Nd含量对固相合成AZ31-Nd合金显微组织及硬度的影响
- 格式:doc
- 大小:39.16 MB
- 文档页数:41
稀土Nd对Zn-5%Al合金显微组织和耐蚀性的影响曹祖军;孔纲;车淳山【摘要】The effect of Nd addition on the microstructure of Zn-5%Al alloy was investigated by SEM,EDS,XRD,and the corrosion resistance of the alloy was studied by the polarization curves tests and NSS tests.The results show that the growth of the primary η-Zn phase can be effectively inhibited,and the compact eutectic structure of the alloy can be obtained due to the addition of Nd.The lamellar spacing of eutectic structure of the alloy with the optimal concentration of Nd can be decreased.Nd can be easy to react with Zn and form the intermetallic phase Nd2Zn17 particles in the alloy bath,which will reduce the effective content of element Nd in the alloy bath.The corrosion resistance of the Zn-5%Al alloy will be changed with Nd addition,and the best corrosion resistance of the alloy will be attained when Nd addition is 0.06%.%采用扫描电镜(SEM)、能谱(EDS)和X射线衍射(XRD)研究Nd对Zn-5%Al合金显微组织的影响,采用电化学极化曲线和中性盐雾试验(NSS)研究不同Nd含量对Zn-5%Al合金耐蚀性的影响.结果表明:添加稀土Nd有效抑制初生η-Zn相的生长,显著增加共晶组织比例且组织致密;适量添加稀土Nd,有助于减小共晶组织层片间距.Nd易与Zn形成Nd2Zn17化合物富集在合金底表面,降低Nd的有效含量,减弱Nd的作用.Zn-5%Al合金耐蚀性随着Nd含量变化而变化,当Nd含量为0.06%时,合金的耐蚀性最好.【期刊名称】《中国有色金属学报》【年(卷),期】2017(027)001【总页数】8页(P24-31)【关键词】Zn-5%Al合金;Nd;显微组织;耐蚀性【作者】曹祖军;孔纲;车淳山【作者单位】华南理工大学材料科学与工程学院,广州510640;华南理工大学材料科学与工程学院,广州510640;华南理工大学材料科学与工程学院,广州510640【正文语种】中文【中图分类】TG146.1钢铁在使用过程中易与周围环境介质发生化学和电化学腐蚀,造成功能失效[1]。
河南科技大学硕士学位论文稀土元素Nd、Y和Gd对AZ系镁合金组织和高温力学性能的影响姓名:***申请学位级别:硕士专业:材料学指导教师:***@摘要论文题目:稀土元素Nd、Y和Gd对AZ系镁合金组织和高温力学性能的影响专业:材料学研究生:王小强指导教师:李全安摘要镁合金是最轻的工程结构材料,具有比强度和比刚度高,电磁屏蔽性、减震性和散热性好等优点,以及优异的加工性能和良好的铸造性能。
镁合金材料已被广泛应用于汽车、通讯和航天等相关行业。
但是镁合金的耐热性较差,高温强度、蠕变性能较低。
耐热性差是阻碍镁合金广泛应用的主要原因之一,当温度升高时,镁合金的强度和抗蠕变性能大幅度下降,使它难以作为关键零件(如发动机零件)材料在汽车等工业中得到更广泛的应用。
本文通过合金制备、微观分析和力学性能测试等方法,研究了稀土元素Nd、Y和Gd对AZ91和AZ81镁合金微观组织和高温力学性能的影响。
研究结果表明:适量稀土元素Nd、Y和Gd能够明显细化AZ91和AZ81镁合金的显微组织,提高合金固溶时效状态下的室温和高温强度,合金的延伸率也得到提高。
AZ91镁合金中加入Nd(1-4wt%)后,随着Nd含量的增加,室温和150℃下合金的强度都是先升后降,Nd含量为1%时合金的强度均达到最大值,分别为247MPa和203MPa,比不含Nd的AZ91提高了10.7%和29.3%;Nd含量为2%时,合金在150℃和250℃下的延伸率达到最大,分别是10.48%和13.7%。
AZ81镁合金中加入Y(1-4wt%),经固溶时效处理后,随着稀土Y含量增加,在室温和150℃下,合金的强度和延伸率基本上呈先升后降的趋势。
当Y含量为2%时合金在室温下的强度和延伸率达到最大,分别为277MPa和11%,与未加Y 的AZ81相比室温强度提高了36.5%。
Y含量为1%时合金150℃下的高温强度和延伸率也达到最大,分别为220MPa和12.4%,与未加Y的AZ81相比高温强度提高了40.1%。
摘要挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。
挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。
随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。
轧制变形使板材晶粒明显细化,硬度提高。
AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。
关键词:AZ31变形镁合金;强化机制;组织;性能绪论20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。
大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。
但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。
目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。
第1章挤压变形对AZ31镁合金组织和性能的影响1.1 挤压变形组织特征及挤压比的影响作用图1-1为动态挤压变形过程中的组织变化。
动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。
图1-1a为初始区挤压变形前的铸态棒料组织。
由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。
晶粒尺寸为112~400μm。
图1-1b为变形区近稳态区组织。
图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。
稀土元素Nd和Sm对铸造Mg-Zn-Y合金微观组织和力学性能影响的探究摘要:为了探究稀土元素Nd和Sm对铸造Mg-Zn-Y合金微观组织和力学性能的影响,本文以Mg-5Zn-1Y合金为基础,分别添加了0.2%的Nd和Sm稀土元素,并进行了比较分析。
结果表明,添加Nd和Sm后,合金的晶粒尺寸变小,晶界数量增加,断口面积变小,断口形貌更加平滑,且合金强度和塑性均有所提高,其中添加Nd后合金性能改善更为明显。
利用TEM对材料的微结构进行了观察,发现添加稀土元素后出现了更多的内部结构、偏析现象以及亚晶内部的微结构演变。
探究结果表明,添加稀土元素可以显著改善铸造Mg-Zn-Y合金的力学性能和微观组织,其中添加Nd效果更佳。
关键词:稀土元素;Mg-Zn-Y合金;微观组织;力学性能;Nd;SmAbstract: In order to investigate the influence ofrare earth elements Nd and Sm on the microstructureand mechanical properties of casting Mg-Zn-Y alloy,Mg-5Zn-1Y alloy was taken as the basis, and 0.2% of Nd and Sm rare earth elements were added respectively,and compared and analyzed. The results show that after adding Nd and Sm, the grain size of the alloy becomessmaller, the number of grain boundaries increases, the fracture surface area becomes smaller, and thefracture morphology becomes smoother. Moreover, the strength and plasticity of the alloy are both improved, and the effect of adding Nd is more obvious. TEM is used to observe the microstructure of the material,and it is found that more internal structures, segregation phenomena, and microstructure evolution inside the sub-grains appear after adding rare earth elements. The research results show that adding rare earth elements can significantly improve the mechanical properties and microstructure of castingMg-Zn-Y alloy, and the effect of adding Nd is better.Keywords: Rare earth elements; Mg-Zn-Y alloy; Microstructure; Mechanical properties; Nd; SmRare earth elements (REEs) have been widely used as alloying elements in various metal systems due totheir unique properties such as high melting points, high strength, and excellent corrosion resistance. In the case of Mg-Zn-Y alloy, the addition of rare earth elements can significantly improve its mechanical properties and microstructure.The microstructure analysis of the Mg-Zn-Y alloy reveals that the addition of rare earth elements leadsto the formation of more internal structures, segregation phenomena, and microstructure evolution inside the sub-grains. This phenomenon is attributed to the influence of rare earth elements on the crystallographic structure of Mg-Zn-Y alloy which results in the formation of more dislocations and defects. As a result, the mechanical properties of the alloy are improved.The research results indicate that the effect of adding Nd is better than that of adding Sm. This may be due to the fact that Nd has a stronger influence on the formation of internal structures and the segregation phenomenon in the alloy. The improvementin the mechanical properties of the Mg-Zn-Y alloy with the addition of rare earth elements is mainly attributed to the improvement in the strength and ductility of the alloy.In conclusion, the addition of rare earth elements is an effective way to improve the microstructure and mechanical properties of casting Mg-Zn-Y alloy. Specifically, the addition of Nd can lead to better results in terms of microstructure and mechanical properties. These findings are significant for the development of Mg-Zn-Y alloy with enhanced properties for potential industrial applicationsFurthermore, there are still some challenges that need to be overcome in the production and application of Mg-Zn-Y alloys. One of the challenges is the cost of rare earth elements, since they are relatively expensive compared to other alloying elements. Therefore, it is important to develop cost-effective methods to produce Mg-Zn-Y alloys without compromising their quality and properties.Another challenge is the lack of standardization in the production and characterization of Mg-Zn-Y alloys. This can lead to variations in their properties and make it difficult to compare different studies. Therefore, it is important to establish standardized methods for the production and characterization of Mg-Zn-Y alloys, which can facilitate their use in various applications.In addition, the corrosion resistance of Mg-Zn-Yalloys is an important consideration for their application in various industries, including automotive and aerospace industries. Although the addition of rare earth elements can improve the corrosion resistance of Mg-Zn alloys, further research is needed to understand the underlying mechanisms and to develop strategies to optimize their corrosion resistance.In conclusion, Mg-Zn-Y alloys with improved microstructure and mechanical properties can be produced by the addition of rare earth elements, especially Nd. The development of Mg-Zn-Y alloys has great potential for various industrial applications, but there are still some challenges that need to be addressed, including the cost of rare earth elements, standardization in production and characterization, and optimization of corrosion resistance. Future research in these areas will help to overcome these challenges and unlock the full potential of Mg-Zn-Y alloysAnother area of potential research in Mg-Zn-Y alloys is their mechanical and physical properties under extreme conditions. Mg-Zn-Y alloys have been reported to have good mechanical properties at both room temperature and elevated temperatures, making them promising for high-temperature applications in industries such as aerospace and automotive engineering. However, it is important to investigate the effect of exposure to extreme conditions such as high pressure, high temperature, and radiation on the properties of these alloys.Furthermore, there is a significant need for researchon the use of Mg-Zn-Y alloys in biomedical applications. Magnesium alloys, in general, have good biocompatibility and biodegradability, which make them attractive for use in implants and medical devices. However, the high reactivity of Mg-Zn-Y alloys could pose challenges in biological environments. Further research could explore ways to mitigate the reactivity of these alloys and optimize their biocompatibilityfor use in biomedical applications.In conclusion, Mg-Zn-Y alloys show great potential for various industrial applications due to their unique combination of mechanical, physical, and biological properties. However, there are still challenges that need to be addressed, including the cost of rare earth elements, standardization in production and characterization, optimization of corrosion resistance, investigation of properties under extreme conditions, and optimization of biocompatibility for use in biomedical applications. Addressing these challenges through future research will help to unlock the full potential of Mg-Zn-Y alloys and enable their widespread industrial useIn conclusion, Mg-Zn-Y alloys have shown greatpotential for industrial applications due to their desirable mechanical, physical, and biocompatibleproperties. Further research is needed to overcome challenges such as cost of rare earth elements, standardization in production and characterization, optimization of corrosion resistance, investigation of properties under extreme conditions, and optimization of biocompatibility. Addressing these challenges will help to unlock the full potential of Mg-Zn-Y alloys and accelerate their industrial implementation。
哈尔滨理工大学毕业设计题目:Nd含量对固相合成AZ31-Nd镁合金显微组织及硬度的影响院、系:材料学院金属材料工程姓名:贺秋晨指导教师:胡茂良系主任:康福伟2015年6月26日Nd含量对固相合成AZ31-Nd合金显微组织及硬度的影响摘要AZ31镁合金是当前为止应用最广泛的镁合金之一,研究AZ31镁合金回收方式对节约能源、保护环境、降低生产成本具有重大意义。
镁合金回收方法包括液态回收与固态回收,液态回收方法比较常用,但由于镁元素活泼,导致其回收率低、易产生烧损或爆炸,而固态回收及降低成本又保护环境,很好地解决了这一问题。
稀土元素Nd作为一种有作用的合金化元素在新型镁合金的开发中具有重大意义。
在AZ31镁合金中加入稀土Nd,可以获得良好的组织及力学性能,本研究利用固相合成方法制备了AZ31-Nd镁合金不同Nd含量的试样,无须加入覆盖剂、无须熔融,操作既安全又方便,该方法的理论基础是动态再结晶、动态回复机制。
本课题通过改变稀土元素Nd含量及固溶处理时间两个参数进行试验,并对所获得的试样进行显微组织观察和维氏硬度测量,与AZ31镁合金屑挤压成形的试件进行比较,得出结论。
通过对试验结果的分析表明:向AZ31镁合金中加入稀土Nd元素能够细化晶粒。
使基体中产生第二相AlNd,随Nd含量的提高,第二相粒子数2量增多,晶粒尺寸明显下降,含量为0.5%Nd的AZ31镁合金晶粒最小;含量超过0.5%之后,晶粒尺寸变化不明显;含量超过 1.0%后,晶粒尺寸有所增大。
向AZ31镁合金中加入适量的稀土Nd元素能够提高硬度。
当Nd 含量为0.5%时,AZ31镁合金的硬度为75.704HV,比未添加元素挤压态AZ31镁合金硬度提高了7.1%,含量为1.0%时,硬度为74.081HV,而含量提高到1.5%是,硬度下降到68.516HV。
AZ31-Nd镁合金的硬度随固溶处理时间的延长而下降。
固溶处理时间为10h时,Nd含量为1.5%的AZ31镁合金硬度最高,为76.937HV。
本试验总结出的AZ31-Nd镁合金固溶处理最佳工艺路线为450℃保温10h水冷。
关键词固相合成镁合金 AZ31 稀土元素 NdThe Influence of Nd Content to Solid-phaseSynthesis Microstructural and Degree ofHardness of Magnesium Alloy AZ31 - NdAbstractAZ31 magnesium alloy is one of the most abroad use in engineering, the research of the AZ31 magnesium alloy recovery mode is so important to saving energy, protecting the environment and reducing the production cost. Magnesium recycling method includes liquid recovery and solid recovery, liquid recovery method is commonly used, but, because the chemical property of magnesium is lively, lead the recovery rate is low, and easy to lose or explosion.The solid recovery can reduce the cost and protect the environment, solved the problem very well. Rare earth elements Nd as a kind of useful alloying element plays an important role in the development of new type of magnesium alloy. Add the rare earth Nd to AZ31 magnesium alloy, we can get good organization and mechanical properties of it. This study using the method of solid phase synthesis made some samples of AZ31-Nd magnesium alloys with different contents of Nd, no need to add coating agent, without melting, safe and convenient operation, this method base of dynamic recrystallization, dynamic response mechanism.This study through changing Nd content of alloy elements and the time of heat preservation to do the experiment and test the micro-structure observation and mechanical performance of the samples, compared with the samples which with no heat treatment.Through the analysis of the experimental results show that: to join in AZ31 magnesium alloy rare earth Nd elements can refine grain. Make Al2Nd matrix formed in the second phase, the increase of Nd content, the second phase particle number increased, grain size decreased obviously, content is 0.5% NdAZ31 magnesium alloy grain minimum; After content exceeds 0.5%, grain size change is not obvious; After content exceeds 1.0%, grain size is increased. To add the right amount of AZ31 magnesium alloy rare earth Nd elements can improve the hardness. When Nd content is 0.5%, the hardness of AZ31 magnesium alloy is 75.704 HV, than add elements of AZ31 magnesium alloy extrusion state hardness increased by 7.1%.When the content is 1.0%, the hardness of AZ31 magnesium alloy is 74.081 HV, and the content is increased to 1.5%, fell to 68.516 HV hardness. The hardness of magnesium alloy AZ31 - Nd with solid solution treatment in time. Solid solution treatment time for 10 h, Nd content is 1.5% of AZ31 magnesium alloy hardness is the highest, 76.937 HV. This experiment concluded that the magnesium alloy AZ31 - Nd solid solution treatment the best process route for 450℃heat preservation 10h, water cooling.Keywords Solid-phase synthesis Magnesium alloy AZ31 Rare earth Nd目录摘要 (I)Abstract (II)目录 (1)第1章绪论 (2)1.1 课题背景 (2)1.1.1 研究意义 (2)1.1.2 国内外研究现状分析 (2)1.2 固相合成镁合金技术概论 (5)1.2.1 镁合金热变形理论 (5)1.2.2 镁合金固溶处理 (6)1.2.3 Mg-Al系镁合金 (7)1.2.4 论文研究的主要内容 (7)第2章试验材料及方案设计 (9)2.1 试验材料准备 (9)2.2 试验方案及设计 (9)2.2.1 挤压试验参数设计 (9)2.2.2 试验工艺过程 (12)2.3 本章小结 (16)第3章试验结果分析 (17)3.1 改变Nd元素含量的挤压试验 (17)3.1.1 Nd元素含量对显微组织的影响 (17)3.1.2 Nd元素含量对硬度的影响 (20)3.2 热处理试验 (21)3.2.1 固溶处理时间对显微组织的影响 (21)3.2.2 固溶处理的时间对硬度的影响 (22)3.3 本章小结 (23)结论 (25)致谢 (26)参考文献 (27)附录A (29)附录B (34)第1章绪论1.1课题背景1.1.1研究意义在工程中运用最为广泛的金属工程材料就是镁合金[1],它具有很多优点,例如:具有强度和刚度高、导热良好、减震性能优良、液态成型性能优、机械加工性能优良、零件大小不改变、电磁屏蔽能力强等优点[2]。
镁合金的应用有很多,例如在汽车、飞机等交通工具上用作零件、车毂;在计算机上作为元器件使用。
镁合金的回收利用率高达80%,它被称为目前最具发展前景的金属材料。
而目前应用最广泛的是AZ31镁合金,它可以轧制成各种型材,挤压各种型材,而且有一个性能提升的过程[3]。
然而在生产过程中会产生许多镁合金废屑,如果这些镁合金废屑不加以回收和利用就会产生较大的浪费,增加了生产成本。
镁合金的化学性质活泼在回收过程中是难以保证它不发生氧化燃烧的,所以回收成本高,回收工艺有待改善,而且按照旧工艺再熔炼会使产品的污染率高,产生废渣。