍去;当边长为4,4,2 时,符合实际情况,4×2+2=10.∴此三角形的周长为10.1(- )2 3 第 2 课时 二次根式的性质01 基础题 知识点 1 a ≥0(a ≥0)1.(2017·荆门)已知实数 m ,n 满足|n -2|+ m +1=0,则 m +2n 的值为 3. 2.当 x =2 017 时,式子 2 018- x -2 017有最大值,且最大值为 2 018. 知识点 2 ( a )2=a (a ≥0)3. 把下列非负数写成一个非负数的平方的形式:(1)5=(15)2; 1(2)3.4=( 3.4)2;(3)6=( 4. 计算:( 5. 计算:6)2; (4)x =( x )2(x ≥0).2 018)2=2 018.解:原式=0.8.3(2)(- 4)2;3解:原式=4. (3)(5 2)2;解:原式=25×2=50. (4)(-2 6)2.解:原式=4×6=24. 知识点 3 6.计算 a 2=a (a ≥0) (-5)2的结果是(B )A .-5B .5C .-25D .257. 已知二次根式 x 2的值为 3,那么 x 的值是(D)A .3B .9C .-3D .3 或-3 8. 当 a ≥0 时, 9. 计算:9a 2=3a .解:原式=7.解:原式=5.(3); 1解:原式=3. (2) (-5)2; (1) 49; (1)( 0.8)2; (4) 6-2.1 (- )2 8 1解:原式=6.知识点 4 代数式10. 下列式子不是代数式的是(C )3A. 3xB .xC .x>3D .x -3 11. 下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦ A .5 个 B .6 个 C .7 个 D .8 个 02 中档题12. 下列运算正确的是(A )A. - (-6)2 6 B .(- 3)2=9 C . (-16)2=±16 D .-(- 5)2=-25 13.若 a <1,化简 (a -1)2-1 的结果是(D )A. a -2 B .2-a C .a D .-ax 2+1;⑧x ≠2. 14.(2017·枣庄)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+A .-2a +bB .2a -bC .-bD .b(a -b )2的结果是(A )15. 已知实数 x ,y ,m 满足 x +2+|3x +y +m|=0,且 y 为负数,则 m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616. 化 简 :(2- 5)2 5-2. 17. 在实数范围内分解因式:x 2-5=(x + 5)(x - 5). 18. 若等式(x -2)2=( x -2)2 成立,则 x 的取值范围是 x ≥2.19. 若 a 2=3, b =2,且 ab <0,则 a -b =-7. 20. 计算:(1)-2; 1解:原式=-2×81=-4.解:原式=2×10-2. (3)(2 3)2-(4 2)2;(2) 4 × 10-4;1 (2 )23 1 (-2 )23 解:原式=12-32 =-20.(4) +. 1 1解:原式=23+23 2=43.21. 比较 211与 3 5的大小. 解:∵(2 11)2=22×( 11)2=44, (3 5)2=32×( 5)2=45,又∵44<45,且 2 11>0,3 5>0,22. 先化简 a + 1+2a +a 2,然后分别求出当 a =-2 和 a =3 时,原代数式的值. 解:a + 1+2a +a 2=a + (a +1)2=a +|a +1|,当 a =-2 时,原式=-2+|-2+1|=-2+1=-1; 当 a =3 时,原式=3+|3+1|=3+4=7. 03 综合题23. 有如下一串二次根式:① 52-42;② ④ 652-162…172-82;③ 372-122; (1)求①,②,③,④的值;(2) 仿照①,②,③,④,写出第⑤个二次根式;(3) 仿照①,②,③,④,⑤,写出第个二次根式,并化简. 解:(1)①原式= 9=3. ②原式= ③原式=④原式=225=15.1 225=35.3 969=63. (2)第⑤个二次根式为(3)第个二次根式为化简:1012-202=99.(4n 2+1)2-(4n )2. (4n 2+1)2-(4n )2= (2n +1).(4n 2-4n +1)(4n 2+4n +1)= (2n -1)2(2n +1)2=(2n -1) 5. ∴2 11<33 6 2 × 701 基础题16.2 二次根式的乘除 第 1 课时 二次根式的乘法知识点 1 a ·b = ab (a ≥0,b ≥0) 1. 计算 2× 3的结果是(B )2. 下列各等式成立的是(D )A .4 C .4 5×2 3×3 5=8 5 2=7 5B .5 D .5 3×4 3×4 2=20 52=20 63.下列二次根式中,与 2的积为无理数的是(B )A .C .4.计算: 8× B .D . 12=2.5. 计算:2 6×(-3 6)=-36.6. 一个直角三角形的两条直角边分别为 a =2 cm ,b =3 cm ,那么这个直角三角形的面积为 9 2cm 2.7. 计算下列各题:1(1) 3× 5; (2) 125× 5;解:原式= =5.15. 解:原式=(3)(-3 2)×2 7;解:原式=-6 解:原式=3 x .=-6 14.知识点 2ab = a · b (a ≥0,b ≥0) 8. 下列各式正确的是( D )A . (-4) × (-9)= -4× 16 9 +B .4= 16× 4 4C . 9= 4×D . 4 × 9= 4× 9.(2017·益阳)下列各式化简后的结果是 3 2的结果是( C )B . 6 D .3 2 A. 5C .2 3 1 21218 32251(4)3 xy · y .-99 4 4 991 ab 25 10a b (2) 300;(3) 16y ;3A. 6C . 18B. 12 D . 36 10.化简 (-2)2 × 8 × 3的结果是(D )A .2 24B .-2 24C .-4 6D .4 611.化简:(1) 100 × 36=60;(2) 2y 3=y 2y.12. 化简:(1) 4 × 225; 解:原式= 4× 225=2×15=30.解:原式=10 3.解:原式=4 y .解:原式=3xy 2 13. 计算:(1)3 6×2 12;yz . 解:原式=6 62 × 2=36 2.(2) · . 解:原式= 2a 2b =a 2b .02中档题14. 50· a 的值是一个整数,则正整数 a 的最小值是(B ) A .1 B .2 C .3 D .515.已知 m =(- 3 )×(-2 21),则有(A )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-516. 若点 P(a ,b)在第三象限内,化简 17. 计算:(1) 75× 20× 12;a 2b2的结果是 ab . 解:原式= 25 × 3 × 4 × 5 × 3 × 4 =60 5. (4) 9x 2y5z .2(3) - 32 × 45 × 2; 解:原式=-3×16×2 2 =-96 2.(4) 200a 5b4c3(a >0,c >0). 解:原式= 2 × 102·(a 2)2·a·(b 2)2·c2·c =10a 2b 2c 2ac .18. 交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16 df ,其中 v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得 d =20 m ,f =1.2,肇事汽车的车速大约是多少? (结果精确到 0.01 km /h )解:当 d =20 m ,f =1.2 时,v =16 df =16× 20 × 1.2=16 24=32 6≈78.38.答:肇事汽车的车速大约是 78.38 km /h .19. 一个底面为 30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为 10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了 20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为 x cm ,则x 2×10=30×30×20,x 2= 30×30×2, x = 30 × 30 × 2=30 2. 答:铁桶的底面边长是 30 cm.03综合题20. (教材 P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长a +b +c分别为 a 、b 、c.记:p = 2 “海伦公式”.,则三角形的面积 S = p (p -a )(p -b )(p -c ),此公式称为 思考运用:已知李大爷有一块三角形的菜地,如图,测得 AB =7 m ,AC =5m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,(2) (-14) × (-112); 解:原式= 14 × 112 = 2 × 72 × 42 = 2× 72× 42 =28 2.a+b+c 7+5+8∴p== 2 =10.∴S=p(p-a)(p-b)(p-c)=10 × (10-7)× (10-5)× (10-8)=10 × 3 × 5 × 2=105 2 a 3b ab 01 基础题a a 知识点 1b = b (a ≥0,b >0) 1. 计算: 10÷ 2=(A ) 第 2 课时 二次根式的除法5 10 A . B .5C . 2D . 22 2. 计算 3÷ A.13 C .2 32的结果是(B )2B .3D .以上答案都不对3. 下列运算正确的是(D )A . 50÷ 5=10B . 10÷2 5=2C . 32+42=3+4=7D . 1227÷3=3 4. 计算: 5. 计算: 3 =2.(1) 40÷5; 解:原式= 8=2 2. 解:原式=4.4 (3) 5÷ 215;(4) (a>0). 解:原式= a 6. 解:原式=2a.a 知识点 2b = b (a ≥0,b >0) 6. 下列各式成立的是(A )-33 3 A . -5= 5= 5-7 -7B . -6= -62 32(2) 2 ;2 13 0.3 37(1) 100;1 1 D .4=327. 实数 0.5 的算术平方根等于(C )2 1A .2B .C . 2 x -1D .28. 如果 =x -2,那么 x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2 或 x ≤19. 化简:7 7 解:原式=100=10.(2)解:原式= 64 64 849= 49=7.25a 4(3) 9b2 (b>0).25a 4 5a 2解:原式= 9b2= 3b .知识点 3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A. B . C . D . 11. 把下列二次根式化为最简二次根式:(1) 2.5; 2 -9 2C . -9= 9 +1 4= 9+ 15 149; x -1 ( )2 x -2 203 6C.6 3=254a2b6a 2 32 (4)3 40 .=3 ×2 5 5 10解:原式=2=2 .2解:原式=5 10.12(3) 2 ;解:原式=2 =2解:原式=3 2 × 201=3 × 2015=30.02中档题12.下列各式计算正确的是(C)48 3 23A. 3 =16B. 11÷3=12D. =911 13.计算3÷2A.7 51 22 13÷5的结果是(A)2B.78(2) 5;3.ab2 27 × 123 30.9 × 121(1) 100 × 0.36;2C .D . 7 14. 在①14;② a 2+b 2;③ 27;④ m 2+1中,最简二次根式有 3 个. 15. 如果一个三角形的面积为 15,一边长为 3,那么这边上的高为 2 5.16. 不等式 2 2x - 6>0 的解集是 x >2 . 17. 化简或计算:解:原式= 9 × 121 36 × 10=33 1 = 6 1033 10 = 6 × 10 = 20 .(2) 12÷27×(- 18);解:原式=-=-=-2 2.(3) ;解:原式==3× 2 =6 3.(4) 212x ÷5 y . 2解:原式=(1÷5) 32 × 112 62 × 10 11 1012 × 18 27 4 × 3 × 2 × 93 × 93 × 9 × 123 312x ÷ y18 3 2 18 3 1=a·a ab ③ = ab .④= 5 3xy= y .18. 如图,在 Rt △ABC 中,∠C =90°,S △ABC = cm 2,BC = cm ,AB =3 cm ,CD ⊥AB 于点 D.求 AC ,CD 的长.1 1解:∵S △ABC =2AC·BC =2AB·CD ,2S △ ABC ∴AC = BC = =2 6(cm ),2S △ ABC 2 18 2CD = AB 03 综合题= 3 3 =3 6(cm ).19. 阅读下面的解题过程,根据要求回答下列问题.ab3-2ab2+a2b 化简:b -aa(b<a<0). a 解:原式=b -ab (b -a )2a ①(1) 上述解答过程从哪一步开始出现错误?请写出代号②;(2) 错误的原因是什么?(3)请你写出正确的解法. 解:(2)∵b<a ,∴b-a<0.∴(b -a)2 的算术平方根为 a -b.a(3)原式=b -a b (b -a )2 aa (b -a ) b= b -a a ②5 12xy2 y 23a=b-a·(a-b)1=-a·(-a ab) =ab.b a18 24 20 45 16.3 二次根式的加减01 基础题知识点 1 可以合并的二次根式第 1 课时 二次根式的加减 1.(2016·巴中)下列二次根式中,与 3可以合并的是(B )A. B . C . D . 2. 下列各个运算中,能合并成一个根式的是(B )A . 12- 2B . 18- 8C . 8a 2+ 2aD . x 2y + xy 23. 若最简二次根式2x +1和 4x -3能合并,则 x 的值为(C ) 1 3A .-2B .4C . 2D .54. 若 m 与 18可以合并,则 m 的最小正整数值是(D )A .18B .8C .4D .2知识点 2 二次根式的加减5.(2016·桂林)计算 3 5-2 5的结果是(A )B .2 5D .66.下列计算正确的是(A )A . 12-3= 3 B . 2+ 3= 5 C .4 3-3 3=1 D .3+2 2=5 17. 计算 27-3 18- 48的结果是(C ) A .1B .-1C .- 3- 28. 计算 2+( 2-1)的结果是(A)A .2 2-1B .2- 2C .1- 2D .2+ 29. 长方形的一边长为 8,另一边长为 50,则长方形的周长为 14 2. 10. 三角形的三边长分别为 cm , 11. 计算: 40 cm , cm ,这个三角形的周长是(5 5+2 10)cm .(1)2 3- 2 ;1解:原式=(2-2) 33 3= 2 .3 A . 5 C .3 5 D . 2- 1 30.3238 3 (2) 16x + 64x ;解:原式=4 =(4+ 8) x =12 x . x +8 (3) 125-2 5+ 45; 解:原式=5 5-2 5+3(4)(2017·黄冈) 127-6- 3.解:原式=3 3-6- 3= 3 -02 中档题12. 若 x 与 2可以合并,则 x 可以是(A )A .0.5B .0.4C .0.2D .0.113.计算|2- 5|+|4- 5|的值是(B )A .-2B .2C .2 5-6D .6-2 1 114. 计算 4 A. 3+ 3C. 32+3 3- 8的结果是(B)B. D. 3- 15. 若 a ,b 均为有理数,且 8+ 18+ 1 8=a +b 212,则 a =0,b = 4 . 16. 已知等腰三角形的两边长分别为 2 7和 5 5,则此等腰三角形的周长为 2 7+10 5. 17. 在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为 4 2.2 31 36 26 318. 计算: 3 =6 5. 6. 2x5 53 2(1) 18+ 12- 8- 27; 解:原式=3 2+2 3-2 2-3 =(3 2-2 2)+(2 3-3 3)= 2- 3.(2) b 12b 3+b 2 48b ;解:原式=2b 2 3b +4b 2 =6b 2 3b .(3)( 45+ 27)-( 4 3+ 125); 2解:原式=3 7=3 3-2 5+3 3-3 3-5 3 1(4) 4( 2- 27)-2( 3- 2).39 1 解:原式=4 2-4 3-2 3+2 3 1 9 1=(4+2) 2-(4+2) 5 11 =4 2- 4 3. 311 3 19. 已知 3≈1.732,求(3 27-4 43)-2( 4- 12)的近似值(结果保留小数点后两位).解:原式= 8=3 38≈3×1.732≈4.62.3-3 3- 3+403 综合题20. 若 a ,b 都是正整数,且 a <b , a 与 b 是可以合并的二次根式,是否存在 a ,b ,使a +b = 75?若存在,请求出 a ,b 的值;若不存在,请说明理由. 解:∵ a 与 b 是可以合并的二次根式, a + b = 75, ∴ a + b = 75=5 3.∵a<b ,∴当 a =3,则 b =48;5.1233b53当a=12,则b=27.40+ 55第 2 课时 二次根式的混合运算01 基础题 知识点 1 二次根式的混合运算 1.化简 2( 2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算( 12- 3)÷ 3的结果是(D )A .-1B .- C. 33.(2017·南京)计算: D .1 12+ 8× 6的结果是 6 3.14.(2017·青岛)计算:( 24+ 6)× 6=13.5.计算:=2 6.计算:(1) 3( 5- 2);2+1.解:原式= 15- 6.(2)( 24+ 18)÷ 2; 解:原式=2 3+3.(3)( 2+3)( 2+2); 解:原式=8+5 2.(4)( m +2 n )( m -3n ). 解:原式=m - mn -6n. 知识点 2 二次根式与乘法公式 7.(2017·天津)计算:(4+ 1 7)(4- 7)的结果等于9. 8.(2016·包头)计算:6 9.计算:3-( 3+1)2=-4.(1)( 1 2- 2)2; 1解:原式=2.(2)( 2+ 3)( 2- 3);解:原式=-1.(3)( 5+3 2)2.解:原式=23+6 10. 10.(2016·盐城)计算:(3- 7)(3+ 7)+ 2(2- 2).32=2 2- = 2.2解:原式=9-7+2 2-202中档题 11. 已知 a = 5+2,b =2- B. - 5,则 a2 018b 2 017 的值为(B ) 5-2 C.1 D .-112. 按如图所示的程序计算,若开始输入的 n 值为 2,则最后输出的结果是(C )A .14B .16C .8+5D .14+ 13. 计算:(1)(1-2 2)(2 2+1);解:原式=-7. 3 2 3(2) 12÷( 4 + 3 );3 3 8 3解:原式= 12÷( 12 + 12 ) 11 3= 12÷ 1212=2 3×11 3 24 =11.(3)(4 6-4 12+3 8)÷2 2; 解:原式=(4 6-2 2+6 2)÷2 =(4 =2 6+4 3+2. 1 2)÷2 21(4) 24× 3-4× 8×(1- 2)0.解:原式=2 6× 3 -4× 4 ×1 2 3 A . 5+2 =2 2. 2 214.计算:(1)(1-5)( 5+1)+( 5-1)2;解:原式=1-5+5+1-2=2-2 5.(2)( 3+2-1)( 3-2+1).解:原式=( 3)2-( 2-1)2=3-(2+1-2 2)=3- 2-1+2 2=2 2.15.已知a=7+2,b=7-2,求下列代数式的值:(1)ab2+ba2;(2)a2-2ab+b2;(3)a2-b2.解:由题意得a+b=( 7+2)+( 7-2)=2 7,a-b=( 7+2)-( 7-2)=4,ab=( 7+2)( 7-2)=( 7)2-22=7-4=3.(1)原式=ab(b+a)=3×2(2)原式=(a—b)2=42=16.(3)原式=(a+b)(a—b)=2 03综合题16.观察下列运算:7=6 7.7×4=8 7.1①由( 2+1)( 2-1)=1,得2+1=2-1;②由( 3+2)( 3-2)=1,得13+2=3-2;③由( 4+3)( 4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n 的式子表示出来;(2)利用(1)中你发现的规律计算:( 12 018+2 017)×( 2 018+1).12+1+13+2+14+3+…+12 017+2 016+解:(1)1n+1+n=n+1-n(n≥0).(2)原式=( 2-1+3-2+4-3+…+2 017-2 016+2 018-2 017)×( 2 018+1)=(-1+=2 017. )(2 018+1)5=2 12 = 4 3.类型 1 与二次根式有关的计算 1. 计算:小专题(一) 二次根式的运算(1)6 12×3 6;1解:原式=(6×3)(2)(-44 1 5)÷5 5;3 5解:原式=-4 5÷(5× 5 ) =-4 4 =-3. 5÷33(3) 72-2 2+2 18;3解:原式=6 3 2-2 2+6 =12 21 2-2 2 = 2 2.(4)(2 5+ 3)×(2 5- 3). 解:原式=(2 =20-3 =17. 2. 计算:5)2-( 3)2(1)3 31 4÷(-2 12 3);1解:原式=[3÷(-2)]=-6=-6 2 × 6 5 23 5÷4 39209 × 520 × 5854 × 9 9 =-5 5.(2)( 6+ 10× 15)× 3; 解:原式=3 2+5 6× 3 =3 =18 2+15 2 2.811 (3)3 54×(- 9)÷7 5;解:原式=3×(-1)×÷7=-33 =-7 648÷7 548 ×6 =-7 10.11(4)( 12-4 8)-(3 3-4 0.5); 解:原式=2 3- 2- 3+2 = 3+ 2.(5)(3 2- 6)2-(-3 2- 6)2.解:原式=(3 2- 6)2-(3 2+ 6)2=18+6-12 3-(18+6+12 3) =-24 3.3.计算:6(1)(2 018- 3)0+|3- 12|- 3; 解:原式=1+2 3-3-2 3 =-2.1 10 3 (2)(2017·呼和浩特)|2- 15|- 3 2×(8- 2 )+2. 解:原式= 5-2-2+ 5+2 =2 5-1. 类型 2 与二次根式有关的化简求值4.已知 a =3+2 2,b =3-2 2,求 a 2b -ab 2 的值.1 15 65 2{ ) 解:原式=a 2b -ab 2=ab(a -b). 当 a =3+2 2,b =3-2 2时,原式=(3+2 2)(3-2 2)(3+2 2-3+2 2)5. 已知实数 a ,b ,定义“★”运算规则如下:a ★b =的值.解:由题意,得 2★ 3= 3.∴ 7★( 2★ 3)= 7★ 3= 7-3=2.b (a ≤ b ),a2-b 2(a > b ), 求 7★( 2★ 3)6. 已知 x =2+ 3,求代数式(7-4 3)x 2+(2- 3)x + 3的值. 解:当 x =2+ 3时,原式=(7-4 3)×(2+ 3)2+(2- 3)×(2+ 3)+ =(7-4 3)×(7+ 4 3)+4-3+ 3 =49-48+1+ 3=2+ 3.1117.(2017·襄阳)先化简,再求值:(x +y +x -y )÷xy +y 2,其中 x = 2x5+2,y = 5-2. 解:原式= 2xy=x -y .(x +y )(x -y )·y(x +y) 当 x = 5+2,y = 5-2 时,原式= 1 =2.8. 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如 3+22=(1+ 2)2,善于思考的小明进行了以下探索:设 a +b 2=(m +n 2) 2(其中 a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+2 2mn ,∴a =m 2+2n 2,b =2mn.这样小明就找到了一种把 a +b 并解决下列问题:2的式子化为平方式的方法.请你仿照小明的方法探索 (1) 当 a ,b ,m ,n 均为正整数时,若 a +b a ,b ,得 a =m 2+3n 2,b =2mn ;3=(m +n 3) 2,用含 m ,n 的式子分别表示 (2) 利用所探索的结论,找一组正整数 a ,b ,m ,n 填空:4+2 唯一)3=(1+ 3)2;(答案不 (3) 若 a +4 3=(m +n 3)2,且 a ,m ,n 均为正整数,求 a 的值.=4 2. 32( 5+2)( 5-2) 5+2- 5+2{ )a=m2+3n2,解:根据题意,得4=2mn.∵2mn=4,且m,n 为正整数,∴m=2,n=1 或m=1,n=2.∴a=7 或13.5 2 3 章末复习(一) 二次根式01基础题知识点 1 二次根式的概念及性质x + 41.(2016·黄冈)在函数 y = x 中,自变量 x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4 且 x ≠0D .x >0 且 x ≠-4 2.(2016·自贡)下列根式中,不是最简二次根式的是(B)A. 10B.C. 6D. 3. 若 xy <0,则 x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点 2 二次根式的运算4. 与- 5可以合并的二次根式的是(C )A . 10C . 20 5.(2017·十堰)下列运算正确的是(C )A . 2+ C . 8÷ 3=B .2 2=2 D .3 12×3 2- 2=6 2=36. 计算 5÷7. 计算:5× 5所得的结果是 1. (1)(2017·湖州)2×(1- 2)+ 8;解:原式=2-2=2.2+2 2(2)(4 3+3 6)÷2 3; 解:原式=43 =2+2 2.13÷2 3+3 6÷21(3)2 32-2 75+ 0.5-327;解:原式=2 1 2-10 3+ 2 - 3 1 =(2+2)× 2+(-10-3)× 5 31 =2 2- 3 3.(4)(3 2-2 3)(3 2+2 3).82B . 15 D . 25 23 33 3 7 32- 82 25.12 3.145-1解:原式=(3 =9×2-4×3 =6.2)2-(2 3)2知识点 3 二次根式的实际应用8. 两个圆的圆心相同,它们的面积分别是 25.12 和 50.24.求圆环的宽度 d.(π 取 3.14,结果保留小数点后两位)解:d == 16- ≈1.17.50.24 3.14 - 8=4-2 答:圆环的宽度 d 约为 1.17.02中档题1 -9. 把-aa 中根号外面的因式移到根号内的结果是(A ) B .- aD . a1 110. 已知 x +x = 7,则 x -x 的值为(C)A. B .±2C .± D.11. 在数轴上表示实数 a 的点如图所示,化简 (a -5)2+|a -2|的结果为 3.12.(2016·青岛)计算: =2. 13. 计算:( 3+2)3×( 3-2)3=-1.14. 已 知 x = 2 ,则 x 2+x +1=2.15. 已知 16-n 是整数,则自然数 n 所有可能的值为 0,7,12,15,16. 16. 计算:1(1)( 3+1)( 3-1)- 16+(2)-1; 解:原式=3-1-4+2 =0.2A . -a .- -a(2)( 3+ 2- 6)2-( 2-3+ 6)2. 解: 原式=( 3+ 2- 6+ 2- 3+ 6)×( 3+ 2- 6- 2+ 3- 6)=2 2×(2 =4 6-8 3-2 6) 3.17. 已知 x = 3+ 7,y = 3- 7,试求代数式 3x 2-5xy +3y 2 的值. 解:当 x = 3+ 7,y = 3- 7时, 3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy =3(x -y)2+xy=3( 3+ 7- 3+ 7)2+( 3+ 7)×( 3- 7) =3×28-4=80.18. 教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为 800 cm 2,另一张面积为 450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有 1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如 果不够,还需买多长的金彩带?( 2≈1.414,结果保留整数)解:正方形壁画的边长分别为 800 cm , 450 cm .镶壁画所用的金彩带长为 4×( 800+ 450)=4×(20 2+15 2)=140 2≈197.96(cm).因为 1.2 m =120 cm <197.96 cm ,所以小明的金彩带不够用,197.96-120=77.96≈78(cm). 故还需买约 78 cm 长的金彩带. 03 综合题19.已知 a ,b ,c 满足|a - (1) 求 a ,b ,c 的值;8|+ b -5+(c - 18)20. (2) 试问以 a ,b ,c 为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得 a - 8=0,b -5=0,c - 18=0, 即 a =2 2,b =5,c =3 2.(2)∵2 2+3 2=5 2>5,∴以 a ,b ,c 为边能构成三角形. 三角形的周长为 2 2+3 2+5=5 2+5.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
二次根式21.1 二次根式:1. 使式子4x -有意义的条件是 。
2. 当__________时,212x x ++-有意义。
3. 若11m m -++有意义,则m 的取值范围是 。
4. 当__________x 时,()21x -是二次根式。
5. 在实数范围内分解因式:429__________,222__________x x x -=-+=。
6. 若242x x =,则x 的取值范围是 。
7. 已知()222x x -=-,则x 的取值范围是 。
8. 化简:()2211x x x -+ 的结果是 。
9. 当15x ≤ 时,()215_____________x x -+-=。
10. 把1a a-的根号外的因式移到根号内等于 。
11. 使等式()()1111x x x x +-=-+ 成立的条件是 。
12. 若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。
13. 在式子()()()230,2,12,20,3,1,2xx y y x x x x y +=--++ 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b15. 若23a ,则()()2223a a ---等于( )A. 52a -B. 12a -C. 25a -D. 21a - 16. 若()424A a =+,则A =( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤,则()31a -化简后为( )A. ()11a a --B. ()11a a --C. ()11a a --D. ()11a a -- 18. 能使等式22xxx x =--成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19. 计算:()()222112a a -+-的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()()222323121232312223233224=⨯=⋅⋅⋅⋅⋅⋅-=-⨯=∴=-∴=-A. ()1B. ()2C. ()3D. ()4 21. 若2440x y y y -+-+=,求xy 的值。
八年级数学下册《二次根式》练习题及答案(人教版)一、单选题 1.在下列代数式中,不是二次根式的是( )A .3B .13C .2xD .2x2.使二次根式3x +有意义的x 的取值范围是( )A . 3x ≠B . 3x ≥-C . 3x ≥D . 3x ≠-3.下列二次根式中能与合并的二次根式是( ).A .B .C .D .4.式子3x -中x 的取值范围是( )A .x≤3B .x <3C .x≥﹣3D .x≥35.已知a ,b ,c 在数轴上的位置如图,化简()()22a c c b ++-的结果为().A .2a b c --+B .a b --C .a b -+D . a b +6.下列各式变形中,正确的是( )A .236236x x x ⋅=B .2a a =C .()()2444x x x -=+-D .()()22-=-a b b a7.下列计算正确的是( )A .﹣=B .+=C .×=D .÷=48.实数a ,b 在数轴上对应点得位置如图,则化简2||a b a --的结果是()A .2a b -B .2b a -C .bD .b -9.若9x -在实数范围内有意义,则x 的取值范围是( )A .x≥3B .x≤9C .x≥﹣3D .x≤﹣910.已知12m =+,12n =-则代数式223m n mn +-的值为( )A .9B .3±C .3D .5二、填空题 11.要使代数式1x x +有意义,则x 的取值范围是________________. 12.比较大小:25______23(填“>”,“<”或“=”).13.对于任意两个不相等的实数a 、b ,定义运算“※”如下:a ※a b b ab +=,如3※3252326+==⨯,那么6※12=__.14.若1a <,则()21a a -+化简得_______.15.已知y =1222x x ----,则x 2021•y 2020=_____.三、解答题 16.计算:31227-+17.计算:11|223|6(323)22-+-+.18.已知实数a ,b ,c 在数轴上所对应的点的位置如图所示,化简:()22a b c a c +--+.19.计算:(1)223(6)64(5)-+-;(2)|23||12||23|-----.20.若x 、y 为实数,且223y x x =-+-+,求x y 的值.。
2018年中考数学精选题作业本二次根式一、选择题:1.二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥32.已知x=,若x在两个相邻整数之间,则这两个整数是()A.3和4B.4和5C.5和6D.6和73.若a<1,化简=( )4.若a<1,化简﹣1=()A.a﹣2B.2﹣aC.aD.﹣a5.下列计算正确的是( )A. B.C. D.6.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7.2(=()A.3B.3- C.3± D.98.计算(-3+2)×的值是()A.-B.2-C.3-D.-3二、填空题:9.化去根号内的分母:10.计算:(+1)2= .11.规定一种新运算,如,则= . 12.13.计算(﹣)2+2= . 14.要使53-x 有意义,则x 可以取的最小整数是 .15.计算:﹣×= . 16.计算:= .三、解答题:17.先化简,再求值:(+)÷,其中x=+1.18.数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.19.先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中2x =.20.已知a=2+,b=2-,试求的值.参考答案1.C2.B3.D4.D5.C6.A7.D8.D.9.略10.答案为3+2.11.答案为:612.略13.答案为:5.14.答案为:2;15.答案为:. 16.答案为11.17.解:原式=÷=•=.当x=+1时,原式==.18.解:由题意得原式=-a-1+b-1-(b-a)=-219.解: 原式222441444x x x x x =+++---23x =- .当2x = ,原式 .20.解:∵ a=2+,b=2-,∴a +b=4,a -b=2,ab=1 而=∴===8。
二次根式的运算和应用金题精讲题一:题面:当x=1题二:满分冲刺题一:题面:已知a、b为两个连续的整数,且a b,则a+b___________ .题二:题三:题面:若a+b=5,ab=4,则a ba b-+=_________.思维拓展题面:如图,长方体中AB=BB′=2,AD=3,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少?课后练习详解金题精讲题一:答案:-1当x=11题二:答案:2.==.详解:原式2满分冲刺题一:答案:7.详解:∵ 9<11<16 ,∴34.又∵a b,且a、b为两个连续的整数,∴a=3,b=4.∴a+b=3+4=7.题二:答案:A.∴由韦达定理,得x 1•x 2=2,即1a •b =2,∴a =2b ; ∴2b a +ab =22+12=522.题三: 答案:13±.详解:∵a +b =5,ab =4,∴(a -b )2=(a +b )2-4ab =52-4×4=25-16=9, ∴a -b =±3,a b a b-+=2524133a b ab a b +--==±-±.思维拓展答案:最短路径是5.详解::①如图1,把长方体沿虚线剪开,则成长方形ACC ′A ′,宽为AA ′=2,长为AD +DC =5,连接AC ′则A 、D 、C ′构成直角三角形,由勾股定理得 AC ′=()22AD CD DD ++'=2252+=29,②如图2,把长方体沿虚线剪开,则成长方形ADC ′B ′,宽为AD =2,长为DD ′+D ′C ′=4, 连接AC ′则A 、D 、C ′构成直角三角形,同理,由勾股定理得AC ′=5, ∴最短路径是5.。
八年级数学下册二次根式练习题及答案九年级数学科检测范围:二次根式完卷时间:45分钟满分:100分一、填空题。
1、当x ________时,2?x在实数范围内有意义。
2、计算: =________。
3、化简: = _______。
4、计算:2×=________。
5、化简:=_______。
6、计算:÷7、计算:-20-5=_______。
8化简: = ______。
1235=_______。
二、选择题。
、x为何值时,x在实数范围内有意义 x?1A、x > 1B、x ≥ 1C、x 10a = - a ,则a的取值范围是A、 a>0B、 a 11、若a?4=,则的值为A、B、1C、100 D、19612、下列二次根式中,最简二次根式的是A、17B、13C、±17D、±132)14、下列计算正确的是A、2+ =B、2+=22C、2=D、15、若x A、-1B、1C、2x-D、5-2x16、计算的结果是A、2+1B、3C、1D、-1三、解答题。
17、计算: -18、计算:00·00819、利用计算器探索填空:44?=_______; 444?8=_______;444444?88=_______;…… 由此猜想:n个8) =__________。
44444?881、≤、、、65、、、、-二、选择题9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、A 三、解答题 17、解:原式=2-18、解:原式=[]200·=00·=-2219、解:;66;666;……;666…6。
20、解:∵x+ =,∴= 10,121∴x+2,∴x+=8,xx222- + =-21x1x1221∴ = x+2,xx∴x- = ±6。
1x5初中数学二次根式测试题判断题:.1.2=2.…….?1?x2是二次根式.……………2?122=2?2=13-12=1.4.a,ab2),c1a是同类二次根式.……5.a?b的有理化因式为填空题:6.等式a?b.…………选择题:3b1?x?x2=______________.4b?a是同类二次根式,则a=_________,b=__________.16.下列变形中,正确的是………2=2×3=25?=9?42=a+b=-2517.下列各式中,一定成立的是……+118.若式子=a2a2?1=?1?1ab=1bab2x?1-?2x+1有意义,则x的取值范围是 (111)x≥x≤x=以上都不对222a19.当a<0,b<0时,把化为最简二次根式,得…………………………………b111ab -ab -?ab bab bbb20.当a<0时,化简|2a-a|的结果是…a -a a -3a计算:23.-;24.÷;+-422?1+20;a3b-ab+2ba+ab)÷ba.求值:27.已知a=28.已知x=29.已知解答题:30.已知直角三角形斜边长为已知|1-x|- 12,b=14,求ba?-的值.1,求x2-x+的值.?2x?2y+3x?2y?8=0,求x的值.6+)cm,一直角边长为cm,求这个x2?8x?16=2x-5,求x的取值范围.- -试卷答案1.√;2.×;3.×;4.√;5.×..x≤1..二次根式8.∵a有意义的条件是什么?a≥0.≥3?4?2,∴ 119.2-2=?23.222a10.a.911.从数轴上看出a、b是什么数?[a<0,b>0.]3a -4b是正数还是负数? [3a-4b<0.]6a-4b.12.3.?2?0,2??0.<.x?8和y?2各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]8,2.)=-11.3+25.11114.x2-2x+1=2;-x+x2=2.[x-1;-x.]当<x <1时,x-1422113与-x各是正数还是负数?[x-1是负数,-x也是负数.]-2x.2213..∴ 直角三角形的面积为:S=12×3×=- -326?答:这个直角三角形的面积为cm2.2=|1-x|-|x-右边=2x-5.x的取31.由已知,等式的左边=|1-x|-?1?x?0只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时?解得1≤x≤4.∴x?4?0.?值范围是1≤x≤4.- -人教版八年级上册测试数学试卷一、填空题1.______个.. 当x= 时,二次根式x?1取最小值,其最小值为。
2018年八年级数学下册二次根式课后练习题
一、选择题:
1、函数y=中,自变量x的取值范围是()
A.x≥1
B.x>1
C.x≥1且x≠2
D.x≠2
2、与相乘,结果是1的数为()
A. B. C. D.
3、使二次根式有意义的实数x的值有().
A.3个
B.2个
C.1个
D.0个
4、下列根式中,是最简根式的是( )
A. B. C. D.
5、若2<a<3,则等于()
A.5﹣2a
B.1﹣2a
C.2a﹣1
D.2a﹣5
6、若,则的值等于()
A. 4
B.
C. 2
D.
7、若,则( )
A. B. C. D.以上答案都不对
8、计算(+2)2013(﹣2)2014的结果是()
A.2+
B.﹣2
C.2﹣
D.
二、填空题:
9、函数的定义域是.
10、实数、在数轴上的位置如图所示,则化简的结果
为 .
11、________;
12、已知,则= .
13、已知,则=________。
14、设,,,…,
设,则S=_________ (用含n的代数式表示,n为正整数).
三、解答题:
15、计算:16、计算:
17、计算: 18、计算:
19、已知,,求的值.
20、先化简,再求值: ,其中.
21、先化简,再求值:,其中x=.。