高中数学三角函数代换公式大集锦
- 格式:doc
- 大小:51.50 KB
- 文档页数:9
三角函数代换公式在数学中,三角函数代换公式是一组用于将一个三角函数表达式转换为另一个三角函数表达式的公式。
这些公式使我们能够简化复杂的三角函数表达式,从而更容易进行计算和分析。
本文将介绍几个常见的三角函数代换公式,并探讨它们的应用。
1. 正弦代换公式正弦代换公式是将三角函数中的正弦函数转换为其他三角函数的公式。
它的形式如下:sin(x) = 2 * tan(x/2) / (1 + tan^2(x/2))这个公式在解决一些三角函数积分问题时非常有用。
通过将正弦函数转换为其他三角函数,我们可以简化积分表达式,从而更容易求解。
同时,正弦代换公式也可以用于简化三角方程的解法。
2. 余弦代换公式余弦代换公式是将三角函数中的余弦函数转换为其他三角函数的公式。
它的形式如下:cos(x) = (1 - tan^2(x/2)) / (1 + tan^2(x/2))与正弦代换公式类似,余弦代换公式也可以用于简化三角函数的积分和方程求解。
通过将余弦函数转换为其他三角函数,我们可以得到更简单的表达式,从而更容易进行计算和分析。
3. 正切代换公式正切代换公式是将三角函数中的正切函数转换为其他三角函数的公式。
它的形式如下:tan(x) = sin(x) / cos(x)正切代换公式在解决一些三角函数的复杂表达式时非常有用。
通过将正切函数转换为正弦和余弦函数的比值,我们可以将复杂的三角函数表达式简化为较简单的形式。
4. 反正弦代换公式反正弦代换公式是将三角函数中的反正弦函数转换为其他三角函数的公式。
它的形式如下:arcsin(x) = atan(x / sqrt(1 - x^2))反正弦代换公式在解决一些三角函数的反函数问题时非常有用。
通过将反正弦函数转换为反正切函数,我们可以将反函数问题转化为求解反正切函数的问题,从而更容易进行计算和分析。
5. 反余弦代换公式反余弦代换公式是将三角函数中的反余弦函数转换为其他三角函数的公式。
三角函数等价代换公式要证明三角函数等价代换公式,首先需要了解等价代换的概念。
等价代换是指将一个表达式中的其中一部分用一个等价的表达式来替代。
在三角函数中,等价代换可以用来简化和转化复杂的三角函数表达式。
下面将介绍一些常用的三角函数等价代换公式:1.倍角公式:sin(2θ) = 2sinθcosθcos(2θ) = cos^2θ - sin^2θtan(2θ) = 2tanθ / (1 - tan^2θ)2.半角公式:sin(θ/2) = √((1 - cosθ) / 2)cos(θ/2)= √((1 + cosθ) / 2)tan(θ/2) = sinθ / (1 + cosθ)3.余弦和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ4.正弦和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ5.余弦和正弦的平方和差公式:cos^2α ± sin^2β = cos(2α ± 2β) / 2sin^2α ± cos^2β = 1 - sin(2α ± 2β) / 26.和差化积公式:sinα + sinβ = 2sin((α + β)/2)cos((α - β)/2) sinα - sinβ = 2cos((α + β)/2)sin((α - β)/2) cosα + cosβ = 2cos((α + β)/2)cos((α - β)/2) cosα - cosβ = -2sin((α + β)/2)sin((α - β)/2)7.和差化积公式的逆运算:2sinαcosβ = sin(α + β) + sin(α - β)2cosαsinβ = sin(α + β) - sin(α - β)2cosαcosβ = cos(α + β) + cos(α - β)2sinαsinβ = cos(α + β) - cos(α - β)8.万能公式:sinθ = 2tan(θ/2) / (1 + tan^2(θ/2))cosθ = (1 - tan^2(θ/2)) / (1 + tan^2(θ/2))tanθ = 2tan(θ/2) / (1 - tan^2(θ/2))9.正弦函数和余弦函数的关系:1 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ这些三角函数等价代换公式可以在求解三角函数的相关问题时起到简化、转换和化简表达式的作用。
三角代换公式万能公式一、三角代换公式。
(一)基本的三角代换形式。
1. 对于a^2-x^2(a>0)- 可令x = asinθ,θ∈<=ft[-(π)/(2),(π)/(2)]。
- 此时a^2-x^2=a^2-a^2sin^2θ=a^2(1 - sin^2θ)=a^2cos^2θ。
2. 对于a^2+x^2(a>0)- 可令x = atanθ,θ∈<=ft(-(π)/(2),(π)/(2))。
- 那么a^2+x^2=a^2+a^2tan^2θ=a^2(1+tan^2θ)=a^2sec^2θ。
3. 对于x^2-a^2(a>0)- 可令x = asecθ,θ∈<=ft[0,(π)/(2))∪<=ft((π)/(2),π]。
- 于是x^2-a^2=a^2sec^2θ - a^2=a^2(sec^2θ - 1)=a^2tan^2θ。
二、万能公式。
(一)公式内容。
1. sinα=(2tanfrac{α)/(2)}{1 + tan^2(α)/(2)}- 证明:- 由tan(α)/(2)=(sinfrac{α)/(2)}{cos(α)/(2)}。
- 根据二倍角公式sinα = 2sin(α)/(2)cos(α)/(2),cosα=cos^2(α)/(2)-sin^2(α)/(2)。
- 又因为sin^2(α)/(2)+cos^2(α)/(2) = 1,将sinα分子分母同时除以cos^2(α)/(2),可得sinα=(2tanfrac{α)/(2)}{1+tan^2(α)/(2)}。
2. cosα=frac{1-tan^2(α)/(2)}{1 + tan^2(α)/(2)}- 证明:- 同样由tan(α)/(2)=(sinfrac{α)/(2)}{cos(α)/(2)}。
- 根据二倍角公式cosα=cos^2(α)/(2)-sin^2(α)/(2),将其分子分母同时除以cos^2(α)/(2),得到cosα=frac{1-tan^2(α)/(2)}{1+tan^2(α)/(2)}。
三角函数变换公式汇总1.诱导公式:- $\sin(\alpha+\beta) =\sin\alpha\cos\beta+\cos\alpha\sin\beta$- $\cos(\alpha+\beta) = \cos\alpha\cos\beta-\sin\alpha\sin\beta$- $\tan(\alpha+\beta) = \dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$- $\sin(\alpha-\beta) = \sin\alpha\cos\beta-\cos\alpha\sin\beta$- $\cos(\alpha-\beta) =\cos\alpha\cos\beta+\sin\alpha\sin\beta$- $\tan(\alpha-\beta) = \dfrac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}$这些公式可以通过将和差的角展开来得到,其中$\alpha$和$\beta$可以是任意角度。
2.和差化积公式:- $\sin\alpha+\sin\beta =2\sin\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha -\beta}{2}\right)$- $\sin\alpha-\sin\beta =2\cos\left(\dfrac{\alpha+\beta}{2}\right)\sin\left(\dfrac{\alpha -\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha -\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\dfrac{\alpha+\beta}{2}\right)\sin\left(\dfrac{\alpha -\beta}{2}\right)$以上公式可以通过将和差的三角函数展开,并应用三角函数诱导公式来推导得到。
三角函数转换公式大全总结三角函数是数学中常见的一类函数,由于其定义在一个单位圆上,可以用来描述很多自然现象和物理现象。
在数学中,经常会使用一些三角函数的转换公式来简化计算和推导。
下面是常见的一些三角函数转换公式总结。
1.正、余函数的关系:sin(x) = cos(x - π/2)cos(x) = sin(x + π/2)这两个公式很容易理解,就是将正弦函数和余弦函数互换角度就可以得到。
2.平方和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)这两个公式可以用来计算两个三角函数之间的和差关系。
通过平方和差公式,可以将两个三角函数之和或之差转化为两个三角函数之积。
3.和差化积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这四个公式可以用来将两个三角函数的和或差表示为两个三角函数的积。
4.倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))这些公式可以用来计算两倍角度的三角函数值,可以用于简化计算和推导。
5.半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)tan(x/2) = ±√((1 - cos(x))/(1 + cos(x)))这些公式可以用来计算半角的三角函数值,同样可以用于简化计算和推导。
三角函数转化公式大全三角函数是数学中重要的概念之一,它们在数学、物理、工程等学科中应用广泛。
在解决三角函数相关题目时,经常会用到一些三角函数的转化公式,这些公式可以用来简化三角函数的计算和推导过程。
本文将介绍一些常用的三角函数转化公式,并给出其推导过程和应用示例。
1.正弦函数和余弦函数的关系:① 正弦函数和余弦函数的关系式为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)。
推导过程:根据三角函数的定义可得:sin(x) = y/r,cos(x) = x/r,其中x、y均为直角三角形中其中一角的对边和邻边,r为斜边。
利用勾股定理可得:x²+y²=r²,两边同时除以r²可得:(x²/r²)+(y²/r²)=1将sin²(x) + cos²(x) = 1代入上式中可得:sin²(x) + sin²(π/2 - x) = 1即可得到sin(x) = cos(π/2 - x)。
应用示例:已知三角形ABC中,∠A = 60°,求∠B所对边BC的长度。
由正弦定理可得sin(60°) = BC/AB。
根据sin(x) = cos(π/2 - x)可得cos(30°) = BC/AB。
由余弦函数的定义可得:cos(30°) = x/r = BC/AB,其中r为三角形ABC的外接圆半径。
因此,BC = AB * cos(30°)。
2.正切函数和余切函数的关系:② 正切函数和余切函数的关系式为:tan(x) = cot(π/2 - x),cot(x) = tan(π/2 - x)。
推导过程:根据正切函数和余切函数的定义可得:tan(x) = y/x,cot(x) = x/y。
利用勾股定理可得:x² + y² = r²,两边同时除以xy可得:(x²/r²) + (y²/r²) = 1将tan²(x) + 1 = sec²(x)代入上式中可得:tan²(x) + cot²(x) =1即可得到tan(x) = cot(π/2 - x)。
三角函数转换公式大全三角函数是高中数学中的重要内容,它们在数学和物理学中有着广泛的应用。
在学习三角函数的过程中,我们经常会遇到需要进行三角函数的转换,而掌握三角函数的转换公式是十分重要的。
本文将为大家详细介绍三角函数的转换公式,希望能对大家的学习有所帮助。
1. 正弦函数转换公式。
正弦函数是三角函数中的一种基本函数,其转换公式包括:(1)正弦函数的奇偶性,sin(-x)=-sinx,sin(π-x)=sinx;(2)正弦函数的周期性,sin(x+2kπ)=sinx,其中k为整数;(3)正弦函数的同角变换,sin(π/2-x)=cosx,sin(π/2+x)=cosx。
2. 余弦函数转换公式。
余弦函数也是三角函数中的一种基本函数,其转换公式包括:(1)余弦函数的奇偶性,cos(-x)=cosx,cos(π-x)=-cosx;(2)余弦函数的周期性,cos(x+2kπ)=cosx,其中k为整数;(3)余弦函数的同角变换,cos(π/2-x)=sinx,cos(π/2+x)=-sinx。
3. 正切函数转换公式。
正切函数是三角函数中的另一种基本函数,其转换公式包括:(1)正切函数的奇偶性,tan(-x)=-tanx,tan(π-x)=-tanx;(2)正切函数的周期性,tan(x+π)=tanx;(3)正切函数的同角变换,tan(π/2-x)=cotx,tan(π/2+x)=-cotx。
4. 余切函数转换公式。
余切函数是三角函数中的第四种基本函数,其转换公式包括:(1)余切函数的奇偶性,cot(-x)=-cotx,cot(π-x)=-cotx;(2)余切函数的周期性,cot(x+π)=cotx;(3)余切函数的同角变换,cot(π/2-x)=tanx,cot(π/2+x)=-tanx。
5. 正割函数和余割函数转换公式。
正割函数和余割函数是三角函数中的补充函数,其转换公式包括:(1)正割函数的奇偶性,sec(-x)=secx,sec(π-x)=-secx;(2)正割函数的周期性,sec(x+2kπ)=secx,其中k为整数;(3)余割函数的奇偶性,csc(-x)=-cscx,csc(π-x)=-cscx;(4)余割函数的周期性,csc(x+2kπ)=cscx,其中k为整数。
三角函数转换公式大全1.正弦函数的转换公式:(1) 周期性:sin(x+2kπ) = sin(x),其中k是整数。
(2) 正负性:sin(-x) = -sin(x)。
(3) 余弦关系:sin(π/2 - x) = cos(x),sin(π/2 + x) = cos(x)。
(4) 反余弦关系:sin(arccos(x)) = √(1-x^2),其中,x,≤12.余弦函数的转换公式:(1) 周期性:cos(x+2kπ) = cos(x),其中k是整数。
(2) 正负性:cos(-x) = cos(x)。
(3) 正弦关系:cos(π/2 - x) = sin(x),cos(π/2 + x) = -sin(x)。
(4) 反正弦关系:cos(arcsin(x)) = √(1-x^2),其中,x,≤13.正切函数的转换公式:(1) 周期性:tan(x+kπ) = tan(x),其中k是整数,x≠(2k+1)π/2(2) 对称性:tan(π/2 - x) = 1/tan(x),tan(π/2 + x) = -1/tan(x)。
(3) 正割关系:tan(π/2 - x) = 1/cos(x),tan(π/2 + x) = -1/cos(x)。
4.等腰三角形的特殊三角函数转换公式:(1) sin(α) = sin(π - α),sin(α) = sin(α + π)。
(2) cos(α) = -cos(π - α),cos(α) = -cos(α + π)。
(3) tan(α) = -tan(π - α),tan(α) = tan(α + π)。
5.和差角的三角函数转换公式:(1) sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)。
(2) cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)。
(3) tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))。
高中数学三角函数代换公式大集锦基本公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)=cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tanA = sinA/cosA诱导公式记忆口诀上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
三角变换所有公式大全三角变换是数学中重要的概念,用于描述和分析三角函数的性质和变化规律。
本文将全面介绍三角变换中的所有主要公式,包括三角函数的和差化积、倍角化积、半角的公式等。
1. 三角函数的和差化积公式:1.1 正弦函数的和差化积公式:sin(A ± B) = sin A cos B ± cos A sin B1.2 余弦函数的和差化积公式:cos(A ± B) = cos A cos B ∓ sin A sin B1.3 正切函数的和差化积公式:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)2. 三角函数的倍角化积公式:2.1 正弦函数的倍角化积公式:sin 2A = 2 sin A cos A2.2 余弦函数的倍角化积公式:cos 2A = cos² A - sin² A = 2 cos² A - 1 = 1 - 2 sin² A2.3 正切函数的倍角化积公式:tan 2A = (2 tan A) / (1 - tan² A)3. 三角函数的半角公式:3.1 正弦函数的半角公式:sin(A/2) = ±√[(1 - cos A) / 2]3.2 余弦函数的半角公式:cos(A/2) = ±√[(1 + cos A) / 2]3.3 正切函数的半角公式:tan(A/2) = ±√[(1 - cos A) / (1 + cos A)]4. 三角函数的辅助角公式:4.1 正弦函数的辅助角公式:sin(π - A) = sin Asin(π + A) = -sin Asin(π/2 - A) = cos Asin(π/2 + A) = cos A4.2 余弦函数的辅助角公式:cos(π - A) = -cos Acos(π + A) = -cos Acos(π/2 - A) = sin Acos(π/2 + A) = -sin A4.3 正切函数的辅助角公式:tan(π - A) = -tan Atan(π + A) = tan Atan(π/2 - A) = 1/tan Atan(π/2 + A) = -1/tan A5. 三角函数的和差化积反函数公式:5.1 正弦函数的和差化积反函数公式:sin A + sin B = 2 sin((A + B)/2) cos((A - B)/2)sin A - sin B = 2 cos((A + B)/2) sin((A - B)/2)5.2 余弦函数的和差化积反函数公式:cos A + cos B = 2 cos((A + B)/2) cos((A - B)/2)cos A - cos B = -2 sin((A + B)/2) sin((A - B)/2)5.3 正切函数的和差化积反函数公式:tan A + tan B = sin(A + B) / (cos A cos B)tan A - tan B = sin(A - B) / (cos A cos B)这些公式是三角变换中的基本工具,可以用于简化三角函数的计算和表达。
高中数学三角函数代换公式大集锦基本公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tanA = sinA/cosA诱导公式记忆口诀上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+............—............—........余弦 ...........+............—............—............+........正切 ...........+............—............+............—........余切 ...........+............—............+............—........常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+............—............—........余弦 ...........+............—............—............+........正切 ...........+............—............+............—........余切 ...........+............—............+............—........同角三角函数基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式两角和与差的三角函数公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan2α=2tanα/[1-tan2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin2(α/2)=(1-cosα)/2cos2(α/2)=(1+cosα)/2tan2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)三倍角公式sin3A = 3sinA-4(sinA)3;cos3A = 4(cosA)3 -3cosAtan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a] a·sin(a)-b·cos(a) = [√(a^2+b^2)]*c os(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]^21-sin(a) = [sin(a/2)-cos(a/2)]^2其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)。