25.1.2我的概率
- 格式:ppt
- 大小:1.47 MB
- 文档页数:31
《25.1.2概率》说课稿石门初中:林家梅各位老师,大家好,今天我说课的内容是人教版教材九年级上册第二十五章第一节第二课时《概率》下面我将从说教材、说教、学法、说教学过程、说板书设计等方面进行说课。
一、 说教材1.教材的地位和作用本节课为新课标人教版教材九年级上册第二十五章第一节第二课时的内容。
统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的推断和预测.在第一学段(1~3年级),主要是让学生初步感受事件发生的不确定性和可能性,注重的是学生对不确定性和可能性的直观感受;第二学段(4~6年级)的要求是:进一步体会事件发生可能性的含义,并能计算一些简单事件发生的可能性;第三学段(7~9年级)的总体要求是:进一步体会概率的意义,能计算简单事件发生的概率;具体为:①体会概率的意义,了解古典概率计算方法。
②随机现象表面看无规律可循,出现哪一个结果事先无法预料,但根据一些具体的随机事件特点的分析,发现并总结它们所具有的两个特征即结果有限、每个结果出现的机会相等从而分析和总结有限等可能型事件的概率的求法。
2、学情分析学生初次接触概率,根据学生的认知规律,本节内容给出了对事件发生可能性的更加抽象和更加数学化的描述—公式化的方法求概率,因此存在一定的理解难度;但由于本节课内容贴近生活,因此丰富的日常生活问题情境会激发学生浓厚的兴趣,九年级学生已经具有一定的动手实验能力和归纳概括能力;学生希望老师能创设便于观察和思考的学习环境,也希望结合具有现实背景的素材,获得数学概念,掌握解决问题的技能与方法.3.知识分析按照教学内容交叉编排,螺旋上升的方式,本节内容是在统计的基础上展开对概率的研究,本节内容是分析要考察的事件占所有可能结果的比的形式求概率.在前两个学段,学生对事件发生的可能性的大小已经有了初步的认识,本章,学生初次接触概率,主要学习随机事件及概率的定义,掌握计算简单事件概率的方法,从中体会随机事件观念和概率思想,概率是对随机事件发生可能性大小的一种度量,学习概率使学生对加深了对事件发生可能性大小的理解,本节课的学习,将为今后学习用列举法求概率和用频率估计概率打下基础;而对于随机事件及其概率的认识,学生需要一个较长时期的认知过程,学生对概率思想的理解和掌握会随着自身年龄的增长以及知识面和生活经验的延伸而发展,而对概率意义的正确理解是学生对概率思想的理解和掌握这个长期认知过程的基础和根本,基于此我确定的教学目标为:1、知识技能:(1).理解什么是随机事件的概率,认识概率是反映随机事件发生可能性大小的量.(2).理解“事件A 发生的概率是P (A )=n m(在一次试验中有n 种等可能的结果,其中事件A 包含m 种)”的求概率的方法,并能求出简单问题的概率.通过对具体的随机试验的分析,了解古典概型事件所具有的特征,并分析随机试验中某一事件的概率的求法。
人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
课题《25.1.2 概率》导学案学习目标:1.理解P (A )=nm的意义. 能求出简单的古典概型的概率. 2.了解概率的取值范围为0~1的性质.学习重点:理解概率的古典定义及概率的取值范围,会求简单的古典概型的概率. 学习难点:正确理解事件的在限等可能性一、自主学习(预习教材P130-132)导入:我们班由 名男生和 名女生组成,若随机地抽取一人代表我们班参加体育测试,请同学们回答抽到男生可能性大还是抽到女生可能性大?可能性大小能否用数值进行刻画,就是我们今天要研究的课题---概率活动一:古典概型的概率. 问题1.两个试验的思考(1)从分别标有1,2,3,4,5号的5根形状、大小相同纸签中随机地抽取一根,抽出的签上的号码有多少种可能,各种可能性相等吗?为什么?抽到1的可能性多少?(2)掷一枚形状规则、质地均匀骰子,向上的一面的点数有多少种可能,各种可能性相等吗?为什么?向上一面点数是1的可能性多少?上述数值15和16反映了试验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A ,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P (A ).问题2:概率从数量上刻画了一个随机事件发生的可能性的大小.可以发现以上试验有两个共同特点:(1) (2) 对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果数在全部可能的结果数中所占的比,分析事件发生的概率.问题3:根据以上的理解,请你求出上面的抽签试验中 “抽到偶数号”这个事件的概率;“抽到奇数号”这个事件的概率.归纳:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P (A )=m n.问题4:.根据你对事件概率的理解,思考下列问题:(1)事件A的概率P(A)的取值范围;(2)当A为必然事件时,P(A)=;(3)当A为不可能事件时,P(A)=;(4)事件发生的可能性越大,它的概率,事件发生可能性越小,它的概率 .问题5.你能解决导入中提出问题吗?活动二:理解应用例1:掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.思考:①试验具备古典概型的两个特点吗?②试验中有几个可能的结果?③各事件所包含的结果数是多少?④请你求出各事件发生的概率.例2:图是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率;(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.③把问题(2)中的(1)、(3)两问及答案联系起来,你有什么发现?例3.如图是计算机中“扫雷”游戏的画面.在一个有9×9个小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况.我们把与标号3的方格相临的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A 区域中有3颗地雷.那么第二步应该踩在A区域还是B区域?分析:那么第二步应该怎样走取决于踩在哪部分遇到地雷的概率小,只要分别计算在两区域的任一方格内踩中地域的概率并加以比较就可以了.思考:如果小王在游戏开始时踩中的第一格上出现了标号1,则下一步踩在哪个区域比较安全?活动三:课堂练习1.下现事件的概率,哪些能作为等可能事件求概率,哪些不能?(1)掷一枚图钉,钉尖朝上(2)随意地抛一枚硬币,背面朝上或正面朝上2、摸彩券100张,分别标有1,2,3……100的号码,只有模中号码为7的倍数的彩券才有奖,小明随机摸出一张,那么他中奖的概率为多少?3、甲、乙两人玩“锤子、石头、剪刀、布”游戏,他们在不透明的袋中放入形状、大小均相同的15张卡片,其中写有“锤子、石头、剪刀、布”的卡片张数分别为2,3,4,6。
人教版九年级数学上25.1.2《概率》名师教案25.1.2 概率(彭小永)一、教学目标(一)学习目标1. 了解概率的意义,渗透随机观念2. 理解概率的一些性质3. 能计算一些简单事件的概率(二)学习重点计算一些简单实际问题的概率(三)学习难点概率的意义及判断试验条件的意识.二、教学设计(一)课前设计1.预习任务(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的概率,记为 P(A) .(2)一般地,如果一次试验有n个可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .(3)若用P(A)表示事件A发生的概率,则P(A)的范围是 .特别地,当A为必然事件时,P(A)= 1 .当A为不可能事件时,P(A)= 0 .(4)事件发生的概率越大,它的概率就越接近 1 ;反之,事件发生的概率越小,它的概率就越接近 0 .2.预习自测(1)抛掷一枚质地均匀的硬币,正确的说法是()A.正面一定朝上 B.正面朝上比反面朝上的概率大C.反面一定朝上 D.正面朝上与反面朝上的概率都是0.5【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】【答案】3 4(二)课堂设计1.知识回顾(1)必然事件、不可能事件和随机事件的定义是什么?(2)确定事件包含哪些?(3)你能分别举一个必然事件、不可能事件和随机事件的例子吗?请试一试.2.问题探究探究一概率的定义●活动①问题重现,温故知新问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,为了抽签,我们在盒中放5个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1、2、3、4、5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.(1)抽到的数字是1;(2)抽到的数字小于6 ;(3)抽到的数字是0.师问:以上三个事件分别是什么事件?你能用具体数值来刻画其发生的可能性大小吗?分别是多少呢?小军抽到1到5中每一个数字的可能性是不是一样的?学生举手抢答.【设计意图】让学生回忆必然事件、不可能事件和随机事件的定义,感受其可能性,为“概率”这一定义的引出铺路.●活动②整合旧知,探究概率的定义问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.师问:掷一次骰子,在骰子向上的一面上,可能出现哪些点数?骰子上每一个数字出现的可能性是不是同样多的?分别是多少?由学生举手抢答.归纳总结出概率的定义,如下:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).【设计意图】在学生完成了问题1的基础上,利用问题2进一步让学生明白:每个数字出现的可能性大小相等,即每个数字出现的机会是等可能性的. 与分别是问题1和问题2中各个数字出现的可能性大小,从而得出概率的定义.探究二实例解析,理解概率的定义和性质●活动①运用定义,初试身手示例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:(1)∵向上一面出现的点数共有六种情况,点数2只是其中的一种,∴出现点数2的概率:P(点数为2)=1 6(2)∵向上一面出现的点数共有六种情况,其中奇数有3个,∴点数为奇数的概率:P(点数为奇数)=36=12(3)∵向上一面出现的点数共有六种情况,大于2小于5的数字有2个,∴点数大于2小于5的概率:P(大于2小于5)=26=13【思路点拨】充分运用定义,求出相关事件的概率.【答案】(1)16(2)12(3)13【设计意图】用多个实例,总结出概率的一些性质●活动②归纳小结,得出概率性质师问:由问题1和问题2,以及示例,你能得到概率的哪些性质?由学生举手抢答. 归纳总结出概率的如下性质:概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.探究三利用概率的定义与性质,解决实际问题●活动①概率的基本运算师问:概率的公式是什么?它有哪些性质?例1 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵5 个球中,红色的有2个∴P(摸出红球)【思路点拨】红球个数占总球数的比例即为摸到红球的概率.【答案】C练习:某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵1 分钟共60秒,黄灯占5秒∴P(看到黄灯)【思路点拨】用黄灯的时间5秒,除以三种信号灯一轮变换的总时间60秒,即得抬头看到黄灯的概率.【答案】A【设计意图】进一步强化概率的计算方法.●活动②利用概率公式求概率与球的个数例2 在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,黑球6个. (1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率为,求m的值.【知识点】概率公式的灵活运用【数学思想】分类讨论思想,方程思想【解题过程】解:(1)若第一次将4个红球取完,则第二次摸出黑球为必然事件;若第一次取2个或3个红球,则第二次取出的球不一定是黑球,即第二次取出黑球为随机事件. 所以第一个空填数字“4”,第二个空填“2或3”.(2)由题意知,袋子内球的总数仍为10个,黑球的数量为(m+6)个,由概率的定义可得:,解得m=2.【思路点拨】准确把握必然事件与随机事件的定义是解决第(1)问的关键;第(2)问运用概率公式逆向求m的值,只要合理运用概率公式便可迎刃而解.【答案】(1)第一个空填数字“4”,第二个空填“2或3”. (2)m=2.练习:甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知2=,平均成绩=8.5环.甲射击成绩的方差S甲(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩及成绩的方差,并据此比较甲乙的射击“水平”.(方差的公式是:)【知识点】统计与概率【数学思想】数形结合思想【解题过程】解:(1)∵乙的射击总次数为12次,不少于9环的有7次,∴估计乙射击成绩不少于9环的概率为.(2)由题意得:(环),∴,∴甲的射击成绩更稳定.【思路点拨】读懂统计图中的数据,用好平均数、方差和概率的公式,便可顺利解决此题. 当平均成绩一样的时候,方差越小越稳定.【答案】(1)乙射击成绩不少于9环的概率红色为;(2)甲的射击成绩更稳定. 【设计意图】用综合性试题提高学生的解题能力. ●活动③ 与图形相关的概率计算例3 如图是一个可以自由转动的转盘,转盘分为7个大小相同的扇形,颜色分别为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色. 【知识点】概率【数学思想】数形结合思想 【解题过程】解:按颜色把7个扇形分别记为:红1、红2、红3、绿1、绿2、黄1、黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1、红2、红3, 因此,P (A )=(2)指针指向红色或黄色(记为事件B )的结果有5种,即红1、红2、红3、 黄1、黄2,所以, P (B )=(3)指针不指向红色(记为事件C )的结果有4种,即绿1、绿2、黄1、黄2,因此,P (C )=【思路点拨】由于指针停到每块扇形的机会相同,所以只需要数出符合条件的色块数量,用它除以总的色块数,即得相应事件的概率.【答案】(1)P (红色)=;(2)P (红色或黄色)=;(3)P (不是红色)=红红红绿绿黄黄练习:下图为计算机“扫雷”游戏的画面. 在一个99个方格的雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏一颗地雷.小王在游戏开始时随机点击一个方格,点击后出现下图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域. 数字3表示在A区域有3颗地雷.请问,下一步应该点击A区域还是B区域更安全?【知识点】概率【数学思想】数形结合思想【解题过程】解:∵A区域有8个方格,这八个方格中有3颗地雷B区域有72个方格,这72个方格中有7个地雷∴点击A区域遇到地雷的概率为,点击B区域遇到地雷的概率为,而,也就是说,点击B区域更安全.【思路点拨】分别计算两个事件的概率,再比较概率的大小即可.【答案】由于点击B区域遇到地雷的概率更小,所以选择点击B区域更好.【设计意图】进一步强化与图形相关的试题中求概率的方法.3. 课堂总结知识梳理(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)概率的性质:性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.重难点归纳(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).(3)P(必然事件)=1,P(不可能事件)=0.(三)课后作业基础型自主突破1.必然事件的概率是()A. B. C. D.【知识点】必然事件的概率【数学思想】模型思想【解题过程】必然事件指的是在一定条件下必然要发生的事件,所以它的概率为1.【思路点拨】正确理解必然事件的定义,牢记特殊事件的概率【答案】D2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率【数学思想】分类讨论思想【解题过程】解:A 不可能事件发生的概率为0,正确;B 随机事件发生的概率不一定为0.5,如掷骰子时,各个数字朝上的概率为C 概率很小的事件指的是发生的可能性很小,但不是不发生,如买彩票中特等奖就是一个小概率事件,但仍可能发生;D 由于实验的次数较少,实验得到的结果不一定刚好与理论概率吻合,所以不一定是50次. 【思路点拨】由于受各种条件的限制,实验得到的结果往往与理论值有一定的偏差,对于具体问题要具体分析.【答案】A3.四张质地、大小相同的卡片上分别画上如图所示的图形.在看不到图形的情况下,从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.【知识点】概率,轴对称图形【数学思想】分类讨论,数形结合【解题过程】解:在这四个图形中,只有等腰梯形和圆是轴对称图形,所以抽到轴对称图形的概率为【思路点拨】认清轴对称图形,数出它的个数,此题便可迎刃而解.【答案】A4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标为1、2、3、4、5,从中随机摸出一个小球,其标号大于2的概率为()A. B. C. D.【知识点】概率【解题过程】在这5个数中,大于2的数字有3、4、5共三个数字,所以它的概率为. 【思路点拨】找出符合条件的数,将它与总数相除即可.【答案】C5.将“定理”的英语单词“theorem”中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e的概率为 .【知识点】概率【解题过程】7个字母中有2个“e”,所以取到字母“e”的概率为【思路点拨】牢记概率的计算公式便可轻松得解.【答案】6. 桶里原有质地均匀,形状大小完全一样的6个红球和4个白球,小明不慎弄丢了其中的2个红球,现从桶里随机摸出一个球,摸到白球的概率是 .【知识点】概率【数学思想】模型思想【解题过程】由于桶里的球有4红4白,所以摸到白的概率为.【思路点拨】用概率的计算公式即可【答案】能力型师生共研7. 如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A .B .C .D .【知识点】概率【思想方法】数形结合C【解题过程】将六个点两两相连,可得15条线段,其中只有AC、BD、CE、DF、EA、FB这6条的长度为,所以概率为 .【思路点拨】找出符合条件的线段数量,并数出总的线段条数,再将前者与总条数相除即可. 【答案】B8. 在盒子中放有三张分别写有、、2的卡片,从中随机抽出两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .【知识点】概率的计算,分式的定义【数学思想】分类讨论思想【解题过程】当或作分母时,四组数据都符合分式的定义;当分母为2时,这两组数据不符合分式的定义. 所以能组成分式的概率为.【思路点拨】分式指的是分母中含有未知数的式子. 找出所有组合中符合分式定义的式子个数,相除即可.【答案】B探究型多维突破9. 在一个不透明的围棋盒子中有颗黑棋和颗白棋,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进10颗黑棋,这时随机取出黑色棋子的概率为,请求出和的值. 【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,将代入,解得,所以,.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.10.口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5cm,口袋外有2张卡片,分别写有 4 cm和5 cm.现随机从袋内取出一张卡片,与口袋外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【知识点】概率,三角形三边的关系,直角三角形和等腰三角形的性质【数学思想】分类讨论思想【解题过程】解:(1)由于口袋外的两个长度分别为4 cm和5 cm,要组成三角形,则第三边的长度应满足,所以,当摸出的长度为2 cm、3 cm、4 cm、5cm时,都符合题意,其概率为;(2)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有3cm能与它们组成直角三角形,所以,组成直角三角形的概率为;(3)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有4cm与5cm能分别与它们组成等腰三角形,所以,组成等腰三角形的概率为;【思路点拨】三角形的两边之和大于第三边,两边之差小于第三边;直角三角形满足勾股定理;等腰三角形要注意验证两腰之和大于底边.【答案】(1);(2);(3) .自助餐1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上 B.必有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上【知识点】概率【解题过程】由于正、反两面出现的概率相同,所以答案A是正确的. 理论概率指的是一种可能性,它不一定刚好等于实验频率,其他几个答案的描述不对.【思路点拨】准确理解概率的含义,在实验中,理论概率不一定刚好等于实验频率.【答案】A2.从长度分别为3、5、7、9的四条线段中任取三条作边,能够组成三角形的概率为()A. B. C. D.【知识点】概率的计算,三角形三边的关系【数学思想】分类讨论思想【解题过程】从3、5、7、9中任取三条作边,共有4种情况,分别是①3、5、7;②3、5、9;③3、7、9;④5、7、9. 其中只有第二组不能构成三角形. 所以构成三角形的概率为. 【思路点拨】三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】D3.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3个,白球 n个,若从袋中任取一球,摸出白球的概率为,则n= .【知识点】概率【数学思想】方程思想【解题过程】解:由概率的计算公式知:,解得n=9.【思路点拨】用方程的思想列式求解;或者推算出摸到红球的概率为,逆向思考,算出球的总数,减去红球的个数即得白球的个数.【答案】n=9.4.从-3、-2、-1、0、1、2这六个数中,任意抽取一个数,作为正比例函数和二次函数中m的值,恰好使得正比例函数的图象经过第二、四象限,且二次函数的图象开口向上的概率为 .【知识点】概率,正比例函数和二次函数的性质【数学思想】分类讨论思想【解题过程】解:∵正比例函数∴,只有-3不合题意∵二次函数∴,解得,只有0、1、2符合题意综上所述,在已知的六个数中,只有 0、1、2这三个数符合题意,所以,概率为.【思路点拨】当k<0时,正比例函数的图象必过二、四象限. 当时,二次函数的图象开口向上.【答案】.5.袋中有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,从中摸出一球是绿球的概率是.(1)袋里黄球的个数;(2)任意摸出一球为红球的概率.【知识点】概率【数学思想】模型思想,方程思想【解题过程】解:(1)设有m个黄球,则,解得m=6,所以有6个黄球;(2)P(红球)【思路点拨】牢牢抓住概率的定义即可,.【答案】(1)有6个黄球;(2)P(红球)6.在一个不透明的围棋盒子中有颗白棋,颗黑棋,它们除颜色外都一致,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进5颗白棋和1颗黑棋,这时随机取出白色棋子的概率为,请求出和的值.【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,解得,所以.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.。
25.1.2 概率一、教学目标1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解必然事件和不可能事件的概率.3.会进行简单的概率计算及应用.二、教学重难点重点用概率的定义求简单随机事件的概率.难点正确理解有限等可能性,准确计算随机事件的概率.重难点解读1.由概率的意义可知:当A是必然发生的事件时,P(A)=1;当A是不可能发生的事件时,P(A)=0;随机事件发生的概率P的范围为0<P<1,所以事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.2.注意:我们常见的试验一般具有以下两个共同特点:(1)每一次试验中,可能出现的结果是有限个;(2)每一次试验中,各种结果发生的可能性相等.对于这类试验,我们可以根据事件包含的各种可能的结果数在全部可能的结果数中所占的比,分析出事件发生的概率.三、教学过程活动1 旧知回顾1.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)掷一次骰子,向上一面的点数是3;(3)367个人中,至少有两个人的生日相同;(4)经过有信号灯的十字路口,遇见红灯;(5)在装有3个球的布袋里摸出4个球;(6)抛掷一千枚硬币,全部正面朝上.2.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?活动2 探究新知教材第130~131页.提出问题:(1)问题1中抽出的纸团里的数字有几种可能?每个数字出现的可能性相同吗?(2)问题2中向上一面的点数有几种可能?每个点数出现的可能性相同吗?(3)以上两个试验有什么共同特征?(4)你能求出问题1中“抽到奇数”这个事件的概率吗?你认为问题2中“向上一面的点数为偶数”的概率是多少?(5)请思考P(A)的取值范围是多少?(6)P(A)=1,P(A)=0各表示什么事件呢?活动3 知识归纳1.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为 P(A) .2.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率 P(A)=nm.3.概率与事件发生的可能性大小的对应关系:由上图可知:(1)P(A)的取值范围为 0≤(P(A)≤1 . (2)当P(A)= 1 时,事件A为必然事件;(3)当P(A)= 0 时,事件A为不可能事件.活动4 典例赏析及练习例1 教材第131页例1.例2 教材第132页例2.例3 教材第133页例3.例4 0,π,6,227这五个数中随机抽取一个数,抽到无理数的概率是25.练习:1.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率( B )A.小于12B.等于12C.大于12D.不能确定2.教材第133页练习第1题.3.教材第133页练习第2题.4.教材第133页练习第3题.5.下列说法正确的是( C )A.天气预报说明天降水的概率为10%,则明天一定是晴天B.任意抛掷一枚质地均匀的硬币,若上一次是正面朝上,则下一次一定是反面朝上C.13个人中至少有2人的出生月份相同D.任意抛掷一枚骰子,掷出的点数小于3的概率是1 2活动5 课堂小结1.概率的意义.2.概率的求法.四、作业布置与教学反思。
25.1.2概率教学设计设计理念:从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
通过分析实际生活中随机事件发生可能性的大小来认识概率是反映随机事件发生可能性大小的量. 在探究概率的过程中,培养学生的动手能力、探究能力,发展他们的概率观念和应用意识,同时激发他们的好奇心和求知欲,培养他们勇于探索的精神、交流与合作的精神.教材分析:本节内容是人教版数学九年级上册“概率初步”这一章的第二节,是在学生学习了必然事件、随机事件、不可能事件知识的基础上的进一步研究.教材这样编排其主要意图有二:1.遵从概率的产生规律,从概率的古典定义开始探究,学生易于接受,同时符合学生的认知规律.2.为后面学习列举法求概率及用频率估计概率奠定基础,起到承上启下的作用.学情分析:学生虽然已经接触了概率的一些简单知识,本节课内容给出了对事件发生的可能性更加抽象和数学化的描述要求---公式法的方法求概率,因此存在一定的理解难度,不过课本内容在编排上充分考虑了这一点,分解降低了学习难度.教学目标:1.知识与能力:通过分析实际生活中随机事件发生可能性的大小来认识概率是反映随机事件发生可能性大小的量.2.过程和方法:经历动手操作、想象、归纳和总结等活动理解等可能事件,并掌握等可能事件概率的一般求法,能够应用到实际生活当中去.3.情感态度与价值观:在探究概率的过程中,培养学生的动手能力、探究能力,发展他们的概率观念和应用意识,同时激发他们的好奇心和求知欲,培养他们勇于探索的精神、交流与合作的精神.教学重难点:教学重点:概率的意义.m并会运用教学难点:理解P(A)=n教学过程一.猜球游戏引入概率师:老师手里有5颗颜色不同的糖果,现在老师放进袋子里,请一名同学拿出一颗.师:请同学们猜一下糖果的颜色,摸到红色糖果的可能性有多大,能否用数值刻画可能性的大小呢?引入新课---25.1.2 概率设计意图:通过这个彩球游戏,来调动全班学生的积极性,培养学生的学习兴趣,同时也为引出概率的定义做一个铺垫.二、师生互动,探索新知活动1.理解概率的定义(一)概率的定义概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数P A.值,称为随机事件A发生的概率.记为()活动2.比较概括,理解概率思考:猜糖游戏与掷骰子两个试验有哪些共同特点?特点1:每一次试验中,可能出现的结果只有有限个;特点2:每一次试验中,各种结果出现的可能性相等.活动3:探索事件概率的方法(1)在活动1中,“摸到红色糖果”这个事件包含种可能结果,在全部种可能结果中所占的比为,于是这个事件的概率为 .(2)在活动2中,“出现点数为1”这个事件包含种可能结果,在全部种可能结果中所占的比为,于是这个事件的概率为 .小结:事件的概率需要和两个量.(二)求概率的方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都P A=相等,事件A包含其中的m种结果,如果事件A发生的概率()P A的取值范围是活动4:思考:根据求概率的方法,事件A发生的概率()什么?概率()P A的取值范围为_________________.P A=______.不可能事件的概率:特别地:必然事件的概率:()()P A=______.设计意图:学生通过类比,发现求事件的概率需要的两个量,从而让学生很自然地归纳出等可能事件概率的一般求法.三、典例分析例1 掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5设计意图:在解答这道例题时,老师重在培养学生做题的规范意识.例2.如图,是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当做指向右边的扇形.)求下列事件的概率:1)指针指向红色;2)指针指向红色或黄色;3)指针不指向红色.例3. “扫雷”游戏规则如下:在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后方格上出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A 区域还是B区域?设计意图:在设计这两道练习时,我仍然选择了同学们非常熟悉的转盘游戏、电脑扫雷游戏.设计转盘游戏这道题时,为了来检测学生的知识落实情况,我采用问题层层递进的方法;设计扫雷游戏时,通过变式来挑战学生的思维,这样既可以培养学生的阅读分析能力,以可以让学生感受概率在生活当中的应用.四、当堂练习1.从一副扑克牌(除去大小王)中任抽一张.P (抽到红心) = P (抽到黑桃) =P (抽到红心3)= P (抽到5)= .2.有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.3.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?五.课堂小结概率的定义:概率的范围:概率的计算:六.布置作业1.必做题:习题25.1第1、2、4题选做题:习题25.1第6、7题2.拓展延伸,链接中考设计意图:以知识的巩固性和发展性为出发点,体现分层施教的原则.我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸.板书设计25.1.2 概率一.概率的定义刻画一个随机事件发生可能性大小的数值.记为P(A).二.概率的范围0≤P(A)≤1当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0三.概率的计算mP(A)=n课后反思:成功之处:通过猜糖游戏,激发了学生的学习热情;通过猜糖游戏与掷骰子两个试验对比,探索出等可能事件的特点;让学生分组活动,培养了动手能力、探索能力以及协作精神;在实际操作中,学生积极参与,大胆探索,经历了知识的形成过程;从练习反馈来看,学生基本达到了预期的目标.不足之处:在教学过程中,由于教师在问题设置方面引导性不够,语言表达稍欠精准,有少数同学参与意识不强,在以后的教学中我会想方设法尽量改进,让所有学生都学有所获.。