数值分析实习课题
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
数值分析课程实验设计——数值线性代数
实习题
1. 实验目的
本实验的主要目的是进一步加深对数值线性代数的理解,熟悉
常见矩阵分解方法,并在此基础上解决实际问题。
2. 实验内容
本次实验将任务分为两个部分,分别是矩阵分解与求解线性方
程组。
2.1 矩阵分解
首先,我们需要熟悉三种常见的矩阵分解:QR分解、LU分解
和奇异值分解。
我们需要通过Python语言实现这三种分解方法,
并利用这些方法解决实际问题。
2.2 求解线性方程组
其次,我们需要学会用矩阵分解的方法来求解线性方程组。
我
们将通过两个例子来进行说明,并利用Python语言实现这些方法。
3. 实验要求
本次实验要求熟悉矩阵分解的基本方法,在此基础上解决实际问题;能够运用多种方法来求解线性方程组,并分析比较它们的优缺点。
4. 实验总结
本次实验通过矩阵分解和求解线性方程组两个部分的学习,巩固了我们对于数值线性代数的知识,并在实际问题的解决中得到了应用。
感谢老师的指导,我们会在今后的学习中持续探索数值分析方面的知识。
指导教师:姓名:学号:专业:联系电话:上海交通大学目录序言 (3)实验课题(一) 雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (4)数值分析 (6)实验课题(二) 松弛因子对SOR法收敛速度的影响 (6)数值分析 (12)总结 (13)附录(程序清单) (14)1.雅可比迭代法和高斯-塞得尔迭代法的收敛性和收敛速度 (14)雅可比迭代法: (14)高斯-塞得尔迭代法: (16)2.松弛因子对SOR法收敛速度的影响 (18)松弛法(SOR) (18)序言随着科学技术的发展,提出了大量复杂的数值计算问题,在实际解决这些计算问题的长期过程中,形成了计算方法这门学科,专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的误差分析,是一门内容丰富,有自身理论体系的实用性很强的学科。
解决工程问题,往往需要处理很多数学模型,这就要花费大量的人力和时间,但是还有不少数学模型无法用解析法得到解。
使用数值方法并利用计算机,就可以克服这些困难。
事实上,科学计算已经与理论分析、科学实验成为平行的研究和解决科技问题的科学手段,经常被科技工作者所采用。
作为科学计算的核心内容——数值分析(数值计算方法),已逐渐成为广大科技工作者必备的基本知识并越来越被人重视。
由于数值方法是解数值问题的系列计算公式,所以数值方法是否有效,不但与方法本身的好坏有关,而且与数值问题本身的好坏也有关,因此,研究数值方法时,不但需要研究数值方法的好坏,即数值稳定性问题,而且还需要研究数值问题本身的好坏,即数值问题的性态,以及它们的判别问题。
数值计算的绝大部分方法都具有近似性,而其理论又具有严密的科学性,方法的近似值正是建立在理论的严密性基础上,根据计算方法的这一特点。
因此不仅要求掌握和使用算法,还要重视必要的误差分析,以保证计算结果的可靠性。
数值计算还具有应用性强的特点,计算方法的绝大部分方法如求微分方程近似解,求积分近似值,求解超越方程,解线性方程组等都具有较强的实用性,而插值法,最小二乘法,样条函数等也都是工程技术领域中常用的,有实际应用价值的方法。
2019-2020 第1学期数值分析上机实习题总目标:会算,要有优化意识。
(以下程序要求以附件1例题代码格式给出)1. 对给定的线性方程组Ax b =进行迭代求解。
(1)给出Jacobi 迭代的通用程序。
(2)给出Gauss-Seidel 迭代的通用程序。
调用条件:系数矩阵A ,右端项b ,初值0x ,精度要求ε。
输出结果:方程组的近似解。
给定线性方程组211122241125x --⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭,和122711122215x -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,取初值0x 为0, 分别利用Jacobi 迭代和G-S 迭代进行求解,观察并解释其中的数学现象。
2. 利用紧凑格式(即直接分解法或逐框运算法)对给定的矩阵A 进行Doolittle 分解,并用其求线性方程组的解。
调用条件:矩阵A 。
输出结果:单位下三角矩阵L 和上三角矩阵U 。
给定矩阵1112A ⎛⎫= ⎪⎝⎭,利用以下算法:1)将A 作Doolittle 分解11A LU =,2)令211A U L =,并对2A 作Doolittle 分解222A L U =,3)重复2)的过程令11n n n A U L --=,并对n A 作Doolittle 分解n n n A L U =,2,3,4,n =, 观察n L ,n U ,n A 的变化趋势,思考其中的数学现象。
3. 给定函数21(),12511f x x x -≤+≤=,取164,8,n =,用等距节点21,i i n x =-+ 0,1,,1i n =+对原函数进行多项式插值和五次多项式拟合,试画出插值和拟合曲线,并给出数学解释。
4. 给出迭代法求非线性方程()0f x =的根的程序。
调用条件:迭代函数()x ϕ,初值0x输出结果:根的近似值k x 和迭代次数k给定方程32()10f x x x =--=,用迭代格式1k x +=0 1.5x =附近的根,要使计算结果具有四位有效数字,利用估计式*1||1||k k k L x x x x L -≤---,或估计式*10||1||kk L x x x x L-≤--来判断需要的迭代次数,分别需要迭代多少次?两者是否有冲突?5. 利用数值求积算法计算()ba f x dx ⎰。
数值分析——数值积分实习题管理科学与工程学院 学号:1120140500 姓名:彭洋洋 一、计算实习题1.用不同数值方法计算积分:049xdx =-⎰.(1)取不同的步长h ,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善? (2)用龙贝格求积计算完成问题(1) (3)用自适应辛普森积分,使其精度达到10-4解答:(1)取不同的步长,采用不同的公式,比较精度过程如下: 1.1 复合梯形公式及复合辛普森公式求解复合梯形公式:11*[()2()()]2n n k k hT f a f x f b -==++∑误差关于h 的函数:2(2)()**()12n a b R f h f ξ-=复合辛普森公式:111/201*[()4()2()()]6n n n k k k k hS f a f x f x f b --+===+++∑∑误差关于h 的函数:4(4)()*(/2)*()180n a bR f h f η-=1.2 复合梯形公式及复合辛普森公式Matlab 程序(2)用龙贝格求积计算完成问题(1) 2.1 龙贝格求积算法龙贝格求积公式也称为逐次分半加速法。
它是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种加速计算积分的方法。
作为一种外推算法,它在不增加计算量的前提下提高了误差的精度。
24133n n n S T T =- 21611515n n n C S S =- 26416363n n n R C C =-1221/201()22n n n k k h T T f x -+==+∑ ()(1)()11(4*)/(41)k m k k mm m m T T T +--=-- 1,2,...k = 2.2 龙贝格求积Matlab 程序画图程序设计①得到关于n各种公式求积的图表如下:对于梯形公式、辛普森公式n代表份数,龙贝格公式n表示从1开始的序列号②关于步长h 的各种公式求积的图表如下其中龙贝格序列步长()/2k h b a =-:观察两幅图表h 越小,精度越高。
实验二 插值法 P50专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉MATLAB 编程;2、学习插值方法及程序设计算法。
二、实验题目1、已知函数在下列各点的值为i x 0.2 0.4 0.6 0.8 1.0()i f x0.980.920.810.640.38试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10iiix y x i i =+=,()4P x 及()S x 。
2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()21125f x x=+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。
3、下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 12345678可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础 1、拉格朗日差值公式)()(111k kk kk k x x x x y y y x L ---+=++ 点斜式kk kk k k k kx x x x y x x x x y x L --+--=++++11111)( 两点式2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L ijnk kk j n ===∑=n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,)()(...)()(...)()()(1100=------=--3、牛顿插值多项式...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f)(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω4、三次样条函数若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中,b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。
数值分析计算实习题答案数值分析计算实习题答案数值分析是一门研究如何利用计算机对数学问题进行近似求解的学科。
在数值分析的学习过程中,实习题是一种重要的学习方式,通过实践来巩固理论知识,并培养解决实际问题的能力。
本文将为大家提供一些数值分析计算实习题的答案,希望能够帮助大家更好地理解和掌握数值分析的相关知识。
一、插值与拟合1. 已知一组数据点,要求通过这些数据点构造一个一次插值多项式,并求出在某一特定点的函数值。
答案:首先,我们可以根据给定的数据点构造一个一次插值多项式。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个一次多项式p(x) = a0 + a1x,其中a0和a1为待定系数。
根据插值条件,我们有p(x0) = y0,p(x1) = y1。
将这两个条件代入多项式中,可以得到一个方程组,通过求解这个方程组,我们就可以确定a0和a1的值。
最后,将求得的多项式代入到某一特定点,就可以得到该点的函数值。
2. 已知一组数据点,要求通过这些数据点进行最小二乘拟合,并求出拟合曲线的表达式。
答案:最小二乘拟合是一种通过最小化误差平方和来找到最佳拟合曲线的方法。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个拟合曲线的表达式y =a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为待定系数。
根据最小二乘拟合原理,我们需要最小化误差平方和E = Σ(yi - f(xi))^2,其中yi为实际数据点的y值,f(xi)为拟合曲线在xi处的函数值。
通过求解这个最小化问题,我们就可以确定拟合曲线的表达式。
二、数值积分1. 已知一个函数的表达式,要求通过数值积分的方法计算函数在某一区间上的定积分值。
答案:数值积分是一种通过将定积分转化为数值求和来近似计算的方法。
假设给定的函数表达式为f(x),我们可以将定积分∫[a, b]f(x)dx近似为Σwi * f(xi),其中wi为权重系数,xi为待定节点。
一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。
随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。
为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。
二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。
通过阅读相关教材和文献,我对数值分析有了初步的认识。
接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。
2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。
首先,我使用泰勒展开法求解一个简单的微分方程。
通过编写程序,我得到了微分方程的近似解。
然后,我运用牛顿法求解一个非线性方程组。
在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。
通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。
3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。
这些方法在解决实际问题中具有更高的精度和效率。
我选择了一个具体的工程问题,运用复化梯形公式求解定积分。
在计算过程中,我遇到了区间细分、精度控制等问题。
通过不断尝试和调整,我得到了较为精确的积分值。
三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。
这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。
2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。
在编写程序、进行数值计算时,我注重细节,力求精确。
这使我更加注重学术规范,提高了自己的学术素养。
3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。
在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。
这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。
《数值分析》计算实习题目第一题:1. 算法设计方案(1)1λ,501λ和s λ的值。
1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。
2)使用反幂法求λs ,其中需要解线性方程组。
因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。
(2)与140k λλμλ-5011=+k 最接近的特征值λik 。
通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。
(3)2cond(A)和det A 。
1)1=nλλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。
2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。
由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。
2.全部源程序#include <stdio.h>#include <math.h>void init_a();//初始化Adouble get_an_element(int,int);//取A 中的元素函数double powermethod(double);//原点平移的幂法double inversepowermethod(double);//原点平移的反幂法int presolve(double);//三角LU 分解int solve(double [],double []);//解方程组int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角U 数组double (*l)[502]=new double[502][502];//单位下三角L 数组double a[6][502];//矩阵Aint main(){int i,k;double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;double lambda[40];init_a();//初始化Alambdat1=powermethod(0);lambdat2=powermethod(lambdat1);lambda1=lambdat1<lambdat2?lambdat1:lambdat2;lambda501=lambdat1>lambdat2?lambdat1:lambdat2;presolve(0);lambdas=inversepowermethod(0);det=1;for(i=1;i<=501;i++)det=det*u[i][i];for (k=1;k<=39;k++){mu[k]=lambda1+k*(lambda501-lambda1)/40;presolve(mu[k]);lambda[k]=inversepowermethod(mu[k]);}printf("------------所有特征值如下------------\n");printf("λ=%1.11e λ=%1.11e\n",lambda1,lambda501);printf("λs=%1.11e\n",lambdas);printf("cond(A)=%1.11e\n",fabs(lambdat1/lambdas));printf("detA=%1.11e \n",det);for (k=1;k<=39;k++){printf("λi%d=%1.11e ",k,lambda[k]);if(k % 3==0) printf("\n");} delete []u;delete []l;//释放堆内存return 0;}void init_a()//初始化A{int i;for (i=3;i<=501;i++) a[1][i]=a[5][502-i]=-0.064;for (i=2;i<=501;i++) a[2][i]=a[4][502-i]=0.16;for (i=1;i<=501;i++) a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); }double get_an_element(int i,int j)//从A中节省存储量的提取元素方法{if (fabs(i-j)<=2) return a[i-j+3][j];else return 0;}double powermethod(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0;//设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;for (x1=1;x1<=501;x1++){u[x1]=0;for (int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(get_an_element(x1,x2)-offset):get_an_element(x1,x2))*y[x2] ;}prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}double inversepowermethod(double offset)//反幂法{int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0; //设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;solve(u,y);prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];beta=1/beta;if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);int presolve(double offset)//三角LU分解{int i,k,j,t;double sum;for (k=1;k<=501;k++)for (j=1;j<=501;j++){u[k][j]=l[k][j]=0;if (k==j) l[k][j]=1;} //初始化LU矩阵for (k=1;k<=501;k++){for (j=k;j<=min(k+2,501);j++){sum=0;for (t=max(1,max(k-2,j-2)) ; t<=(k-1) ; t++)sum=sum+l[k][t]*u[t][j];u[k][j]=((k==j)?(get_an_element(k,j)-offset):get_an_element(k,j))-sum;}if (k==501) continue;for (i=k+1;i<=min(k+2,501);i++){sum=0;for (t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(get_an_element(i,k)-offset):get_an_element(i,k))-sum)/u[k][k];}}return 0;}int solve(double x[],double b[])//解方程组{int i,t;double y[502];double sum;y[1]=b[1];for (i=2;i<=501;i++){sum=0;for (t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for (i=500;i>=1;i--){sum=0;for (t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}int max(int x,int y){return (x>y?x:y);}int min(int x,int y){return (x<y?x:y);}3.计算结果结果如下图所示:部分中间结果:给出了偏移量(offset),误差(err),迭代次数(k)4.讨论迭代初始向量的选取对计算结果的影响,并说明原因使用u[i]=1(i=1,2,...,501)作为初始向量进行迭代,可得出以上结果。
数值分析上机实习报告姓名:学号:专业:大地测量学与测量工程电话:序言1.所用程序语言:本次数值分析上机实习采用Visual c#作为程序设计语言,利用Visual c#可视化的编程实现方法,采用对话框形式进行设计计算程序界面,并将结果用表格或文档的格式给出。
2.程序概述:(1)第一题是采用牛顿法和steffensen法分别对两个题进行分析,编好程序后分别带入不同的初值,观察与真实值的差别,分析出初值对结果的影响,分析两种方法的收敛速度。
(2)第二题使用Visual c#程序设计语言完成了“松弛因子对SOR法收敛速度的影响”,通过在可视化界面下输入不同的n和w值,点击按钮直接可看到迭代次数及计算结果,观察了不同的松弛因子w对收敛速度的影响。
目录一.用牛顿法,及牛顿-Steffensen法............ 错误!未定义书签。
1. 计算结果.................................... 错误!未定义书签。
2. 结果分析 (5)3. 程序清单 (5)二.松弛因子对SOR法收敛速度的影响 (8)1. 迭代次数计算结果 (8)2. 计算X()结果 (10)3. 对比分析 (12)4. 程序清单: (12)三.实习总结 (14)实验课题(一)用牛顿法,及牛顿-Steffensen法题目:分别用牛顿法,及牛顿-Steffensen法(1)求ln(x+sin x)=0的根。
初值x0分别取0.1, 1,1.5, 2, 4进行计算。
(2)求sin x=0的根。
初值x0分别取1,1.4,1.6, 1.8,3进行计算。
分析其中遇到的现象与问题。
1、计算结果由于比较多每种方法中只选取了其中两个的图片例在下面:2、结果分析通过对以上的牛顿法和steffensen法的练习,我发现在初值的选取很重要,好的初值选出后可以很快的达到预定的精度,要是选的不好就很慢,而且在有的时候得出的还是非数字,所以初始值的选取很重要。
数值分析实习报告姓名:***学号:***班级:***1.题目取h=0.1,利用Euler公式求解dy/dx=y-2*x/y (0<=x<=1)y(0)=12.思路利用左矩形公式得到的公式yn+1=yn+hf(xn,yn)进行迭代,在进行迭代的过程使用for循环,让n从1取到10,每迭代一次输出一个x与y,同时x加0.1再进行下一次迭代,一直到循环结束。
3.程序clear; y=1, x=0, %初始化for n=1:10y=1.1*y-0.2*x/y, x=x+0.1,end4.运行结果y =1 x =0y =1.1000 x =0.1000y =1.1918 x =0.2000y =1.2774 x =0.3000y =1.3582 x =0.4000y =1.4351 x = 0.5000y =1.5090 x = 0.6000y =1.5803 x = 0.7000y =1.6498 x = 0.8000y =1.7178 x =0.9000y =1.7848 x =1.00001.题目取h=0.1,利用Euler公式求解dy/dx=y-2*x/y (0<=x<=1)y(0)=12.思路利用右矩形公式得到的公式yn+1=yn+hf(xn+1,yn+1)进行迭代,在进行迭代的过程使用for 循环,让n从1取到10,每迭代一次输出一个x与y,同时x加0.1再进行下一次迭代,一直到循环结束。
3.程序clear; y0=1, x0=0, %初始化for n=1:10yp=y0+0.1*(y0-2*x0/y0);x=x0+0.1;x0=xyp=y0+0.1*(yp-2*x/yp)y0=ypend4.运行结果y =1 x =0y =1.0918 x =0.1000y =1.1763 x =0.2000y =1.2546 x =0.3000y =1.3278 x =0.4000y =1.3964 x =0.5000y =1.4609 x =0.6000y =1.5216 x =0.7000y =1.5786 x =0.8000y =1.6321 x =0.9000y =1.6819 x =1.00001.题目取h=0.1,利用梯形法求解dy/dx=y-2*x/y (0<=x<=1)y(0)=12.思路利用右矩形公式得到的公式yn+1=yn+hf(xn+1,yn+1)进行迭代,在进行迭代的过程使用for 循环,让n从1取到10,每迭代一次输出一个x与y,同时x加0.1再进行下一次迭代,一直到循环结束。
非线性方程求根
在科学研究与工程技术中常会遇到求解非线性方程的问题。
二分法简单易行,但收敛较慢,仅有线性收敛速度。
而且该方法不能用于求偶数重根或复根,但可以用来确定迭代法的初始值。
牛顿法是方程求根中常用的一种迭代方法,它除了具有简单迭代法的优点外,还具有二阶收敛速度(在单根邻近处)的特点,但牛顿法对初始值选取比较苛刻(必须充分靠近方程的根),否则牛顿法可能不收敛。
弦截法是牛顿法的一种修改,虽然比牛顿法收敛慢,但因它不需计算函数的导数,故有时宁可用弦截法而不用牛顿法,弦截法也要求初始值必须选取得充分靠近方程的根,否则也可能不收敛。
一、实习目的
1、掌握非线性方程(组)的各种解法,包括二分法、牛顿迭代法等,并通过编程与上机运算,体会二分法与牛顿迭代法的不同特点;
2、掌握解非线性方程的弦截法,并与牛顿迭代法作比较;
3、 了解各种方法的收敛性。
二、实习任务
1、用二分法求方程033)(23=--+=x x x x f 在5.1附近的根。
2、分别用牛顿迭代法和弦截法求方程033)(23=--+=x x x x f 在5.1附近的根,并由迭代次数分析结果。
三、讨论题
1、何谓二分法?二分法的优点是什么?如何估计误差?
2、何谓迭代法?它的收敛条件、误差估计式是什么?
3、怎样比较迭代法收敛的快慢?
4、比较弦截法与牛顿法的优劣。
解线性方程组的迭代法
解线性方程组的迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量)0(x 出发,按照一定的迭代格式产生一个向量序列}{)(k x ,使其收敛到方程组b Ax =的解。
迭代法的优点是所需计算机存储单元少,程序设计简单,原始系数矩阵在计算过程中始终不变等。
但迭代法存在收敛性及收敛速度问题。
迭代法是解大型稀疏矩阵方程组的重要方法。
一、实习目的
1、熟悉迭代法的有关理论和方法;
2、会编制雅可比迭代法、高斯-塞德尔迭代法的程序;
3、注意所用方法的收敛性及其收敛速度问题。
二、实习任务
1、用雅可比迭代法解方程组
⎪⎩⎪⎨⎧=++=++=-+5222722321
321321x x x x x x x x x .
注意:若用高斯-塞德尔迭代法则发散。
2、用高斯-塞德尔迭代法解方程组
⎪⎩
⎪⎨⎧=++=++=++7.19.09.00.29.09.09.19.09.0321321321x x x x x x x x x .
注意:若用雅可比迭代法则发散。
三、讨论题
1、
雅可比迭代法和高斯-塞德尔迭代法各有什么特点? 2、
雅可比迭代法和高斯-塞德尔迭代法收敛性的各种判别条件是什么?。