五年中考三年模拟之因式分解
- 格式:docx
- 大小:150.22 KB
- 文档页数:8
中考数学模拟题《因式分解》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(20题)一 单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-( ) A .5a -B .5a +C .5D .a二 填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+= .4.(2023·甘肃兰州·统考中考真题)因式分解:2225x y -= .5.(2023·湖南·统考中考真题)已知实数m 1x 2x 满足:()()12224mx mx --=.①若1193m x ==,,则2x = . ①若m 1x 2x 为正整数...,则符合条件的有序实数....对()12,x x 有 个 6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+= .7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+= .8.(2023·湖南·统考中考真题)分解因式:n 2﹣100= .9.(2023·甘肃武威·统考中考真题)因式分解:22ab ab a -+= .10.(2023·山东日照·统考中考真题)分解因式:3a b ab -= .11.(2023·四川德阳·统考中考真题)分解因式:ax 2﹣4ay 2= .12.(2023·吉林长春·统考中考真题)分解因式:21a -= .13.(2023·贵州·统考中考真题)因式分解:24x -= .14.(2023·广东深圳·统考中考真题)已知实数a b 满足6a b += 7ab =,则22a b ab +的值为 .15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--= .16.(2023·湖北十堰·统考中考真题)若3x y += 2y =,则22x y xy +的值是 . 17.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .18.(2023·山东·统考中考真题)已知实数m 满足210m m --=,则32239m m m --+= . 19.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为 .20.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++= .参考答案一 单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】用平方差公式进行因式分解 得到乘积的形式 然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+ 3(43)k +能被3整除①22(23)4k k +-的值总能被3整除故选:B .【点睛】本题考查了平方差公式的应用 平方差公式为22()()a b a b a b -=-+通过因式分解 可以把多项式分解成若干个整式乘积的形式.2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-( ) A .5a -B .5a +C .5D .a【答案】D【分析】分子分解因式 再约分得到结果. 【详解】解:255a a a -- ()55a a a -=- a = 故选:D .【点睛】本题考查了约分 掌握提公因式法分解因式是解题的关键.二 填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+= .【答案】()23m a b -【分析】根据因式分解中的提公因式法和完全平方公式即可求出答案.【详解】解:22363ma mab mb -+()2232m a ab b =-+()23m a b =- 故答案为:()23m a b -.【点睛】本题考查了因式分解 涉及到提公因式法和完全平方公式 解题的关键需要掌握完全平方公式. 4.(2023·甘肃兰州·统考中考真题)因式分解:2225x y -= .【答案】()()55x y x y +-【分析】直接利用平方差分解即可.【详解】解:()()222555x y x y x y -=+-. 故答案为:()()55x y x y +-.【点睛】本题考查因式分解 解题的关键是熟练掌握平方差公式.5.(2023·湖南·统考中考真题)已知实数m 1x 2x 满足:()()12224mx mx --=.①若1193m x ==,,则2x = . ①若m 1x 2x 为正整数...,则符合条件的有序实数....对()12,x x 有 个 【答案】 18 7【分析】①把1193m x ==,代入求值即可 ①由题意知:()()122,2mx mx --均为整数 12121,1,21,21mx mx mx mx ≥≥-≥--≥-,则4142241,=⨯=⨯=⨯再分三种情况讨论即可.【详解】解:①当1193m x ==,时 211(92)(2)433x ⨯-⨯-=解得:218x =①当m 1x 2x 为正整数时()()122,2mx mx --均为整数 12121,1,21,21mx mx mx mx ≥≥-≥--≥-而4142241,=⨯=⨯=⨯122124mx mx -=⎧∴⎨-=⎩或122222mx mx -=⎧⎨-=⎩或122421mx mx -=⎧⎨-=⎩ 1236mx mx =⎧∴⎨=⎩或1244mx mx =⎧⎨=⎩或1263mx mx =⎧⎨=⎩ 当1236mx mx =⎧⎨=⎩时 1m =时 123,6x x == 3m =时 121,2x x == 故()12,x x 为(3,6),(1,2) 共2个当1244mx mx =⎧⎨=⎩时 1m =时 124,4x x == 2m =时 122,2x x == 4m =时 121,1x x == 故()12,x x 为(4,4),(2,2),(1,1) 共3个当1263mx mx =⎧⎨=⎩时 1m =时 126,3x x == 3m =时 122,1x x == 故()12,x x 为(6,3),(2,1) 共2个综上所述:共有2327++=个.故答案为:7.【点睛】本题考查了整式方程的代入求值 整式方程的整数解 因式分解的应用 及分类讨论的思想方法.本题的关键及难点是运用分类讨论的思想方法解题.6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+= .【答案】()22x -/()22x -【分析】利用完全平方公式进行因式分解即可.【详解】解:244x x -+=()22x -故答案为:()22x -.【点睛】本题考查因式分解.熟练掌握完全平方公式法因式分解 是解题的关键.7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+= .【答案】()21x -/()21x -【分析】利用完全平方公式进行因式分解即可.【详解】解:()()2221211x x x x x -+=-+=-故答案为:()21x -.【点睛】本题考查因式分解.熟练掌握完全平方公式是解题的关键.8.(2023·湖南·统考中考真题)分解因式:n 2﹣100= .【答案】(n -10)(n +10)【分析】直接利用平方差公式分解因式得出答案.【详解】解:n 2-100=n 2-102=(n -10)(n +10).故答案为:(n -10)(n +10).【点睛】本题主要考查了公式法分解因式 正确应用平方差公式是解题关键.9.(2023·甘肃武威·统考中考真题)因式分解:22ab ab a -+= .【答案】()21a b -【分析】先提取公因式a 再利用公式法继续分解.【详解】解:()()2222211ab ab a a b b a b -+=-+=-故答案为:()21a b -.【点睛】本题考查了公式法以及提取公因式法分解因式 正确应用公式是解题的关键.在分解因式时要注意分解彻底.10.(2023·山东日照·统考中考真题)分解因式:3a b ab -= .【答案】()()11ab a a -+【分析】根据提取公因式法和平方差公式 即可分解因式.【详解】3a b ab -=2(1)(1)(1)ab a ab a a -=+-故答案是:()()11ab a a +-.【点睛】本题主要考查提取公因式法和平方差公式 掌握平方差公式 是解题的关键.11.(2023·四川德阳·统考中考真题)分解因式:ax 2﹣4ay 2= .【答案】a (x+2y )(x ﹣2y )【分析】先提公因式a 然后再利用平方差公式进行分解即可得.【详解】ax 2﹣4ay 2=a (x 2﹣4y 2)=a (x+2y )(x ﹣2y )故答案为a (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法分解因式 熟练掌握平方差公式的结构特征是解本题的关键. 12.(2023·吉林长春·统考中考真题)分解因式:21a -= .【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式 掌握利用平方差公式分解因式是解题的关键. 13.(2023·贵州·统考中考真题)因式分解:24x -= .【答案】(+2)(-2)x x【详解】解:24x -=222x -=(2)(2)x x +-故答案为(2)(2)x x +-14.(2023·广东深圳·统考中考真题)已知实数a b 满足6a b += 7ab =,则22a b ab +的值为 .【答案】42【分析】首先提取公因式 将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值 提公因式法因式分解 整体思想的应用 解题的关键是掌握以上知识点.15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--= .【答案】()()x y x z +-【分析】先分组 然后根据提公因式法 因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-故答案为:()()x y x z +-.【点睛】本题考查了因式分解 熟练掌握因式分解的方法是解题的关键.16.(2023·湖北十堰·统考中考真题)若3x y += 2y =,则22x y xy +的值是 .【答案】6【分析】先提公因式分解原式 再整体代值求解即可.【详解】解:22x y xy +()xy x y =+①3x y += 2y =①1x =①原式123=⨯⨯6=故答案为:6.【点睛】本题主要考查因式分解 熟练掌握因式分解的方法 利用整体思想方法是解答的关键. 17.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .【答案】2-【分析】先将代数式根据平方差公式分解为:22a b -=()()a b a b +- 再分别代入求解.【详解】①2a b += 1a b -=-①原式()()2(1)2a b a b =+-=⨯-=-.故答案为:2-.【点睛】本题主要考查了平方差公式 熟记公式是解答本题的关键。
五年中考三年模拟9年级上册数学一、一元二次方程。
1. 概念。
- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。
- 例如方程x^2-3x + 2 = 0,这里a = 1,b=-3,c = 2。
2. 解法。
- 直接开平方法。
- 对于形如x^2=k(k≥0)的方程,可以直接开平方得到x=±√(k)。
例如方程x^2=9,解得x = 3或x=-3。
- 配方法。
- 步骤:先将方程化为ax^2+bx=-c的形式,然后在等式两边加上一次项系数一半的平方((b)/(2))^2,将左边配成完全平方式(x +(b)/(2a))^2,再进行开方求解。
例如对于方程x^2+6x - 7 = 0,首先将方程变形为x^2+6x=7,然后两边加上((6)/(2))^2=9,得到(x + 3)^2=16,解得x = 1或x=-7。
- 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
例如方程2x^2-5x + 3 = 0,其中a = 2,b=-5,c = 3,代入公式可得x=frac{5±√((-5)^2)-4×2×3}{2×2}=(5±1)/(4),解得x = 1或x=(3)/(2)。
- 因式分解法。
- 把方程化为一边是零,另一边是两个一次因式积的形式,然后使每个因式等于零,分别求解。
例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根;- 当Δ = 0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根。
中考数学“因式分解”典例及巩固训练(1)一、典型例题例1、(2017•广东省)分解因式:a 2+a = .解:答案为a (a+1)例2、(2019•黄冈市)分解因式3x 2﹣27y 2= . 解:原式=3(x 2﹣9y 2)=3(x +3y )(x ﹣3y ),故答案为:3(x +3y )(x ﹣3y )例3、因式分解:221222x xy y ++. 解:22221122(44)22x xy y x xy y ++=++21(2)2x y =+.二、巩固训练1.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .(a +b )(a ﹣b )=a 2﹣b 2C .x 2+4x +4=(x +2)2D .ax 2﹣a =a (x 2﹣1)2.下列多项式可以用平方差公式分解因式的是( )A .224x y +B .224x y -+C .224x y --D .324x y -3. 下列各式中,能用完全平方公式分解的个数为( )①21025x x -+:②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+ A .1个 B .2个 C .3个 D .4个4.如果代数式2425x kx ++能够分解成2(25)x -的形式,那么k 的值是( )A .10B .20-C .10±D .20±5. 分解因式:(1)a 2b ﹣abc = .(2)3a (x ﹣y )﹣5b (y ﹣x )= .6.分解因式:4a 2﹣4a +1= .7.分解因式:2a 2﹣4a +2= .8.(2017•广州市)分解因式:xy 2﹣9x = .9.分解因式:x 6﹣x 2y 4= .10.(2018•黄冈市)因式分解:x 3﹣9x = .11.(2018•葫芦岛市)分解因式:2a 3﹣8a = .12.因式分解: (1)2218x -; (2)224129a ab b -+; (3)3221218x x x -+;13.(2019·河池市)分解因式:2(1)2(5)x x -+-.14.分解因式:4224816x x y y -+.15.分解因式:(1)22()+x y x y -- ; (2)22()()a x y b x y ---; (3)229()()m n m n +--.★★★★1.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式22(41)(47)9x x x x -+-++进行因式分解的过程. 解:设24x x y -=原式(1)(7)9y y =+++(第一步)2816y y =++(第二步)2(4)y =+(第三步)22(44)x x =-+(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的 ;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: ;(3)请你用换元法对多项式22(2)(22)1x x x x ++++进行因式分解.2.【阅读材料】对于二次三项式222a ab b ++可以直接分解为2()a b +的形式,但对于二次三项式2228a ab b +-,就不能直接用公式了,我们可以在二次三项式2228a ab b +-中先加上一项2b ,使其成为完全平方式,再减去2b 这项,(这里也可把28b -拆成2b +与29b -的和),使整个式子的值不变.于是有:2228a ab b +-222228a ab b b b =+-+-2222(2)8a ab b b b =++--22()9a b b =+-[()3][()3]a b b a b b =+++-(4)(2)a b a b =+-我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用 法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①268m m ++;②4224a a b b ++★★★★★1.数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.如图1,有足够多的A 类、C 类正方形卡片和B 类长方形卡片.用若干张A 类、B 类、C 类卡片可以拼出如图2的长方形,通过计算面积可以解释因式分解:2223(2)()a ab b a b a b ++=++.(1)如图3,用1张A 类正方形卡片、4张B 类长方形卡片、3张C 类正方形卡片,可以拼出以下长方形,根据它的面积来解释的因式分解为 ;(2)若解释因式分解2234()(3)a ab b a b a b ++=++,需取A 类、B 类、C 类卡片若干张(三种卡片都要取到),拼成一个长方形,请画出相应的图形;(3)若取A 类、B 类、C 类卡片若干张(三种卡片都要取到),拼成一个长方形,使其面题1图积为22++,则m的值为,将此多项式分解因式5a mab b为.巩固训练参考答案1.C2.B3. B4.B5. (1) ab (a ﹣c) . (2)(3a+5b )(x ﹣y ) .6.(2a ﹣1)2.7.2(a ﹣1)2.8.x (y +3)(y ﹣3).9. x 2(x 2+y 2)(x +y )(x ﹣y ) .10.x (x +3)(x ﹣3).11.2a (a +2)(a -2).12.解:(1);(2);(3)原式.13.解:原式.14.解:原式.15.解:(1)原式=;(2)原式;(3)原式.★★★★1.解:(1)故选:;2218x -22(9)x =-2(3)(3)x x =+-224129a ab b -+22(2)12(3)a ab b =-+2(23)a b =-222(69)2(3)x x x x x =-+=-221210x x x =-++-29x =-(3)(3)x x =+-22(4)x y =-22(2)(2)(2)x y x y x y =+-+22())(x y x y ---)[2(1])(x y x y =---)(22(1)x y x y =---22()()x y a b =--()()()x y a b a b =-+-22[3()]()m n m n =+--(33)(33)m n m n m n m n =++-+-+4(2)(2)m n m n =++C(2),设,原式,,,,;故答案为:;(3)设,原式,,,,.2.解:(1)上式中添(拆项后先把完全平方式组合在一起,然后用公式法实现分解因式. 故答案为:公式;(2)①;②.22(41)(47)9x x x x -+-++24x x y -=(1)(7)9y y =+++2816y y =++2(4)y =+22(44)x x =-+4(2)x =-4(2)x -22x x y +=(2)1y y =++221y y =++2(1)y =+22(21)x x =++4(1)x =+)268m m ++2691m m =++-22(3)1m =+-(31)(31)m m =+++-(4)(2)m m =++4224a a b b ++4224222a a b b a b =++-2222()()a b ab =+-2222()()a b ab a b ab =+++-★★★★★1.解:(1)由图可得,,故答案为:;(2)如右图所示;(3)由题意可得,,,故答案为:6,.2243()(3)a ab b a b a b ++=++2243()(3)a ab b a b a b ++=++6m =2256(5)()a ab b a b a b ++=++(5)()a b a b ++中考数学“因式分解”典例及巩固训练(2)一、典型例题例1、因式分解:222a ab b ac bc ++++.解:原式22(2)()a ab b ac bc =++++2()()a b c a b =+++()()a b a b c =+++例2、用十字相乘法进行因式分解:232x x ++.解:原式(1)(2)x x =++.例3、在实数范围内进行分解因式:35x x -.解:原式2(5)x x =-(x x x =+-.二、巩固训练1.用分组分解法进行因式分解:(1)2221x y xy +--; (2)3223x x y xy y +--.2.(2017•百色市)阅读理解:用“十字相乘法”分解因式2x 2﹣x ﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”; 题2图1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1. 即:(x +1)(2x ﹣3)=2x 2﹣3x +2x ﹣3=2x 2﹣x ﹣3,则2x 2﹣x ﹣3=(x +1)(2x ﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x 2+5x ﹣12= .3.用十字相乘法分解因式:(1)x 2+2x ﹣3= .(2)x 2﹣4x +3= .(3)22x x +-= .(4)2215a a --= .(5)4x 2+12x ﹣7= .4.选择恰当的方法进行分解因式:(1)26x x --; (2)2363a a -+; (3)226a ab b --;(4)29(2)(2)a x y y x -+-; (5)2222a b a b --+;(6)34x x -;5.分解因式:(1)22430y y --; (2)224414a b b +--.6.在实数范围内将下列各式分解因式:(1)22363ax axy ay -+; (2)35x x -.7.在实数范围内分解因式:(1)9a 44b - 4; (2)x 22- 3+;(3)x 5﹣4x .★★★★1.阅读下面的问题,然后回答,分解因式:223x x +-,解:原式22113x x =++--2(21)4x x =++-2(1)4x =+-(12)(12)x x =+++- (3)(1)x x =+-上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式: (1)243x x -+; (2)24127x x +-.2.在实数范围内分解因式221x x --.3.因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”例:32331x x x -+-,当1x =时,整式的值为0,所以,多项式有因式(1)x -,设322331(1)(1)x x x x x ax -+-=-++,展开后可得2a =-,所以3223331(1)(21)(1)x x x x x x x -+-=--+=-根据上述引例,请你分解因式:(1)2231x x -+; (2)32331x x x +++.★★★★★1.请看下面的问题:把44x +分解因式.分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,而且属于平方和222()2x +的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得:4422222222224444(2)4(2)(2)(22)(22)x x x x x x x x x x x x +=++-=+-=+-=++-+人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”. 请你依照苏菲·热门的做法,将下列各式因式分解. (1)444x y +;(2)2222x ax b ab ---. 2.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式2ax bx c ++进行因式分解呢?我们已经知道,2211221212211212122112()()()a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++.我们发现,二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图①所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为1122()()a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”. 例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即62(3)-=⨯-;然后把1,1,2,3-按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1(3)121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为(2)(3)x x +-.题2图请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法” 分解因式:26x x +-= (3)(2)x x +- .【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2257x x +- ;(2)22672x xy y -+= . 【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk乘积作为第三列,如果mq np b +=,pk qj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式2235294x xy y x y +-++-= .(2)若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.(3)已知x ,y 为整数,且满足2232231x xy y x y ++++=-,请写出一组符合题意的x ,y 的值.巩固训练参考答案1.解:(1).解:(2)原式. 2.(x +3)(3x ﹣4). 3.(1)(x +3)(x -1) . (2)(x ﹣1)(x ﹣3) . (3) . (4) . (5)(2x +7)(2x ﹣1) .4.解:(1)原式. (2)原式; (3)原式; (4)原式.(5)原式. (6)原式; 5..解:(1)原式 ;(2)原式.6.解:(1)原式;2221x y xy +--2()1x y =--(1)(1)x y x y =-+--3223222()()()()()()x x y xy y x x y y x y x y x y =+-+=+-+=+-(2)(1)x x +-(5)(3)a a -+(2)(3)x x =+-23(21)a a =-+23(1)a =-(3)(2)a b a b =-+29(2)(2)a x y x y =---2(2)(91)x y a =--(2)(31)(31)x y a a =-+-()()2()()(2)a b a b a b a b a b =+---=-+-2(4)(2)(2)x x x x x =-=+-22(215)y y =--2(5)(3)y y =-+224(144)a b b =--+224(12)a b =--(221)(221)a b a b =+--+223(2)a x xy y =-+23()a x y =-(2)原式,.7.解:(1)原式; (2)原式.(3)原式=★★★★1.解:(1)(2)2.解:.3.解:(1)当时,整式的值为0,所以,多项式有因式, 于是; (2)当时,整式的值为0,多项式中有因式,2(5)x x =-(x x x =222222(32)(32)(32)a b a b a b =+-=++2(x =2(2)(x x x x +243x x -+24443x x =-+-+2(2)1x =--(21)(21)x x =-+--(1)(3)x x =--24127x x +-2412997x x =++--2(23)16x =+-(234)(234)x x =+++-(27)(21)x x =+-221x x --22111x x =-+--2(1)2x =--(11x x =---1x =(1)x -2231(1)(21)x x x x -+=--1x =-∴32331x x x +++(1)x +于是可设,,, ,,.★★★★★1.解:(1)原式; (2)原式. 2.解:【阅读与思考】分解因式:; 故答案为:; 【理解与应用】(1); (2);故答案为:(1);(2); 【探究与拓展】(1)分解因式; 故答案为:(2)∵关于,的二元二次式可以分解成两个一次因式的积, 存在其中,,;而,,或,故的值为43或;(3),为整数,且满足,可以是,(答案不唯一).32232331(1)()(1)()x x x x x mx n x m x n m x n +++=+++=++++-13m ∴+=3n m +=2m ∴=1n =3223331(1)(21)(1)x x x x x x x ∴+++=+++=+442222222222222444(2)4(22)(22)x y x y x y x y x y x y xy x y xy =++-=+-=+++-22222222()()()(2)x ax a a b ab x a a b x b x a b =-+---=--+=+--26(3)(2)x x x x +-=+-(3)(2)x x +-2257(1)(27)x x x x +-=-+22672(1)(27)x xy y x x -+=-+(1)(27)x x -+(1)(27)x x -+2235294(21)(34)x xy y x y x y x y +-++-=+--+(21)(34)x y x y +--+x y 22718524x xy y x my +--+-∴111⨯=9(2)18⨯-=-(8)324-⨯=-71(2)19=⨯-+⨯51(8)13-=⨯-+⨯271643m ∴=+=72678m =--=-m 78-x y 2232231x xy y x y ++++=-1x =-0y =。
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2. 整式的加减的实质:合并同类项。
3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。
31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
2023年中考数学高频考点训练——因式分解的应用一、综合题1.阅读下列材料:①关于x 的方程2310(0)x x x -+=≠方程两边同时乘以1x 得:1x 30x -+=,即1x 3x +=,故222221111x x 2x x 2x x x x ⎛⎫+=+⋅⋅+=++ ⎪⎝⎭,所以222211x x 2327x x ⎛⎫+=+-=-= ⎪⎝⎭.②()()3322a b a b a ab b +=+-+;()()3322a b a b a ab b -=-++.根据以上材料,解答下列问题:(1)2410(0)x x x -+=≠,则1x x +=;221x x +=;441x x +=;(2)22720x x -+=,求331x x +的值.2.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个因式分解的等式.(1)图1中大正方形的面积用两种方法可分别表示为、;(2)你得到的因式分解等式是:;(3)观察图2,可以发现代数式2a 2+5ab+2b 2可以因式分解为;(4)通过不同的方法表示同一个几何体的体积,也可以探求相应的因式分解等式.如图3是棱长为(a+b )的正方体,被如图所示的分割线分成8块.①用不同方法计算这个正方体体积,就可以得到一个因式分解的等式,这个等式是:;②已知a+b =5,ab =2,利用上面的规律求a 3+b 3的值.3.如图,将一张矩形纸板按照图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小矩形,且m>n ,(以上长度单位:cm)(1)观察图形,可以发现代数式2m 2+5mn +2n 2可以因式分解为;(2)若每块小矩形的面积为10cm 2,四个正方形的面积和为58cm 2,试求图中所有裁剪线(虚线部分)长之和.4.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值.解:设另一个因式为x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++,25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6.依照以上方法解答下列问题:(1)若二次三项式254x x -+可分解为(1)()x x a -+,则a =;(2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =;(3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值.5.解答下列问题:(1)一正方形的面积是()22690,0a ab b a b ++>>,则表示该正方形的边长的代数式是.(2)求证:当n 为正整数时,()()222121n n +--能被8整除.6.回答下列问题:(1)填空:22211(x x x x +=+-21(x x =-+;(2)填空:若15a a +=,则221a a +=;(3)若2310a a -+=,0a ≠,求221a a +的值.7.已知8x y +=,6xy =.求:(1)22x y xy +的值;(2)22x y +的值.8.解下列各题:(1)分解因式:()()263a b a b -+-;(2)利用因式分解简便计算:224959909595-⨯+.9.下面是多项式x 3+y 3因式分解的部分过程,.解:原式=x 3+x 2y ﹣x 2y +y 3(第一步)=(x 3+x 2y )﹣(x 2y ﹣y 3)(第二步)=x 2(x +y )﹣y (x 2﹣y 2)(第三步)=x 2(x +y )﹣y (x +y )(x ﹣y )(第四步)=.阅读以上解题过程,解答下列问题:(1)在上述的因式分解过程中,用到因式分解的方法有.(至少写出两种方法)(2)在横线继续完成对本题的因式分解.(3)请你尝试用以上方法对多项式8x 3﹣1进行因式分解.10.已知4a b +=,2225a b +=.求下列各式的值.(1)ab ;(2)32231a a b ab b ++++.11.阅读图中的材料:利用分组分解法解决下面的问题:(1)分解因式:x 2﹣2xy+y 2﹣4;(2)已知△ABC 的三边长a ,b ,c 满足a 2﹣ab ﹣ac+bc =0,判断△ABC 的形状并说明理由.12.已知x+y=3,xy=54,求下列各式的值:(1)(x 2-2)(y 2-2);(2)x 2y-xy 2.13.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()b b a <的小正方体,如图1所示,则得到的几何体的体积为;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为,长方体③的体积为;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为.(5)已知4a b -=,2ab =,求33a b -的值.14.n 是正整数.(1)请用n 表示两个连续的奇数为、.(2)这两个连续奇数的平方差是8的倍数吗?给出理由.15.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a ,()b a b >满足2253a b +=,14ab =,求:①a b +的值;②44a b -的值.16.若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数,完全平方数是非负数.例如:0=02,1=12,4=22,9=32,16=42,25=52,36=62,121=112….(1)若28+210+2n 是完全平方数,求n 的值.(2)若一个正整数,它加上61是一个完全平方数,当减去11是另一个完全平方数,写出所有符合的正整数.17.阅读:因为(x+3)(x-2)=x 2+x-6,说明x 2+x-6有一个因式是x-2;当因式x-2=0,那么多项式x 2+x-6的值也为0,利用上面的结果求解:(1)多项式A 有一个因式为x+m (m 为常数),当x=,A=0;(2)长方形的长和宽都是整式,其中一条边长为x-2,面积为x 2+kx-14,求k 的值;(3)若有一个长方体容器的长为(x+2),宽为(x-1),体积为4x 3+ax 2-7x+b ,试求a ,b 的值.18.阅读下列因式分解的过程,再回答所提出的问题.2(1)(1)(1)(1)[1x x x x x x x +++++=+++23(1)](1)(1)(1).x x x x x +=++=+(1)上述分解因式的方法是,共应用了次(2)若分解2(1)(1)(1)x x x x x +++++++ 2001(1)x x +,则需应用上述方法次.结果是.(3)分解因式:2(1)(1)(1)x x x x x +++++++ (1)(n x x n +为正整数).19.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A 可以用来解释2222()a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B 可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片,如图C :①若要拼出一个面积为(3a+b )(a+2b )的矩形,则需要1号卡片张,2号卡片张,3号卡片张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为6a 2+7ab+2b 2,并利用你画的图形面积对6a 2+7ab+2b 2进行因式分解.20.对任意一个四位正整数数m ,若其千位与百位上的数字之和为9,十位与个位上的数字之和也为9,那么称m 为“重九数”,如:1827、3663.将“重九数”m 的千位数字与十位数字对调,百位数字与个位数字对调,得到一个新的四位正整数数n ,如:m =2718,则n =1827,记D (m ,n )=m+n.(1)请写出两个四位“重九数”:,.(2)求证:对于任意一个四位“重九数”m ,其D (m ,n )可被101整除.(3)对于任意一个四位“重九数”m ,记f (m ,n )=D(m,n)101,当f (m ,n )是一个完全平方数时,且满足m >n ,求满足条件的m 的值.21.如图①是由边长为a 的大正方形纸片剪去一个边长为b 的小正方形后余下的图形.我们把纸片剪开后,拼成一个长方形(如图②).(1)探究:上述操作能验证的等式的序号是.①a 2+ab =a (a+b )②a 2-2ab +b 2=(a -b )2③a 2-b 2=(a +b )(a -b )(2)应用:利用你从(1)中选出的等式,完成下列各题:①已知4x 2-9y 2=12,2x +3y =4,求2x -3y 的值;②计算22222111111-1-1-1-1-2345100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a 厘米的大正方形,2块是边长都为b 厘米的小正方形,5块是长为a 厘米,宽为b 厘米的相同的小长方形,且a >b .(1)观察图形,可以发现代数式2a 2+5ab +2b 2可以因式分解为.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.答案解析部分1.【答案】(1)4;14;194(2)解:∵22720x x -+=,∴172x x +=,2221141()24x x x x +=+-=,3232111741259(1)(1)248x x x x x x +=+-+=⨯-=.【解析】【解答】解:(1)∵2410x x -+=,∴14x x +=,222111()216214x x x x x x +=+-⋅=-=,4222422111()2194x x x x x x +=+-⋅=;故答案为:4;14;194;【分析】(1)模仿例题利用完全平方公式即可求解;(2)模仿例题利用完全平方公式和立方和公式即可求解。
2021年江苏中考数学冲刺专题训练——专题2整式、因式分解一.选择题(共2小题)1.(2021•龙岗区模拟)如图,矩形ABCD的周长是10cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为17cm2,那么矩形ABCD 的面积是()A.3cm2B.4cm2C.5cm2D.6cm2 2.(2019•安徽)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0二.填空题(共8小题)3.(2021春•鼓楼区期中)如图是A型卡片(边长为a的正方形)、B型卡片(长为a、宽为b的长方形)、C型卡片(边长为b的正方形).现有4张A卡片,11张B卡片,7张C 卡片,选用它们无缝隙、无重叠地拼正方形或长方形,下列说法正确的是.(只填序号)①可拼成边长为a+2b的正方形;②可拼成边长为2a+3b的正方形;③可拼成长、宽分别为2a+4b、2a+b的长方形;④用所有卡片可拼成一个大长方形.4.(2021春•南京月考)三种不同类型的地砖的长、宽如图所示,若现有A型地砖4块,B 型地砖4块,C型地砖2块,要拼成一个正方形,则应去掉1块地砖;这样的地砖拼法可以得到一个关于m,n的恒等式为.5.(2020秋•江汉区期末)将两张边长分别为6和5的正方形纸片按图1和图2的两种方式放置在长方形ABCD内,长方形ABCD内未被这两张正方形纸片覆盖的部分用阴影表示,设图1中的阴影面积为S1,图2中的阴影面积为S2,当AD﹣AB=3时,S2﹣S1的值是.6.(2020春•沭阳县期末)因式分解:2m2﹣4mn+2n2=.7.(2020•张家界)因式分解:x2﹣9=.8.(2020•浙江自主招生)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.9.(2019春•江宁区期中)已知a=12018+2017,b=12018+2018,c=12018+2019,则代数式a2+b2+c2﹣ab﹣bc﹣ca=.10.(2019•徐州二模)因式分解4x2﹣4=.三.解答题(共20小题)11.(2021春•南京期中)探究活动:(1)如图①,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图②,若将图①中阴影部分裁剪下来,重新拼成一个长方形,面积是(写成多项式乘法的形式);(3)比较图①,图②阴影部分的面积,可以得到公式.知识应用:运用你得到的公式解决以下问题:(4)计算:(Ⅰ)(a+b﹣2c)(a+b+2c);(Ⅱ)(2a+b﹣3c)(﹣2a+b+3c).12.(2021春•鼓楼区校级月考)阅读:若x满足(80﹣x)(x﹣60)=30,求(80﹣x)2+(x﹣60)2的值.解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=,a+b=(80﹣x)+(x﹣60)=,所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=.请仿照上例解决下面的问题:(1)补全题目中横线处;(2)已知(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值;(3)若x满足(2021﹣x)2+(2020﹣x)2=2019,求(2021﹣x)(x﹣2020)的值;(4)如图,正方形ABCD的边长为x,AE=10,CG=25,长方形EFGD的面积是400,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体数值).13.(2021春•秦淮区校级期中)先化简,再求值:(3a﹣2b)(2a+3b)−12(3a+2b)2﹣a(32a﹣2b),其中|a+12|+|b+1|=0.14.(2021春•宜兴市期中)计算或化简:(1)﹣22+(23)﹣1+(π﹣3)0(2)a⋅a2⋅a3+(﹣2a3)2﹣a9÷(﹣a)3(3)(x+3)(x﹣3)﹣(x﹣2)2(4)(m+2n﹣3)(m﹣2n+3)15.(2021•滨湖区一模)(1)计算:|3−2|﹣(12)﹣2+2sin60°;(2)化简:(a+b)2﹣a(a+2b).16.(2021春•徐州期中)计算:(1)(﹣1)2021+(﹣2)0+(12)﹣3;(2)a•a3•a4﹣4a10÷a2+(﹣3a4)2;(3)(x+5)(x﹣3)﹣x(x+2);(4)20212﹣2020×2022.17.(2021春•鼓楼区校级月考)计算:(1)(﹣3a3)2÷a2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)﹣22+30﹣(−12)﹣1;(4)(318)12×(825)11×(﹣2)3.18.(2021春•鼓楼区校级月考)计算:(1)(﹣3y)5÷(﹣3y)2;(2)2a2•4a4﹣(﹣3a2)3;(3)(π﹣3)0﹣(−12)﹣2+25×(﹣1)﹣2021;(4)x(x+y)﹣(2x+3y)2;(5)(3a﹣2b)(2b+3a)﹣(2a)2.19.(2021春•邗江区月考)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若( ,116)=−4,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.20.(2021春•南京月考)计算:(1)|−2|+( −3)0−(13)−2+(−1)2021;(2)(﹣2×1012)×(﹣2×102)3÷(0.5×103)3;(3)(−12 2)×(23 2 −6 );(4)(a﹣2b+3c)×(a+2b﹣3c);(5)(﹣2m﹣3)2(3﹣2m)2;(6)4×1.632+6.52×6.74+6.742.(用乘法公式计算)21.(2021•滨湖区模拟)计算:(1)2﹣1﹣(﹣0.5)0−4;(2)(x﹣3)2+x(x﹣2)22.(2020秋•江都区期末)先化简,再求值:12x﹣2(x−13y2)+(−32 +13 2),其中x=﹣2,y=23.23.(2020秋•渑池县期末)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)24.(2021春•秦淮区校级期中)因式分解:(1)25(a+b)2﹣9(a﹣b)2;(2)16ab2﹣6a3﹣4ab2;(3)(x2﹣4x)2+8(x2﹣4x)+16.25.(2021春•玄武区期中)把下列各式分解因式:(1)ax3﹣16ax;(2)(2x﹣3y)2﹣2x(2x﹣3y)+x2;(3)(m2+1)2﹣4m2.26.(2021春•吴江区期中)整式乘法与多项式因式分解是既有联系又有区别的两种变形.例如,a(b+c+d)=ab+ac+ad是单项式乘多项式的法则;把这个法则反过来,得到sb+ac+ad =a(b+c+d),这是运用提取公因式法把多项式因式分解.又如(a±b)2=a2±2ab+b2、(a+b)(a﹣b)=a2﹣b2是多项式的乘法公式;把这些公式反过来,得到a2±2ab+b2=(a±b)2、a2﹣b2=(a+b)(a﹣b),这是运用公式法把多项式因式分解.把多项式乘多项式法则(a+b)(c+d)=ac+ad+bc+bd反过来,将得到什么呢?事实上,ac+ad+bc+bd=a(c+d)+b(c+d)=(a+b)(c+d),这样多项式ac+ad+bc+bd 就分解为两个因式(a+b)与(c+d)的乘积.类似地,ac+bc+3a+3b=c(a+b)+3(a+b)=(a+b)(c+3).问题一:因式分解:(1)a2﹣ab+ac﹣bc;(2)9a2﹣6a+2b﹣b2.问题二:探究对x、y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).当x2≠y2时,F(x,y)=F(y,x)对任意有理数x、y都成立,试探究m,n 的数量关系.27.(2020春•赣榆区期中)对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c =﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)28.(2020春•玄武区期中)把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b.②研究①拼图发现,可以分解因式2a2+5ab+2b2=.29.(2019秋•海门市期末)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q (p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的完美分解.并规定:F(n)= .例如18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的完美分解,所以F(18)=36=12.(1)F(13)=,F(24)=;(2)如果一个两位正整数t,其个位数字是a,十位数字为b﹣1,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值.30.(2019秋•柘城县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.2021年江苏中考数学冲刺专题训练——专题2整式、因式分解参考答案与试题解析一.选择题(共2小题)1.【解答】解:设AB=x,AD=y,∵正方形ABEF和ADGH的面积之和为17cm2∴x2+y2=17,∵矩形ABCD的周长是10cm∴2(x+y)=10,∵(x+y)2=x2+2xy+y2,∴25=17+2xy,∴xy=4,∴矩形ABCD的面积为:xy=4cm2,故选:B.2.【解答】解:∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b= + 2,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac=( + 2)2− = 2+2 + 24−ac= 2−2 + 24=( − 2)2≥0,即b<0,b2﹣ac≥0,故选:D.二.填空题(共8小题)3.【解答】①(a+2b)2=a2+4ab+4b2,要用A型卡片1张,B型卡片4张,C型卡片4张,所以可拼成边长为a+2b的正方形.②(2a+3b)2=4a2+12ab+9b2,要用A型卡片4张,B型卡片12张,C型卡片9张,因为B型卡片只有11张,C型卡片只有7张,所以不能拼成边长为2a+3b的正方形.③(2a+4b)(2a+b)=4a2+2ab+8ab+4b2=4a2+10ab+4b2,可得A型卡片4张,B型卡片10张,C型卡片4张,所以可拼成长、宽分别为2a+4b、2a+b的长方形.④所有卡片面积和为4a2+11ab+7b2=(4a+7b)(a+b).所以所有卡片可拼长长为(4a+7b),宽为(a+b)的长方形.故答案为:①③④.4.【解答】解:4块A的面积为:4×m×m=4m2;4块B的面积为:4×m×n=4mn;2块C的面积为2×n×n=2n2;那么这三种类型的砖的总面积应该是:4m2+4mn+2n2=4m2+4mn+n2+n2=(2m+n)2+n2,因此,多出了一块C型地砖,去掉一块C型地砖,这两个数的平方为(2m+n)2.这样的地砖拼法可以得到一个关于m,n的恒等式为:4m2+4mn+n2=(2m+n)2故答案为:4m2+4mn+n2=(2m+n)2.5.【解答】解:设AB=CD=x,AD=BC=y,则S1=6(AB﹣6)+(CD﹣5)(BC﹣6)=6(x﹣6)+(x﹣5)(y﹣6),S2=6(BC﹣6)+(BC﹣5)(CD﹣6)=6(y﹣6)+(y﹣5)(x﹣6),∴S2﹣S1=6(y﹣6)+(y﹣5)(x﹣6)﹣6(x﹣6)﹣(x﹣5)(y﹣6)=6y﹣36+xy﹣6y﹣5x+30﹣6x+36﹣xy+6x+5y﹣30=5y﹣5x=5(y﹣x),∵AD﹣AB=3,∴y﹣x=3,∴原式=5×3=15,故答案为:15.6.【解答】解:原式=2(m2﹣2mn+n2)=2(m﹣n)2,故答案为:2(m﹣n)27.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).8.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.9.【解答】解:∵a=12018+2017,b=12018+2018,c=12018+2019,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣bc﹣ca=12×(2 2+2 2+2 2−2 −2 −2 )=12[( − )2+( − )2+( − )2]=12×[(−1)2+(−1)2+(−2)2]=12×(1+1+4)=12×6=3,故答案为:3.10.【解答】解:原式=4(x2﹣1)=4(x+1)(x﹣1),故答案为:4(x+1)(x﹣1)三.解答题(共20小题)11.【解答】解:(1)阴影部分的面积为两个正方形的面积差,即a2﹣b2;故答案为:a2﹣b2;(2)拼成的长方形的长为(a+b),宽为(a﹣b),所以面积为(a+b)(a﹣b);故答案为:(a+b)(a﹣b);(3)由(1)(2)可得,a2﹣b2=(a+b)(a﹣b);故答案为:a2﹣b2=(a+b)(a﹣b);(4)(Ⅰ)(a+b﹣2c)(a+b+2c)=[(a+b)﹣2c][(a+b)+2c]=(a+b)2﹣(2c)2=a2+2ab+b2﹣4c2;(Ⅱ)(2a+b﹣3c)(﹣2a+b+3c)=[b+(2a﹣3c)][b﹣(2a﹣3c)]=b2﹣(2a﹣3c)2=b2﹣4a2+12ac﹣9c2.12.【解答】解:(1)设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=400﹣60=340;故答案为:30,20,340;(2)设30﹣x=a,x﹣20=b,则ab=﹣10,a+b=10,∴(30﹣x)2+(x﹣20)2=a2+b2=(a+b)2﹣2ab=102﹣2×(﹣10)=120;(3)设2021﹣x=m,2020﹣x=n,则m2+n2=2019,m﹣n=1,∵(m﹣n)2=m2﹣2mn+n2,∴1=2019﹣2mn,∴mn=1009,即(2021﹣x)(x﹣2020)=﹣1009;(4)由题意得:DE=x﹣10,DG=x﹣25,则(x﹣10)(x﹣25)=400,设a=x﹣10,b=x﹣25,则a﹣b=15,ab=400,=(a+b)2=(a﹣b)2+4ab=152+4×400=1825.∴S阴13.【解答】解:原式=6a2+9ab﹣4ab﹣6b2−12(9a2+12ab+4b2)−32a2+2ab =6a2+9ab﹣4ab﹣6b2−92a2﹣6ab﹣2b2−32a2+2ab=ab﹣8b2,∵|a+12|+|b+1|=0,∴a+12=0,b+1=0,解得:a=−12,b=﹣1,当a=−12,b=﹣1时,原式=−12×(﹣1)﹣8×(﹣1)2=﹣712.14.【解答】解:(1)﹣22+(23)﹣1+(π﹣3)0=﹣4+32+1=−32;(2)a⋅a2⋅a3+(﹣2a3)2﹣a9÷(﹣a)3=a6+4a6﹣a9÷(﹣a3)=a6+4a6+a6=6a6;(3)(x+3)(x﹣3)﹣(x﹣2)2=x2﹣9﹣x2+4x﹣4=4x﹣13;(4)(m+2n﹣3)(m﹣2n+3)=[m+(2n﹣3)][m﹣(2n﹣3)]=m2﹣(2n﹣3)=m2﹣4n2+12n﹣9.15.【解答】解:(1)原式=3−3−4+2=3−3−4+3=﹣1;(2)原式=a2+2ab+b2﹣a2﹣2ab=b2.16.【解答】解:(1)(﹣1)2021+(﹣2)0+(12)﹣3=(﹣1)+1+8=8;(2)a•a3•a4﹣4a10÷a2+(﹣3a4)2=a8﹣4a8+9a8=6a8;(3)(x+5)(x﹣3)﹣x(x+2)=x2+2x﹣15﹣x2﹣2x=﹣15;(4)20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣20212+1=1.17.【解答】解:(1)原式=9a6÷a2=9a4;(2)原式=﹣8a3+a•9a2=﹣8a3+9a3=a3;(3)原式=﹣4+1+2=﹣1;(4)原式=258×(258×825)11×(﹣8)=258×111×(﹣8)=258×1×(﹣8)=﹣25.18.【解答】解:(1)原式=(﹣3y)3=﹣27y3;(2)原式=8a6+27a6=35a6;(3)原式=1﹣4+32×(﹣1)=1﹣4﹣32=﹣35;(4)原式=x2+xy﹣(4x2+12xy+9y2)=x2+xy﹣4x2﹣12xy﹣9y2=﹣3x2﹣11xy﹣9y2;(5)原式=9a2﹣4b2﹣4a2=5a2﹣4b2.19.【解答】解:(1)①因为53=125,所以(5,125)=3;因为(﹣2)5=﹣32,所以(﹣2,﹣32)=5;②由新定义的运算可得,x﹣4=116,因为(±2)﹣4=1(±2)4=116,所以x=±2,故答案为:①3,5;②±2;(2)因为(4,5)=a,(4,6)=b,(4,30)=c,所以4a=5,4b=6,4c=30,因为5×6=30,所以4a•4b=4c,所以a+b=c.20.【解答】解:(1)|−2|+( −3)0−(13)−2+(−1)2021=2+1﹣9+(﹣1)=﹣7;(2)(﹣2×1012)×(﹣2×102)3÷(0.5×103)3=(﹣2×1012)×(﹣23×106)÷(123×109)=27×109=128×109=1.28×1011;(3)(−12 2)×(23 2 −6 )=−13x3y3+3x2y3;(4)(a﹣2b+3c)×(a+2b﹣3c)=[a﹣(2b﹣3c)][a+(2b﹣3c)]=a2﹣(2b﹣3c)2=a2﹣4b2+12bc﹣9c2;(5)(﹣2m﹣3)2(3﹣2m)2=(2m+3)2•(3﹣2m)2=[(3+2m)(3﹣2m)]2=(9﹣4m2)2=81﹣72m2+16m4;(6)4×1.632+6.52×6.74+6.742=(2×1.63)2+2×3.26×6.74+6.742=3.262+2×3.26×6.74+6.742=(3.26+6.74)2=102=100.21.【解答】解:(1)2﹣1﹣(﹣0.5)0−4=12−1﹣2=−52;(2)(x﹣3)2+x(x﹣2)=x2﹣6x+9+x2﹣2x=2x2﹣8x+9.22.【解答】解:原式=12x﹣2x+23y2−32x+13y2=12x﹣2x+23y2−32x+13y2=﹣3x+y2,把x=﹣2,y=23代入得:原式=649.23.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.24.【解答】解:(1)25(a+b)2﹣9(a﹣b)2=(5a+5b)2﹣(3a﹣3b)2.=(5a+5b+3a﹣3b)[5a+5b﹣(3a﹣3b)]=(8a+2b)(2a+8b).=4(4a+b)(a+4b).(2)16ab2﹣6a3﹣4ab2=12ab2﹣6a3=6a(2b2﹣a2)=6a(2b+a)(2b﹣a).(3)原式=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)425.【解答】解:(1)原式=ax(x2﹣16)=ax(x+4)(x﹣4);(2)原式=(2x﹣3y﹣x)2=(x﹣3y)2;(3)原式=(m2+1+2m)(m2+1﹣2m)=(m+1)2(m﹣1)2.26.【解答】解:问题一、(1)a2﹣ab+ac﹣bc=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c);(2)9a2﹣6a+2b﹣b2,=(3a+b)(3a﹣b)﹣2(3a﹣b)=(3a﹣b)(3a+b﹣2),问题二、∵F(x,y)=(mx+ny)(3x﹣y),F(y,x)=(my+nx)(3y﹣x),又∵F(x,y)=F(y,x),∴(mx+ny)(3x﹣y)=(my+nx)(3y﹣x),3mx2+(3n﹣m)xy﹣ny2=﹣nx2+(3n﹣m)xy+3my2,∵x2≠y2,∴3m=﹣n.27.【解答】解:(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(2)∵a=7k﹣5,b=﹣4k+2,c=﹣3k+4,a2+b2+c2=37,∴(7k﹣5﹣4k+2﹣3k+4)2=37+2(ab+bc+ac),∴ab+bc+ac=﹣18;(3)如图所示:2a2+7ab+3b2=(a+3b)(2a+b).∴m=7.28.【解答】解:(1)由题意得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S=a2+b2−12(a+b)•b−12a2=12a2+12b2−12ab=12(a+b)2−32ab=12×102−32×20=阴影50﹣30=20;(4)①根据题意,作出图形如下:②由上面图形可知,2a2+5ab+2b2=(a+2b)(2a+b).故答案为(a+2b)(2a+b).29.【解答】解:(1)∵13=1×13,∴F(13)=113∵24=1×24=2×12=3×8=4×624﹣1>12﹣2>8﹣3>6﹣4∴F(24)=46=23故答案为:113;23.(2)原两位数可表示为10(b﹣1)+a,新两位数可表示为10a+b﹣1∴10a+b﹣1﹣10(b﹣1)﹣a=36∴10a+b﹣1﹣10b+10﹣a=36∴9a﹣9b=27∴a﹣b=3∴a=b+3(1<b<6且b为正整数)∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9∴和谐数为15,26,37,48,59(3)∵F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159.∵34>35>213>137>159,∴所有“和谐数”中,F(t)的最大值是34.30.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4;(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。
中考数学模拟题《因式分解》专项测试卷(附有答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·浙江杭州·统考中考真题)分解因式:241a -=( )A .()()2121a a -+B .()()22a a -+C .()()41a a -+D .()()411a a -+2.(2023·山东·统考中考真题)下列各式从左到右的变形 因式分解正确的是( )A .22(3)69+=++a a aB .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+二 填空题3.(2023·辽宁丹东·校考二模)因式分解:24m m -=______.4.(2023·广东·统考中考真题)因式分解:21x -=______.5.(2022春·浙江杭州·七年级统考期末)分解因式:22x y -=__________6.(2023·山东临沂·统考二模)分解因式:24m -=_____.7.(2020秋·重庆沙坪坝·九年级重庆一中校考阶段练习)分解因式:222a a -=____________ . 8.(2023·四川成都·统考中考真题)因式分解:m 2﹣3m =__________.9.(2023·广东东莞·东莞市东莞中学初中部校考三模)因式分解221x x -+=______.10.(2018秋·广东湛江·八年级校考期末)分解因式:a 2 + 5a =________________.11.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++=______.12.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--=_______.13.(2023·四川眉山·统考中考真题)分解因式:3244x x x -+=______.14.(2023·甘肃武威·统考中考真题)因式分解:22ax ax a -+=________.15.(2023·浙江台州·统考中考真题)因式分解:x 2﹣3x =_____.16.(2023·湖南常德·统考中考真题)分解因式:3222a a b ab ++=_______.17.(2023·上海·统考中考真题)分解因式:29n -=________.18.(2023·湖北黄冈·校联考二模)分解因式:24xy x -=__________.19.(2021春·广西南宁·八年级南宁三中校考期中)因式分解:a 2+a b=_____.20.(2023·湖南永州·统考二模)分解因式:x 3﹣xy 2=_____.21.(2023·湖北十堰·统考中考真题)若3x y += 2y =,则22x y xy +的值是___________________. 22.(2020·江苏连云港·统考二模)分解因式:3a 2+6a b+3b 2=________________.23.(2023·内蒙古赤峰·统考中考真题)分解因式:3x 9x -=____.24.(2022春·上海奉贤·九年级校考期中)计算:(a +1)2﹣a 2=_____.25.(2023·江苏无锡·统考三模)分解因式:2242a a -+=_____.26.(2023春·广东茂名·八年级校考阶段练习)因式分解:x 2+x =_____.27.(2023·浙江·统考中考真题)分解因式:x 2-9=______.28.(2023·广东广州·广州市第一中学校考二模)分解因式:x 3﹣6x 2+9x =___.29.(2023·浙江嘉兴·统考中考真题)一个多项式 把它因式分解后有一个因式为(1)x + 请你写出一个符合条件的多项式:___________.30.(2023·广东深圳·统考中考真题)已知实数a b 满足6a b += 7ab =,则22a b ab +的值为______. 31.(2023·山东·统考中考真题)已知实数m 满足210m m --=,则32239m m m --+=_________.参考答案一 单选题1.(2023·浙江杭州·统考中考真题)分解因式:241a -=( )A .()()2121a a -+B .()()22a a -+C .()()41a a -+D .()()411a a -+ 【答案】A【分析】利用平方差公式分解即可.【详解】()()()2241212121a a a a -=-=+-.故选:A .【点睛】此题考查了因式分解的方法 解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法 平方差公式法 完全平方公式法 十字相乘法等.2.(2023·山东·统考中考真题)下列各式从左到右的变形 因式分解正确的是( )A .22(3)69+=++a a aB .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+【答案】C【分析】根据因式分解的概念可进行排除选项.【详解】解:A 22(3)69+=++a a a 属于整式的乘法 故不符合题意B ()24444a a a a -+=-+ 不符合几个整式乘积的形式 不是因式分解 故不符合题意C ()()22555ax ay a x y x y -=+- 属于因式分解 故符合题意D 因为()()22242828a a a a a a -+=+-≠-- 所以因式分解错误 故不符合题意故选:C .【点睛】本题主要考查因式分解 熟练掌握因式分解的概念是解题的关键.二 填空题3.(2023·辽宁丹东·校考二模)因式分解:24m m -=______.【答案】()4-m m【分析】直接提取公因式m 进而分解因式即可.【详解】解:m 2-4m =m (m -4).故答案为:m (m -4).【点睛】本题主要考查了提取公因式法分解因式 正确找出公因式是解题关键.4.(2023·广东·统考中考真题)因式分解:21x -=______.【答案】()()11x x +-【分析】利用平方差公式进行因式分解即可得.【详解】解:()()2111x x x -=+-故答案为:()()11x x +-.【点睛】本题考查了利用平方差公式进行因式分解 熟记平方差公式是解题关键.5.(2022春·浙江杭州·七年级统考期末)分解因式:22x y -=__________【答案】()()x y x y +-【详解】解:22,x y x y x y故答案为:()()x y x y +-.6.(2023·山东临沂·统考二模)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-故答案为:(2)(2)m m +-.【点睛】本题考查利用平方差公式进行因式分解 解题关键在于熟练掌握平方差公式.7.(2020秋·重庆沙坪坝·九年级重庆一中校考阶段练习)分解因式:222a a -=____________ .【答案】2(1)a a -.【分析】利用提公因式法进行解题 即可得到答案.【详解】解:2222(1)a a a a -=-.故答案为:2(1)a a -.【点睛】本题考查了因式分解 解题的关键是掌握提公因式法进行解题.8.(2023·四川成都·统考中考真题)因式分解:m 2﹣3m =__________.【答案】()3m m -【分析】题中二项式中各项都含有公因式m 利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m -=-故答案为:()3m m -.【点睛】本题考查整式运算中的因式分解 熟练掌握因式分解的方法技巧是解决问题的关键.9.(2023·广东东莞·东莞市东莞中学初中部校考三模)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式 正确应用乘法公式是解题关键.10.(2018秋·广东湛江·八年级校考期末)分解因式:a 2 + 5a =________________.【答案】a (a+5)【分析】提取公因式a 进行分解即可.【详解】a 2+5a =a (a +5).故答案是:a (a +5).【点睛】考查了因式分解-提公因式法:如果一个多项式的各项有公因式 可以把这个公因式提出来 从而将多项式化成两个因式乘积的形式 这种分解因式的方法叫做提公因式法.11.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++=______.【答案】()21+y x【分析】先提取公因式 然后利用完全平方公式因式分解即可.【详解】解:2222(21)(1)x y xy y y x x y x ++=++=+故答案为:2(1)y x +.【点睛】题目主要考查因式分解的方法 熟练掌握提公因式法及公式法是解题关键.12.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--=_______.【答案】()()x y x z +-【分析】先分组 然后根据提公因式法 因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-故答案为:()()x y x z +-.【点睛】本题考查了因式分解 熟练掌握因式分解的方法是解题的关键.13.(2023·四川眉山·统考中考真题)分解因式:3244x x x -+=______.【答案】2(2)x x -【分析】首先提取公因式x 然后利用完全平方式进行因式分解即可.【详解】解:3244x x x()244x x x =-+2(2)x x故答案为:2(2)x x -.【点睛】本题考查了提公因式法 公式法分解因式 提取公因式后利用完全平方公式进行二次分解注意分解要彻底.14.(2023·甘肃武威·统考中考真题)因式分解:22ax ax a -+=________.【答案】()21a x -【分析】先提取公因式 再利用平方差公式分解因式即可.【详解】解:()()2222211ax ax a a x x a x -+=-+=- 故答案为:()21a x -.【点睛】本题考查的是综合提公因式与公式法分解因式 掌握因式分解的方法与步骤是解本题的关键. 15.(2023·浙江台州·统考中考真题)因式分解:x 2﹣3x =_____.【答案】x (x ﹣3)【详解】试题分析:提取公因式x 即可 即x 2﹣3x =x (x ﹣3).故答案为:x (x ﹣3).16.(2023·湖南常德·统考中考真题)分解因式:3222a a b ab ++=_______.【答案】()2a a b +【分析】首先提公因式 原式可化为22(2)a a ab b ++ 再利用公式法进行因式分解可得结果.【详解】解:3232222(2)()a a b b a a ab b a a b ++=++=+故答案为:2()a a b +.【点睛】本题主要考查的是因式分解的运算 掌握因式分解运算的顺序“一提 二套 三分组十字相乘做辅助” 利用合适方法进行因式分解 注意分解要彻底.17.(2023·上海·统考中考真题)分解因式:29n -=________.【答案】()()33n n -+【分析】利用平方差公式进行因式分解即可.【详解】解:()()29=33n n n --+故答案为:()()33n n -+.【点睛】本题考查因式分解 熟练掌握平方差公式是解题的关键.18.(2023·湖北黄冈·校联考二模)分解因式:24xy x -=__________.【答案】()(22)x y y +-【分析】先提公因式再利用平方差公式分解因式即可.【详解】解:24xy x -24()x y =-()(2)2x y y =+-故答案为:()(22)x y y +-.【点睛】本题考查利用提公因式 平方差公式分解因式等知识 是重要考点 难度较易 掌握相关知识是解题关键.19.(2021春·广西南宁·八年级南宁三中校考期中)因式分解:a 2+a b=_____.【答案】a (a +b ).【分析】直接提公因式a 即可.【详解】a 2+a b=a (a +b ).故答案为:a (a +b ).20.(2023·湖南永州·统考二模)分解因式:x 3﹣x y 2=_____.【答案】x (x +y )(x -y )【分析】先提取公因式x 再对余下的多项式利用平方差公式继续分解.【详解】解:x 3-x y 2=x (x 2-y 2)=x (x +y )(x -y )故答案为:x(x +y)(x -y).【点睛】本题考查了用提公因式法和公式法进行因式分解 一个多项式有公因式首先提取公因式 然后再用其他方法进行因式分解 同时因式分解要彻底 直到不能分解为止.21.(2023·湖北十堰·统考中考真题)若3x y += 2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式 再整体代值求解即可.【详解】解:22x y xy +()xy x y =+∵3x y += 2y =∵1x = ∵原式123=⨯⨯6=故答案为:6.【点睛】本题主要考查因式分解 熟练掌握因式分解的方法 利用整体思想方法是解答的关键. 22.(2020·江苏连云港·统考二模)分解因式:3a 2+6a b+3b 2=________________.【答案】3(a +b )2【分析】先提取公因式3 再根据完全平方公式进行二次分解.完全平方公式:a 2+2a b+b 2=(a +b )2.【详解】3a 2+6a b+3b 2=3(a 2+2a b+b 2)=3(a +b )2.故答案为:3(a +b )2.【点睛】本题考查了提公因式法 公式法分解因式.提取公因式后利用完全平方公式进行二次分解 注意分解要彻底.23.(2023·内蒙古赤峰·统考中考真题)分解因式:3x 9x -=____.【答案】()()x x 3x 3+-【分析】先提取公因式x 后继续应用平方差公式分解即可.【详解】()()()22x 9x x x 9x x 3x 3-=-=+-. 故答案为:()()x x 3x 3+-.24.(2022春·上海奉贤·九年级校考期中)计算:(a +1)2﹣a 2=_____.【答案】2a +1【详解】【分析】原式利用完全平方公式展开 然后合并同类项即可得到结果.【详解】(a +1)2﹣a 2=a 2+2a +1﹣a 2=2a +1故答案为2a +1.【点睛】本题考查了整式的混合运算 熟练掌握完全平方公式以及合并同类项的法则是解题的关键. 25.(2023·江苏无锡·统考三模)分解因式:2242a a -+=_____.【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=- 故答案为:()221a -.26.(2023春·广东茂名·八年级校考阶段练习)因式分解:x 2+x =_____.【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式 若有公因式,则把它提取出来 之后再观察是否是完全平方公式或平方差公式 若是就考虑用公式法继续分解因式.因此 直接提取公因式x 即可.【详解】解:()21x x x x +=+ 故答案为:()1x x +.27.(2023·浙江·统考中考真题)分解因式:x 2-9=______.【答案】(x +3)(x -3)【详解】解:x 2-9=(x +3)(x -3)故答案为:(x +3)(x -3).28.(2023·广东广州·广州市第一中学校考二模)分解因式:x 3﹣6x 2+9x =___.【答案】x (x ﹣3)2【详解】解:x 3﹣6x 2+9x=x (x 2﹣6x +9)=x (x ﹣3)2故答案为:x (x ﹣3)2.29.(2023·浙江嘉兴·统考中考真题)一个多项式 把它因式分解后有一个因式为(1)x + 请你写出一个符合条件的多项式:___________.【答案】21x -(答案不唯一)【分析】根据平方差公式或完全平方公式等知识解答即可.【详解】解:∵()()2111x x x -=+- 因式分解后有一个因式为(1)x +∵这个多项式可以是21x -(答案不唯一)故答案为:21x -(答案不唯一).【点睛】本题考查了多项式的因式分解 熟练掌握分解因式的方法是解此题的关键.30.(2023·广东深圳·统考中考真题)已知实数a b 满足6a b += 7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式 将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值 提公因式法因式分解 整体思想的应用 解题的关键是掌握以上知识点.31.(2023·山东·统考中考真题)已知实数m 满足210m m --=,则32239m m m --+=_________.【答案】8【分析】由题意易得21-=然后整体代入求值即可.m m【详解】解:∵210m m--=∵21-=m m∵32m m m--+239()22m m m=-+--29m m2m-=-+mm2929=-+m m()29m m=--+=-+198=故答案为8.【点睛】本题主要考查因式分解及整体思想熟练掌握利用整体思维及因式分解求解整式的值.。
中考数学专题复习之因式分解综合题训练1.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC 的形状,并说明理由.2.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金bn元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.3.已知一个各个数位上的数字均不为0的四位正整数M=abcd(a>c),以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s,若s等于M的千位数字与十位数字的平方差,则称这个数M为“平方差数”,将它的百位数字和千位数字组成两位数ba,个位数字和十位数字组成两位数dc,并记T(M)=ba+dc.例如:6237是“平方差数”,因为62﹣32=27,所以6237是“平方差数”;此时T(6237)=26+73=99.又如:5135不是“平方差数”,因为52﹣32=16≠15,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M=abcd是“平方差数”,且T(M)比M的个位数字的9倍大30,求所有满足条件的“平方差数”M.4.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.5.如果一个四位自然数M的各个数位上的数字均不为0,且满足千位数字与十位数字的和为10,百位数字与个位数字的差为1,那么称M为“和差数”.“和差数”M的千位数字的二倍与个位数字的和记为P(M),百位数字与十位数字的和记为F(M),令G(M)=P(M)F(M),当G(M)为整数时,则称M为“整和差数”.例如:∵6342满足6+4=10,3﹣2=1,且P(6342)=14,F(6342)=7,即G(6342)=2为整数,∴6342是“整和差数”.又如∵4261满足4+6=10,2﹣1=1,但P(4261)=9,F(4261)=8,即G(4261)=98不为整数,∴4261不是“整和差数”.(1)判断7736,5352是否是“整和差数”?并说明理由.(2)若M=2000a+1000+100b+10c+d(其中1≤a≤4,2≤b≤9,1≤c≤9,1≤d≤9且a、b、c、d均为整数)是“整和差数”,求满足条件的所有M的值.6.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“博雅数”.定义:对于三位自然数N,各位数字都不为0,且它的百位数字的2倍与十位数字和个位数字之和恰好能被7整除,则称这个自然数N为“博雅数”.例如:415是“博雅数”,因为4,1,5都不为0,且4×2+1+5=14,14能被7整除;412不是“博雅数”,因为4×2+1+2=11,11不能被7整除.(1)判断513,427是否是“博雅数”?并说明理由;(2)求出百位数字比十位数字大6的所有“博雅数”的个数,并说明理由.7.如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3﹣1,所以4312是亲密数;(1)最小的亲密数是,最大的亲密数是;(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数的友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数.8.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.9.(1)阅读材料:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数“,a,b为x的一个平方差分解.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解.①请直接写出一个30以内且是两位数的雪松数,并写出它们的一个平方差分解;②试证明10不是雪松数;(2)若a,b正整数,且ab+a+b=68,求ab的值.10.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:x2+6x+9=;x2﹣4x+4=;4x2﹣20x+25=;(2)探究发现:观察以上三个多项式的系数,我们发现:62=4×1×9;(﹣4)2=4×1×4;(﹣20)2=4×4×25;归纳猜想:若多项式ax2+bx+c(a>0,c>0)是完全平方式,猜想:系数a,b,c之间存在的关系式为;(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论;(4)解决问题:若多项式(n+1)x2﹣(2n+6)x+(n+6)是一个完全平方式,利用你猜想的结论求出n的值.11.第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.12.阅读材料:,上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:x2+2x﹣3;(2)求多项式x2+6x﹣10的最小值;(3)已知a、b、c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.13.把代数式通过配方等手段,得到完全平方式,再运用完全平方式的非负性来增加题目的已知条件,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:①用配方法分解因式:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3+1)(a+3﹣1)=(a+4)(a+2).②利用配方法求最小值:求a2+6a+8最小值.解:a2+6a+8=a2+2a⋅3+32﹣32+8=(a+3)2﹣1.因为不论x取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当x=﹣3时,a2+6a+8有最小值,最小值是﹣1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2;(2)将x2﹣10x+2变形为(x+m)2+n的形式,并求出x2﹣10x+2的最小值;(3)若M=6a2+19a+10,N=5a2+25a,其中a为任意实数,试比较M与N的大小,并说明理由.14.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.15.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.16.如果一个自然数M 能分解成A ×B ,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A ×B 的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当S(M)T(M)能被5整除时,求出所有满足条件的自然数M.17.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.18.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
考向1.5 实数(因式分解问题)例 1、(2021·内蒙古·中考真题)因式分解:24ax ax a ++=_______.【答案】.2(1)2x a +【分析】首先将公因式a 提出来,再根据完全平方公式进行因式分解即可. 解:222(1)(1)442ax x x ax a a x a ++=++=+,故填:2(1)2x a +.例 2、(2021·广东·中考真题)若1136x x +=且01x <<,则221x x-=_____. 【答案】6536-【分析】根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x-的值,利用平方差公式即可得答案. 解:∵1136x x +=, ∴2211125()()436x x x x x x -=+-⋅=,∵01x <<, ∴1x x<, ∴1x x-=56-,∴221x x -=11()()x x x x +-=135()66⨯-=6536-,故答案为:6536-例 3、(2020·浙江杭州·模拟预测)如图,用四个完全一样的长、宽分别为x ,y 的长方形纸片围成一个大正方形ABCD ,中间是空的小正方形EFGH .若AB a ,EF b =,判断以下关系式:①x y a +=;②x y b -=;③222a b xy -=;④22x y ab -=;⑤22222a b x y ++=.正确的是_____________(填序号)..①②④⑤【分析】根据图形可得x y a +=,x y b -=,利用完全平方公式和平方差公式即可判断③和④,小长方形的面积可表示为224a b xy -=,利用完全平方公式即可判断⑤.解:由图形可得x y a +=,x y b -=,故①②正确;∴()()22224a y x y x y b x =+--=-,故③错误;()()22x y ab x y x y =+-=-,故④正确;∵小长方形的面积224a b xy -=,∴()222222222224x a b x y b a a y xy -=-==⨯+-++,故⑤正确; 故答案为:①②④⑤.1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。
中考因式分解专题一(1)a 2-b 2=(a+b)(a -b); (2)a 2±2ab+b 2=(a ±b)2;3)a 3+b 3=(a+b)(a 2-ab+b 2); (4)a 3-b 3=(a -b)(a 2+ab+b 2).(1)33xy y x -(2)x x x 2718323+-(3)()112---x x(4)()()3224x y y x ---【例2】分解因式:(1)22103y xy x --(2)32231222xy y x y x -+(3)()222164x x -+【例3】分解因式:(1)22244z y xy x -+-;(2)b a b a a 2322-+-(3)322222--++-y x y xy x【例4】在实数范围内分解因式:(1)44-x ; ( 2)1322-+x x【例5】已知a 、b 、c 是△ABC 的三边,且满足ac bc ab c b a ++=++222,求证:△ABC为等边三角形。
跟踪训练: 一、填空题: 1、()229=n ;()222=a ;c a b a m m ++1= 。
2、分解因式:222y xy x -+-= ;1872--xy x = ;()()25102++-+y x y x = 。
4、若012=++a a ,那么199920002001a a a ++= 。
5、如果n 222108++为完全平方数,则n = 。
6、m 、n 满足042=-++n m ,分解因式()()n mxy y x +-+22= 。
二、选择题:1、把多项式b a ab -+-1因式分解的结果是( )A 、()()11++b aB 、()()11--b aC 、()()11-+b aD 、()()11+-b a 2、如果二次三项式12-+ax x 可分解为()()b x x +-2,则b a +的值为( )A 、-1B 、1C 、-2D 、2 3、若22169y mxy x ++是一个完全平方式,那么m 的值是( )A 、24B 、12C 、±12D 、±24 4、已知1248-可以被在60~70之间的两个整数整除,则这两个数是( )A 、61、63B 、61、65C 、61、67D 、63、65 三、解答题:1、因式分解:(1)118146-++-n n n x x x (2)()()8323222-+-+x x x x(3)122222++--+a b ab b a (4)()()()()14321+++++x x x x(5)()()ab b a 41122--- (6)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(7)a 2+b 2+c 2-2bc+2ca -2ab ;一、填空题:1、n 3±,a 2±,()c ab a m+;2、()2y x --,()()29+-x x ,()25-+y x4、0;5、10或4;6、()()22-+++y x y x 二、选择题:DADD 三、解答题1、(1)()()43121---x x xn ; (2)()()()()1421-+++x x x x(3)()21+-b a ; (4)()2255++x x (5)()()b a ab b a ab ---++-11(6)原式=-2xn-1y n(x 4n -2x 2ny 2+y 4)=-2x n-1y n [(x 2n)2-2x 2ny 2+(y 2)2] =-2x n-1y n (x 2n -y 2)2 =-2x n-1y n (x n -y)2(x n +y)2.(7)原式=(a 2-2ab+b 2)+(-2bc+2ca)+c 2=(a -b)2+2c(a -b)+c 2=(a -b+c)2.参考答案例子1、分析:①因式分解时,无论有几项,首先考虑提取公因式。
第1页(共24页)页)5年中考3年模拟卷(数学)(附解析)13一、选择题 1.(3分)的倒数为(的倒数为( )A .B .C .2014D .﹣2014 2.(3分)如图所示的几何体的左视图是(分)如图所示的几何体的左视图是( )A .B .C .D .3.(3分)下列运算正确的是(分)下列运算正确的是( )A .6a 2b ﹣5a 2b=lB .a 2•a 3=a 5C .(﹣2ab 2)3=﹣6a 3bD .(a 3)2=a 54.(3分)如图,已知直线l 1∥l 2,则∠a 的度数为(的度数为()A .115°B .135°C .145°D .150° 5.(3分)在一次“爱心互助”捐款活动中,某班50名同学捐款的金额(单位:元)如下表所示,这个班学生捐款的众数和中位数分别是(这个班学生捐款的众数和中位数分别是( )金额/元5 10 15 20人数/人 1 26 21 2A .10,22B .10,10C .5,22D .5,106.(3分)不等式﹣≥1的正整数解是(的正整数解是( )A .0B .1C .0和1D .0或1 7.(3分)如图,等边△ABC 的边长为2,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上的中点,若∠ECF=30°时,EF +CF 的值为(的值为( )A.1 B.2 C. D.1+8.(3分)清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步)满足的方程为(行速度的2倍,设步行的速度为x km/h,则x满足的方程为(A.﹣=20 B.﹣=20 C.﹣= D.﹣=9.(3分)如图,已知四边形ABCD是菱形,BD为对角线,且∠A=72°,将△BCD分割成如图所示的三个等腰三角形,那么∠1+∠2+∠3=( )A.80° B.90° C.100° D.120°10.(3分)已知二次函数y=﹣x2﹣x+1,当自变量x取m时,对应的函数值大于0,设自变量分别取m﹣3,m+3时对应的函数值为y1,y2,则下列判断正确的是(),则下列判断正确的是(A.y1<0,y2<0 B.y1<0,y2>0 C.y1>0,y2<0 D.y1>0,y2>0二、填空题(共7小题,每小题3分,满分21分)11.(3分)计算:(1+)0﹣|﹣2|= .12.(3分)等腰三角形的顶角是70°,则其底角是,则其底角是 .13.(3分)因式分解:x3﹣xy2= .14.(3分)如图,Rt△ABC的斜边AB=18,Rt△ABC绕点O顺时针旋转后得到Rt△AʹBʹCʹ,则Rt△AʹBʹCʹ的斜边AʹBʹ上的中线CʹD的长度为的长度为 .15.(3分)用科学计算器计算:sin87°≈ (精确到0.01)16.(3分)如图,点P是正比例函数y=x与反比例函数y=(k≠0)在第一象限内的交点,P A⊥OP交x轴于点A,△POA的面积为6,则k的值是.的值是17.(3分)如图,把等边△ABC的外接圆对折,使点A的劣弧BC的中点M重合,折痕分别交AB、AC于D、E,若BC=6,则线段DE的长为的长为 .三、解答题.18.化简:•(1﹣).19.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.求证:∠BEC=∠DEC.20.为了了解“青年人对未来是否幸福的态度”,随机对75名大学生进行了问卷调查名大学生进行了问卷调查对未来会幸福的态度调查对未来会幸福的态度调查 充满信心 比较有信心 一般 没有信心人数30 8 12 (1)请将图中表格和条形统计图补充完整;)请将图中表格和条形统计图补充完整; (2)A 对应的圆心角∠1是 度;度;(3)某高校有大学生6000名,请估计充满信心和比较有信心的人数共约是多少人?名,请估计充满信心和比较有信心的人数共约是多少人?21.黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,≈1.73,≈2.45) (2)求∠ACD 的余弦值.的余弦值. 22.某超市欲购进A 、B 两种品牌的书包共400个,已知这两种书包的进价和售价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.元.价位价位 品牌品牌 进价(元/个)个)售价(元/个)个) A 47 65 B 37 50 (1)求w 关于x 的函数关系式;的函数关系式;(2)如果购进两种书包的总费用不超过17800元,那么该商场如何进货才能获利最大?(提示:利润=售价﹣进价)售价﹣进价)23.有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下后,小丽先从中抽取一张,然后小明从余下 的卡片中再抽取一张.的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是的概率;的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请说明理由.24.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB . (1)求BC 的长;的长;(2)求证:PB 是⊙O 的切线.的切线.25.如图,在平面直角坐标系xOy 中,顶点为M 的抛物线是由抛物线y=x 2﹣3向右平移一个单位后得到的,它与y 轴负半轴交于点A ,点B 在该抛物线上,且横坐标为3. (1)求点M 、A 、B 坐标;坐标;(2)连接AB 、AM 、BM ,求∠ABM 的正切值;的正切值;(3)点P 是顶点为M 的抛物线上一点,且位于对称轴的右侧,设PO 与x 正半轴的夹角为α,当α=∠ABM 时,求P 点坐标.点坐标.26.概念理解.概念理解把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“剖分﹣重拼”.如图①,一个有一组对边平形的四边形可以剖分﹣重拼为一个三角形;如图②,任意两个正方形可以剖分﹣重拼为一个正方形.可以剖分﹣重拼为一个正方形. 尝试操作尝试操作(1)如图③,把图中的三角形剖分﹣重拼为一个矩形(只要画出示意图,不需说明操作步骤); 阅读解释阅读解释(2)如何把一个矩形ABCD(如图④)剖分﹣重拼为一个正方形呢?操作如下:)剖分﹣重拼为一个正方形呢?操作如下:Ⅰ.画辅助图.作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥射线OX,与半圆交于点I;Ⅱ.图④中,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.是正方形.请说明按照上述操作方法得到的四边形EBHG是正方形.2014年陕西省西安市铁一中中考数学模拟试卷(二)参考答案与试题解析一、选择题1.(3分)(2014•富阳市模拟)的倒数为(的倒数为( )A .B .C .2014D .﹣2014 【分析】根据倒数的定义进行解答即可.根据倒数的定义进行解答即可. 【解答】解:∵﹣2014×()=1,∴﹣2014是的倒数,的倒数,故选:D .【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.,那么这两个数互为倒数.2.(3分)(2015•巴彦淖尔)如图所示的几何体的左视图是(巴彦淖尔)如图所示的几何体的左视图是( )A .B .C .D .【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.解:从左向右看,得到的几何体的左视图是中间无线条的矩形. 故选D .【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.图中. 3.(3分)(2014•碑林区校级模拟)下列运算正确的是(碑林区校级模拟)下列运算正确的是( )A .6a 2b ﹣5a 2b=lB .a 2•a 3=a 5C .(﹣2ab 2)3=﹣6a 3bD .(a 3)2=a 5【分析】利用幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则判定即可.利用幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则判定即可.【解答】解:A 、6a 2b ﹣5a 2b=a 2b ,故选项A 错误;错误;B 、a 2•a 3=a 5,故选项B 正确;正确;C 、(﹣2ab 2)3=﹣6a 3b 6,故选项C 错误;错误;D 、(a 3)2=a 6,故选项D 错误;错误;故选:B .【点评】本题主要考查了幂的乘方与积的乘方,合并同类项及同底数幂的乘法,解题的关键是熟记幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则.记幂的乘方与积的乘方,合并同类项及同底数幂的乘法法则.4.(3分)(2014•碑林区校级模拟)如图,已知直线l 1∥l 2,则∠a 的度数为(的度数为()A .115°B .135°C .145°D .150°【分析】先根据平行线的性质求出∠1的度数,再由对顶角的性质即可得出结论.的度数,再由对顶角的性质即可得出结论. 【解答】解:∵直线l 1∥l 2, ∴∠1=180°﹣130°=50°, ∴α=50°+65°=115°. 故选A .【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补. 5.(3分)(2014•碑林区校级模拟)在一次“爱心互助”捐款活动中,某班50名同学捐款的金额(单位:元)如下表所示,这个班学生捐款的众数和中位数分别是(位:元)如下表所示,这个班学生捐款的众数和中位数分别是( )金额/元5 10 15 20 人数/人1 26 212 A .10,22 B .10,10 C .5,22 D .5,10【分析】根据众数和中位数的定义进行解答,根据众数和中位数的定义进行解答,众数是出现次数最多的数,众数是出现次数最多的数,众数是出现次数最多的数,中位数是把中位数是把50个数据从小到大排列,最中间两个数的平均数,据此选择正确的答案.小到大排列,最中间两个数的平均数,据此选择正确的答案.【解答】解:根据题意可知捐款10元的人数有26人,即10是捐款的众数,是捐款的众数, 把50名同学捐款从小到大排列,最中间的两个数是10,10,中位数是10. 故选B .【点评】本题主要考查了众数与中位数的知识,解答本题要掌握中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错,此题难度不大.就会出错,此题难度不大.6.(3分)(2014•碑林区校级模拟)不等式﹣≥1的正整数解是(的正整数解是( )A .0B .1C .0和1D .0或1【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可. 【解答】解:去分母得:(x ﹣1)﹣3(x ﹣3)≥6, 去括号得:x ﹣1﹣3x +9≥6,移项、合并同类项得:﹣2x ≥﹣2, 系数化为1得:x ≤1, 所以不等式﹣≥1的正整数解为1.故选B .【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.不等式应根据不等式的基本性质.7.(3分)(2014•碑林区校级模拟)如图,等边△ABC 的边长为2,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上的中点,若∠ECF=30°时,EF +CF 的值为(的值为( )A .1B .2C .D .1+【分析】先根据等边三角形的性质求出AD 的长∠CAD 的度数,再由E 是AC 边上的中点,∠ECF=30°得出CF 是∠ACD 的平分线,故EF ⊥AC ,故EF=DF ,再根据∠EDF=∠CAD=30°得出AF=CF ,故AD=EF +CF ,由此可得出结论.,由此可得出结论.【解答】解:∵等边△ABC 的边长为2,AD 是BC 边上的中线,边上的中线, ∴AD=AB •sin60°=2×=,AD ⊥BC ,∠CAD=30°.∵E 是AC 边上的中点,∠ECF=30°, ∴CF 是∠ACD 的平分线,的平分线, ∴EF ⊥AC , ∴EF=DF .∵∠EDF=∠CAD=30°,∴AF=CF ,∴AD=EF +CF=. 故选C .【点评】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.8.(3分)(2016•桐城市模拟)清明节前,某班分成甲、乙两组去距离学校4km 的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min 到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h ,则x 满足的方程为(满足的方程为( ) A .﹣=20B .﹣=20C .﹣= D .﹣=【分析】首先表示出骑自行车速度为2xkm/h ,再根据时间=路程÷速度表示出去距离学校4km 的烈士陵园扫墓步行所用的时间与骑自行车所用时间,根据时间相差20min 可得方程.可得方程. 【解答】解:20min=h ,步行的速度为x km/h ,则骑自行车速度为2xkm/h ,由题意得:,由题意得:﹣=,故选C .【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄懂题意,表示出步行所用时间与骑自行车所用时间.骑自行车所用时间.9.(3分)(2014•碑林区校级模拟)如图,碑林区校级模拟)如图,已知四边形已知四边形ABCD 是菱形,BD 为对角线,且∠A=72°,将△BCD 分割成如图所示的三个等腰三角形,那么∠1+∠2+∠3=( )A .80°B .90°C .100°D .120°【分析】根据菱形的性质,知:∠C=∠A=72°;由于∠1、∠2、∠3所在的三角形都是等腰三角形,可根据等腰三角形的性质和三角形外角的性质进行求解.可根据等腰三角形的性质和三角形外角的性质进行求解. 【解答】解:∵四边形ABCD 是菱形,是菱形, ∴∠A=∠C=72°; ∵∠6=∠C=72°,∴∠3=180﹣2×72°=36°; ∵∠6=∠2+∠5=2∠2=72°, ∴∠2=36°;∵∠2=∠1+∠4=2∠1=36°, ∴∠1=18°;∴∠1+∠2+∠3=36°+36°+18°=90°. 故选:B .【点评】本题主要考查菱形的性质、等腰三角形的性质以及三角形外角的性质,得出各角的度数是解题关键.是解题关键.10.(3分)(2015•济南校级一模)已知二次函数y=﹣x 2﹣x +1,当自变量x 取m 时,对应的函数值大于0,设自变量分别取m ﹣3,m +3时对应的函数值为y 1,y 2,则下列判断正确的是则下列判断正确的是(( ) A .y 1<0,y 2<0 B .y 1<0,y 2>0 C .y 1>0,y 2<0 D .y 1>0,y 2>0【分析】求出二次函数与x 轴的交点坐标,从而确定出m 的取值范围,再根据二次函数图象上点的坐标特征解答即可.的坐标特征解答即可.【解答】解:令y=0,则﹣x 2﹣x +1=0, 整理得,2x 2+3x ﹣2=0,解得x1=﹣2,x 2=,所以,二次函数与x 轴的交点坐标为(﹣2,0),(,0), 所以,﹣2<m <,∵m ﹣3,m +3时对应的函数值为y 1,y 2, ∴y 1<0,y 2<0. 故选A .【点评】本题考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点问题,求出函数图象与x 轴的交点并确定出m 的取值范围是解题的关键.的取值范围是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11.(3分)(2014•碑林区校级模拟)计算:(1+)0﹣|﹣2|= ﹣1 . 【分析】直接利用零指数幂的性质以及绝对值的性质化简求出即可.直接利用零指数幂的性质以及绝对值的性质化简求出即可.【解答】解:(1+)0﹣|﹣2| =1﹣2=﹣1.故答案为:﹣1.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.12.(3分)(2014•碑林区校级模拟)等腰三角形的顶角是70°,则其底角是,则其底角是 55° .【分析】根据等腰三角形两底角相等列式进行计算即可得解.根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵等腰三角形的顶角是70°,∴底角=(180°﹣70°)=55°.故答案为:55°.【点评】本题考查了等腰三角形的性质,是基础题,主要利用了两底角相等的性质.本题考查了等腰三角形的性质,是基础题,主要利用了两底角相等的性质.13.(3分)(2015•宁夏)因式分解:x3﹣xy2= x(x﹣y)(x+y) .,再对余下的多项式利用平方差公式继续分解.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).一个多项式有公因式首先提取公因式,【点评】本题考查了用提公因式法和公式法进行因式分解,本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014•碑林区校级模拟)如图,Rt△ABC的斜边AB=18,Rt△ABC绕点O顺时针旋9 .转后得到Rt△AʹBʹCʹ,则Rt△AʹBʹCʹ的斜边AʹBʹ上的中线CʹD的长度为的长度为【分析】由旋转可得AʹBʹ=AB,再根据直角三角形斜边上的中线等于斜边的一半可求得CʹDʹ. 【解答】解:由旋转的性质可知△ABC≌△AʹBʹCʹ,∴AʹBʹ=AB=18,为直角三角形,∵CʹDʹ为AʹBʹ的中线,且△AʹBʹCʹ为直角三角形,∴CʹDʹ=AʹBʹ=9,故答案为:9.是解题的关键.【点评】本题主要考查直角三角形的性质,由旋转的性质得到AʹBʹ=AB是解题的关键.15.(3分)(2014•碑林区校级模拟)用科学计算器计算:sin87°≈ 3.31 (精确到0.01) 【分析】熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数. 【解答】解:sin87°=3.316×0.9986=3.3113≈3.31.故答案为:3.31.【点评】本题结合计算器的用法,旨在考查对基本概念的应用能力,需要同学们熟记近似数的精确度.确度.16.(3分)(2014•碑林区校级模拟)如图,点P 是正比例函数y=x 与反比例函数y=(k ≠0)在第一象限内的交点,P A ⊥OP 交x 轴于点A ,△POA 的面积为6,则k 的值是的值是 6 .【分析】由P 在y=x 上可知△POA 为等腰直角三角形,为等腰直角三角形,过过P 作PC ⊥OA 于点C ,则可知S △POC =S△PCA=k ,可求得k 的值.的值.【解答】解:解: ∵P 点在y=x 上,上, ∴∠POA=45°,∴△POA 为等腰直角三角形,为等腰直角三角形, 过P 作PC ⊥OA 于C , 则S △POC =S △PCA =k , ∴S △POA =k=6, 故答案为:6.【点评】本题主要考查反比例函数k 的几何意义,由条件得出S △POC =S △PCA =k 是解题的关键.17.(3分)(2014•碑林区校级模拟)如图,把等边△ABC 的外接圆对折,使点A 的劣弧BC 的中点M 重合,折痕分别交AB 、AC 于D 、E ,若BC=6,则线段DE 的长为的长为 4 .【分析】连接AM 、OB ,则其交点O 即为此圆的圆心,根据正三角形的性质可知,∠OBC=∠OAD=30°,再根据直角三角形的性质及勾股定理可求出OB 的长;在Rt △AOD 中,进而可依据特殊角的三角函数值即可求出OD 的长,由垂径定理得出DE 的长即可.的长即可. 【解答】解:连接AM 、OB , 则其交点O 即为此圆的圆心;即为此圆的圆心; ∵△ABC 是正三角形,是正三角形,∴∠OBC=∠OAD=30°,DE ∥BC ,在Rt △OBF 中,BF=BC=×6=3, ∴OB==2,∴OA=OB=2;在Rt △AOD 中,∠DAO=30°, ∴OD=OA •tan30°=2×=2,DE=2DO=4. 故答案为:4.【点评】本题考查了等边三角形的性质,垂径定理,解直角三角形的性质,综合性比较强,难度适中.适中.三、解答题.18.(2014•碑林区校级模拟)化简:•(1﹣).【分析】先正确化简,再约分求解即可.先正确化简,再约分求解即可. 【解答】解:•(1﹣)=•=a +2.【点评】本题主要考查了分式的混合运算,解题的关键是正确化简并约分.本题主要考查了分式的混合运算,解题的关键是正确化简并约分.19.(2014•碑林区校级模拟)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED .求证:∠BEC=∠DEC .【分析】根据正方形的性质得出CD=CB ,∠DCA=∠BCA ,根据SAS 即可证出△BEC ≌△DEC ,再根据全等三角形的性质即可求解.再根据全等三角形的性质即可求解.【解答】证明:∵四边形ABCD 是正方形,是正方形, ∴CD=CB ,∠DCA=∠BCA , 在△BEC 与△DEC 中,中,,∴△BEC ≌△DEC (SAS ). ∴∠BEC=∠DEC .【点评】本题主要考查对正方形的性质、全等三角形的性质和判定等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.练地运用这些性质进行推理是解此题的关键. 20.(2014•福鼎市模拟)为了了解“青年人对未来是否幸福的态度”,随机对75名大学生进行了问卷调查卷调查对未来会幸福的态度调查对未来会幸福的态度调查 充满信心 比较有信心 一般 没有信心人数30 8 12 (1)请将图中表格和条形统计图补充完整;)请将图中表格和条形统计图补充完整; (2)A 对应的圆心角∠1是 120 度;度;(3)某高校有大学生6000名,请估计充满信心和比较有信心的人数共约是多少人?名,请估计充满信心和比较有信心的人数共约是多少人?【分析】(1)由充满信心的人数除以所占的百分比得到总人数,求出比较有信心的人数,补全表格及统计图即可;格及统计图即可;(2)求出比较有信心所占的百分比,乘以360度即可得到结果;度即可得到结果;(3)求出充满信心与比较有信心所占的百分比,乘以6000即可得到结果.即可得到结果. 【解答】解:(1)“比较有信心”的有75﹣(30+8+12)=25(人), 补全表格与统计图,如图所示:补全表格与统计图,如图所示:对未来会幸福的态度调查对未来会幸福的态度调查 充满信心 比较有信心 一般 没有信心 人数3025812(2)根据题意得:×360°=120°,则A 对应的圆心角∠1是120度;度; 故答案为:120; (3)根据题意得:6000×=4400(人),则充满信心和比较有信心的人数共约是4400人.人.【点评】此题考查了条形统计图,扇形统计图,弄清题意是解本题的关键.此题考查了条形统计图,扇形统计图,弄清题意是解本题的关键.21.(2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,≈1.73,≈2.45)(2)求∠ACD 的余弦值.的余弦值.【分析】(1)连接AC ,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45° AC=15,再根据∠D=90°利用勾股定理求得AD 的长后即可求周长和面积;的长后即可求周长和面积; (2)直接利用余弦的定义求解即可.)直接利用余弦的定义求解即可. 【解答】解:(1)连接AC ∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45° AC=15又∵∠D=90° ∴AD===12(千米)(千米)∴周长=AB +BC +CD +DA=30+3+12=30+4.242+20.784≈55(千米)(千米)面积=S △ABC +S △ADC =112.5+18≈157(平方千米)(平方千米)(2)cos ∠ACD===…(8分)分)【点评】本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解.是从实际问题中整理出直角三角形并求解.22.(2014•碑林区校级模拟)某超市欲购进A 、B 两种品牌的书包共400个,已知这两种书包的进价和售价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.元.价位价位 品牌品牌 进价(元/个)个)售价(元/个)个) A 47 65 B 37 50 (1)求w 关于x 的函数关系式;的函数关系式;(2)如果购进两种书包的总费用不超过17800元,那么该商场如何进货才能获利最大?(提示:利润=售价﹣进价)售价﹣进价) 【分析】(1)由总利润=A 种书包的利润种书包的利润++B 种书包的利润就可以求出w 关于x 的函数关系式;的函数关系式; (2)根据两种书包的总费用不超过17800元建立不等式求出x 的取值范围,由一次函数性质就可以求出结论;以求出结论; 【解答】解:(1)设购进A 种书包x 个,则购进B 种书包(400﹣x )个,由题意,得)个,由题意,得 w=(65﹣47)x +(50﹣37)(400﹣x ), w=18x +5200﹣13x , w=5x +5200.答:w 关于x 的函数关系式为w=5x +5200; (2)∵两种书包的总费用不超过17800元,元, ∴47x +37(400﹣x )≤17800, ∴x ≤300. ∵w=5x +5200. ∴k=5>0∴x=300时,w 最大=6700.∴购进B 种书包400﹣300=100个.个.∴购进A 种书包300个,B 种书包100个可获得最大利润,最大利润为6700元.元. 【点评】本题考查了利润=售价﹣进价的运用,总利润=A 种书包的利润种书包的利润++B 种书包的利润的运用,列一次函数的解析式解实际问题的运用,解答时求出函数的解析式是关键.列一次函数的解析式解实际问题的运用,解答时求出函数的解析式是关键.23.(2012•峨眉山市二模)有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下把它们的背面朝上洗匀后,小丽先从中抽取一张,然后小明从余下 的卡片中再抽取一张.的卡片中再抽取一张. (1)直接写出小丽取出的卡片恰好是的概率;的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请说明理由. 【分析】(1)根据概率公式直接求解即可求得答案;)根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可,若不相等,则不公平,概率大的则有利.概率大的则有利.【解答】解:(1)∵有三张背面完全相同的卡片,小丽取出的卡片恰好是的有1种情况,种情况,∴小丽取出的卡片恰好是的概率为:;(2)∵=3, 画树状图得:画树状图得:∴一共有6种等可能的结果,种等可能的结果,两人抽取卡片上的数字之积是有理数的有2种,种, ∴P (小丽胜)=,P (小明胜)=,这个游戏规则不公平,对小明有利.这个游戏规则不公平,对小明有利.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.所求情况数与总情况数之比.24.(2013•湖州)如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB . (1)求BC 的长;的长;(2)求证:PB 是⊙O 的切线.的切线.【分析】(1)首先连接OB ,由弦AB ⊥OC ,劣弧AB 的度数为120°,易证得△OBC 是等边三角形,则可求得BC 的长;的长;(2)由OC=CP=2,△OBC 是等边三角形,可求得BC=CP ,即可得∠P=∠CBP ,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB ⊥BP ,继而证得PB 是⊙O 的切线.的切线. 【解答】(1)解:连接OB ,∵弦AB ⊥OC ,劣弧AB 的度数为120°, ∴弧BC 与弧AC 的度数为:60°, ∴∠BOC=60°, ∵OB=OC ,∴△OBC 是等边三角形,是等边三角形, ∴BC=OC=2;。
专题5 代数式求值与因式分解一、基础过关练1.(2022·河北·中考三模)下列各因式分解正确的是( )A .22+2+)1-(1x x x = B .222-1=)+(-1x x x C .39=(+3)(-3)-x x x x x D .22-(-2)=(-2)(+2)+x x x2.(2022·内蒙古赤峰·中考真题)已知()()2221x x x +--=,则2243x x -+的值为( )A .13B .8C .-3D .53.(2022·重庆中考二模)若m 是关于x 的一元二次方程210x x --=的根,则2322-+m m 的值是( )A .2B .1C .4D .54.(2022·山东·济宁中考三模)把多项式228x -分解因式,结果正确的是( )A .()224x -B .()222x -C .()()222x x +-D .42x x x ⎛⎫- ⎪⎝⎭ 5.(2022·重庆·中考三模)按如图所示的运算程序,能使输出结果为19的是( )A .a =4,b =3B .a =2,b =4C .a =3,b =4D .a =1,b =46.(2022·广西河池·中考三模)已知二元一次方程组2125x y x y -=⎧⎨-=⎩,则x y -的值为( ) A .-2 B .2 C .-6 D .67.(2022·上海静安·中考二模)如果把二次三项式22x x c ++分解因式得()()2213x x c x x ++=-+,那么常数c 的值是( )A .3B .-3C .2D .-28.(2022·江苏·靖江市中考二模)若x a =,代数式22x x +的值为1-,则当x a =-时,代数式22x x + )A .1-B .1C .2D .39.(2022·湖南益阳·中考真题)已知m ,n 同时满足2m +n =3与2m ﹣n =1,则4m 2﹣n 2的值是 _____. 10.(2022·湖南邵阳·中考真题)已知2310x x -+=,则2395x x -+=_________.11.(2022·贵州安顺·中考真题)若28,3418a b a b +=+=,则a b +的值为__________________.12.(2022·广东·中考三模)若a 是方程225x x =+的一个根,则代数式263a a -的值是__________.13.(2022·云南·昆明中考模拟)如果x ,y 满足3632x y x y +=⎧⎨-=⎩,则代数式229x y -的值为_______. 14.(2022·青海西宁·中考一模)已知m ,n 是一元二次方程2320x x --=的两个根,则22m n mn +=_______.15.(2022·山东临沂·中考二模)已知a −3b =2,ab =3,则2a 3b −12a 2b 2+18ab 3=______.16.(2022·江苏·靖江市中考二模)若1x ,2x 是一元二次方差2650x x -+=的两根,则()()1211x x --=______.17.(2022·湖南·中考真题)因式分解:225a -=__.18.(2022·江苏常州·中考真题)分解因式:22x y xy +=______.19.(2022·贵州遵义·中考真题)已知4a b +=,2a b -=,则22a b -的值为__________.20.(2022·贵州黔东南·中考真题)分解因式:2202240442022x x -+=_______.21.(2022·湖南常德·中考真题)分解因式:329x xy -=________.22.(2022·内蒙古赤峰·中考真题)分解因式:32242x x x ++=______.23.(2022·广东·深圳市中考三模)因式分解22212x x --=_________24.(2022·广东·佛山市中考三模)分解因式:3273m m -=______.25.(2022·内蒙古呼和浩特·中考三模)因式分解:3312xy xy -+=_________.26.(2022·湖南·醴陵市中考模拟)因式分解:322321218x y x y xy -+=______________________. 27.(2022·广东·从化市中考模拟)分解因式:()()22254x y x y +--=______. 二、能力提升练28.(2022·贵州六盘水·中考真题)已知()443223412345x y a x a x y a x y a xy a y +=++++,则12345a a a a a ++++的值是( )A .4B .8C .16D .1229.(2022·山东烟台·一模)已知一元二次方程2202210x x -+=的两个根分别为12,x x ,则21202212x x -+的值为( )A .1-B .0C .2022-D .2021-30.(2022·广东·佛山市中考三模)已知240x -,则y x =______.31.(2022·四川·德阳中考三模)若30x y --=,则代数式2262x y y ---的值等于_____.32.(2022·内蒙古呼伦贝尔·中考二模)分解因式:()()2244m n m m n m +-++=________.33.(2022·福建省厦门中考模拟)若()2202210m +=,则()()20212023m m ++=______. 34.(2022·江苏南通·中考二模)如果一元二次方程2320x x +-=的两个根为1x ,2x ,则321112232x x x x x +-+=______.35.(2022·浙江丽水·中考一模)已知,实数m ,n 满足3m n +=,2230m n mn +=-.(1)若m n >,则m n -=_______;(2)若5n p +=-,则代数式2232m p n p m mn -+-的值是______________.36.(2022·广西·中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.37.(2022·山东烟台·中考一模)如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,如果输出m 的值为5,那么输入x 的值为______.38.(2022·浙江丽水·中考真题)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN ,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMN S S 四边形矩形的值是___________.答案与解析一、基础过关练1.(2022·河北·育华中考三模)下列各因式分解正确的是( )A .22+2+)1-(1x x x = B .222-1=)+(-1x x x C .39=(+3)(-3)-x x x x xD .22-(-2)=(-2)(+2)+x x x2.(2022·内蒙古赤峰·中考真题)已知()()2221x x x +--=,则2243x x -+的值为( )A .13B .8C .-3D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可.【详解】∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.3.(2022·重庆文德中学校二模)若m 是关于x 的一元二次方程210x x --=的根,则2322-+m m 的值是( )A .2B .1C .4D .5 【答案】B 【分析】由m 是关于x 的一元二次方程210x x --=的根,可得,21m m -=, 再把要求值的代数式化为()232m m --,再整体代入计算即可.【详解】解:∵m 是关于x 的一元二次方程210x x --=的根, ∴210,m m --=∴21m m -=,∴2322-+m m()232m m =--321=-⨯ 1.=故选:B .【点睛】本题考查的是一元二次方程的解的含义,求解代数式的值,掌握“方程的解的含义,以及构建整体代入求解代数式的值”是解本题的关键.4.(2022·山东·济宁中考三模)把多项式228x -分解因式,结果正确的是( )A .()224x -B .()222x -C .()()222x x +-D .42x x x ⎛⎫- ⎪⎝⎭5.(2022·重庆·中考三模)按如图所示的运算程序,能使输出结果为19的是( )A .a =4,b =3B .a =2,b =4C .a =3,b =4D .a =1,b =4 【答案】A 【分析】把各自的值代入运算程序中计算得到结果,即可作出判断.【详解】解:A 、把4a =,3b =代入运算程序中得:∵a >b ,∴223119y =⨯+=,符合题意;B 、把2a =,4b =代入运算程序中得:∵a <b ,∴3228y =⨯+=,不符合题意;C 、把3a =,4b =代入运算程序中得:∵a <b ,∴34214y =⨯+=,不符合题意;D 、把1a =,4b =代入运算程序中得:∵a <b ,∴3125y =⨯+=,不符合题意,故选:A .【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.(2022·广西河池·中考三模)已知二元一次方程组2125x y x y -=⎧⎨-=⎩,则x y -的值为( ) A .-2B .2C .-6D .6【答案】B【分析】先将两方程相加,得3x -3y =6,再方程两边同除以3,即可求解. 【详解】解:∵2125x y x y -=⎧⎨-=⎩①②, ①+②得:3x -3y =6,∴x -y =2,故选:B .【点睛】本题考查用加减法解二元一次方程组,代数式求值,熟练掌握加减法解二元一次方程组是解题的关键.7.(2022·上海静安·中考二模)如果把二次三项式22x x c ++分解因式得()()2213x x c x x ++=-+,那么常数c 的值是( )A .3B .-3C .2D .-2 【答案】B【分析】将因式分解的结果用多项式乘法的展开,其结果与二次三项式比较即可求解.【详解】解:∵()()2213x x c x x ++=-+ ∴22223x x c x x ++=+-故3c =-故选B【点睛】本题考查了因式分解,多项式的乘法运算,掌握多项式乘法与因式分解的关系是解题的关键.8.(2022·江苏·靖江市中考二模)若x a =,代数式22x x +的值为1-,则当x a =-时,代数式22x x + )A .1-B .1C .2D .39.(2022·湖南益阳·中考真题)已知m ,n 同时满足2m +n =3与2m ﹣n =1,则4m 2﹣n 2的值是 _____.【答案】3【分析】观察已知和所求可知,22422m n m n m n +=()(﹣﹣),将代数式的值代入即可得出结论.【详解】解:∵2m +n =3,2m ﹣n =1,∴2222341m n m n m n +⨯==())=3﹣(﹣,故答案为:3.【点睛】本题主要考查代数式求值,平方差公式的应用,熟知平方差公式的结构是解题关键. 10.(2022·湖南邵阳·中考真题)已知2310x x -+=,则2395x x -+=_________. 【答案】2【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.11.(2022·贵州安顺·中考真题)若28,3418a b a b +=+=,则a b +的值为__________________.12.(2022·广东·中考三模)若a 是方程225x x =+的一个根,则代数式263a a -的值是__________. 【答案】15【分析】利用a 是方程225x x =+的一个根,得到225a a -=,代入263a a -即可.【详解】解:∵a 是方程225x x =+的一个根,∴225a a =+,∴225a a -=,∴()2263323515a a a a -=-=⨯=,故答案为:15.【点睛】本题考查了方程解的定义以及整体代入求值,其中利用方程解的定义求得225a a -=是解题的关键.13.(2022·云南·昆明中考模拟)如果x ,y 满足3632x y x y +=⎧⎨-=⎩,则代数式229x y -的值为_______. 【答案】12【分析】观察所给的二元一次方程组和代数式,可发现所求代数式通过因式分解后刚好就是方程组中的两个方程,代值求解即可.【详解】解:229(3)(3)x y x y x y -=+-,且x ,y 满足3632x y x y +=⎧⎨-=⎩, ∴229(3)(3)6212x y x y x y -=+-=⨯=,故答案为:12.【点睛】本题考查代数式求值,观察所求代数式与条件中的二元一次方程组,找准二者的关系是解决问题的关键.14.(2022·青海西宁·中考一模)已知m ,n 是一元二次方程2320x x --=的两个根,则22m n mn +=_______.15.(2022·山东临沂·中考二模)已知a −3b =2,ab =3,则2a 3b −12a 2b 2+18ab 3=______.【答案】24【分析】先提取公因式2ab ,再运用完全平方公式分解,再整体代入即可求解.【详解】解:∵a −3b =2,ab =3,∴2a 3b −12a 2b 2+18ab 3=2ab (a 2−6ab +9b 2)=2ab (a −3b )2=2×3×22=24.故答案为:24.【点睛】本题考查了因式分解的应用,掌握完全平方公式的结构特征,整体代入是解题的关键. 16.(2022·江苏·靖江市中考二模)若1x ,2x 是一元二次方差2650x x -+=的两根,则()()1211x x --=______. 【答案】0【分析】由根与系数的关系x 1+x 2=6,x 1x 2=5,然后()()()121212111x x x x x x --=-++整体代入计算即可.【详解】解:∵1x ,2x 是一元二次方差2650x x -+=的两根,∴x 1+x 2=6,x 1x 2=5,∴()()()12121211x x x x x x --=-++1=5-6+1=0.故答案为:0.【点睛】本题考查根与系数的关系,代数式的值,解题的关键是熟练运用根与系数的关系,本题属于基础题型.17.(2022·湖南·中考真题)因式分解:225a -=__.18.(2022·江苏常州·中考真题)分解因式:22x y xy +=______.【答案】xy (x +y )【分析】利用提公因式法即可求解.【详解】22()x y y y xy x x =++,故答案为:()xy x y +.【点睛】本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.19.(2022·贵州遵义·中考真题)已知4a b +=,2a b -=,则22a b -的值为__________. 【答案】8【分析】根据平方差公式直接计算即可求解.【详解】解:∵4a b +=,2a b -=,∴22a b -()()428a b a b =+-=⨯=故答案为:8【点睛】本题考查了因式分解的应用,掌握平方差公式是解题的关键.20.(2022·贵州黔东南·中考真题)分解因式:2202240442022x x -+=_______.【答案】()220221x -##()220221x -【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-; 故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.21.(2022·湖南常德·中考真题)分解因式:329x xy -=________.22.(2022·内蒙古赤峰·中考真题)分解因式:32242x x x ++=______.【答案】22(1)x x【分析】先提取公因式,再利用完全平方公式进行因式分解.【详解】解:32242x x x ++,22(21)x x x =++,22(1)x x =+, 故答案是:22(1)x x .【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及完全平方公式.23.(2022·广东·深圳市中考三模)因式分解22212x x --=_________ 【答案】()()223x x +-【分析】先提公因式再利用十字相乘法进行因式分解即可;【详解】解:()()22212=232x x x x ---+;故答案为:()()223x x +-.【点睛】本题考查分解因式.熟练掌握因式分解的方法是解题的关键.24.(2022·广东·佛山市中考三模)分解因式:3273m m -=______.25.(2022·内蒙古呼和浩特·中考三模)因式分解:3312xy xy -+=_________.【答案】3(2)(2)xy y y -+-##3(2)(2)xy y y --+【分析】先提取公因式﹣3xy 后,再用平方差公式进行因式分解即可.【详解】解:3312xy xy -+=23(4)xy y --=3(2)(2)xy y y -+-.故答案为:3(2)(2)xy y y -+-.【点睛】此题考查了综合运用提公因式法和公式法进行因式分解,熟练掌握因式分解的方法是解题的关键.26.(2022·湖南·醴陵市中考模拟预测)因式分解:322321218x y x y xy -+=______________________.【答案】()223xy x y -【分析】先提取公因式2xy ,再根据完全平方公式化简.【详解】322321218x y x y xy -+22269xy x xy y()223xy x y =-,故答案为()223xy x y -.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.分解因式三步骤:一提公因式,二套公式,三检查.分解因式时要先考虑能否用提公因式法,然后考虑公式法.若多顶式有两顶,可考虑用平方差公式;若多顶式有三顶,可考虑用完全平方公式.27.(2022·广东·从化市中考模拟预测)分解因式:()()22254x y x y +--=______.二、能力提升练28.(2022·贵州六盘水·中考真题)已知()443223412345x y a x a x y a x y a xy a y +=++++,则12345a a a a a ++++的值是( )A .4B .8C .16D .12【答案】C【分析】令1,1x y ==,代入已知等式进行计算即可得.【详解】解:观察所求式子与已知等式的关系,令1,1x y ==,则412345(11)16a a a a a ++++=+=, 故选:C .【点睛】本题考查了代数式求值,观察得出所求式子与已知等式的关系是解题关键.29.(2022·山东烟台·中考一模)已知一元二次方程2202210x x -+=的两个根分别为12,x x ,则21202212x x -+的值为( )A .1-B .0C .2022-D .2021-30.(2022·广东·佛山市中考三模)已知240x -,则y x =______.31.(2022·四川·德阳中考三模)若30x y --=,则代数式2262x y y ---的值等于_____.32.(2022·内蒙古呼伦贝尔·中考二模)分解因式:()()2244m n m m n m +-++=________.【答案】2()n m -【分析】由完全平方公式进行因式分解,即可得到答案.【详解】解:22()4()4+-++m n m m n m=22()22()(2)m n m m n m +-⨯⨯++=2(2)m n m +-=2()n m -;故答案为:2()n m -.【点睛】本题考查了因式分解,解题的关键是掌握完全平方公式进行因式分解.33.(2022·福建省厦门中考模拟预测)若()2202210m +=,则()()20212023m m ++=______.34.(2022·江苏南通·中考二模)如果一元二次方程2320x x +-=的两个根为1x ,2x ,则321112232x x x x x +-+=______.【答案】-4【分析】根据根与系数的关系得到x 1+x 2=-3,x 1x 2=-2,根据一元二次方程根的意义得到21132x x +-,然后利用整体代入的方法计算,即可求得结果.【详解】解:由题意得:123x x +=- , 122x x =-,∴321112232x x x x x +-+()()21111212322x x x x x x x =+-++-()0232=+⨯-+=-4.故答案为:-4.【点睛】本题考查了根与系数的关系和一元二次方程的根,解题的关键是掌握一元二次方程根与系数关系的公式和理解一元二次方程根的意义.35.(2022·浙江丽水·中考一模)已知,实数m ,n 满足3m n +=,2230m n mn +=-.(1)若m n >,则m n -=_______;(2)若5n p +=-,则代数式2232m p n p m mn -+-的值是______________. 【答案】 7 42或252##252或42【分析】(1)将已知式子因式分解代入得出10mn =-,然后利用两个完全平方公式之间的关系求解即可;(2)利用(1)中结论得出52m n =⎧⎨=-⎩或25m n =-⎧⎨=⎩,然后分两种情况,将原式化简代入求值即可. 【详解】解:(1)∵m +n =3,∴()2230m n mn mn m n +=+=-,∴10mn =-,∴()()()22494049m n m n mn -=+-=--=,∴7m n -=±,∵m >n ,∴0m n ->,∴7m n -=;(2)2232m p n p m mn -+-()2222()m n p m m n =-+- ()22()m n p m =-+()()()m n m n p m =+-+,由(1)得37m n m n +=⎧⎨-=⎩或37m n m n +=⎧⎨-=-⎩解得:52m n =⎧⎨=-⎩或25m n =-⎧⎨=⎩ 当m =5,2n =-时,∵5n p +=-,∴3p =-,∴m +p =2,∴原式()()52522=-⨯+⨯42=;当2m =-,n =5时,∵5n p +=-,∴10p =-,∴12m p +=-,∴原式()()()252512=-+⨯--⨯-252=;∴代数式的值为42或252;故答案为:①7;②42或252.【点睛】题目主要考查因式分解的运用,求代数式的值及完全平方公式与平方差公式,熟练掌握运算法则进行变换是解题关键.36.(2022·广西·中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.【答案】14【分析】先根据2x =是关于x 的一元一次方程3ax b +=的解,得到23a b +=,再把所求的代数式变形为()()22221a b a b +++-,把23a b +=整体代入即可求值.【详解】解:∵2x =是关于x 的一元一次方程3ax b +=的解,∴23a b +=,∴2244421a ab b a b ++++-()()22221a b a b =+++-2=+⨯-3231=.14故答案为:14.【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解题的关键.37.(2022·山东烟台·中考一模)如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,如果输出m的值为5,那么输入x的值为______.综上所述,输入x 的值为8-,故答案为:8-.【点睛】本题考查了程序框图中代数式求值,解一元二次方程等知识.理解程序框图中的运算是解本题的关键.38.(2022·浙江丽水·中考真题)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN ,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMN S S 四边形矩形的值是___________.)①和②能够重合,③和④能够重合,)22a ab -22ab b -+-20b b +=这四个矩形的面积都是5,EN a ==。
专题02 整式与因式分解一.选择题目1.(2021·湖北十堰市·中考真题)下列计算正确的是( )A .3332a a a ⋅=B .22(2)4a a -=C .222()a b a b +=+D .2(2)(2)2a a a +-=-【答案】B【分析】根据同底数幂相乘、积的乘方、乘法公式逐一判断即可.【详解】解:A .336a a a ⋅=,该项计算错误;B .22(2)4a a -=,该项计算正确;C .222()2a b a ab b +=++,该项计算错误;D .2(2)(2)4a a a +-=-,该项计算错误;故选:B .【点睛】本题考查整式乘法,掌握同底数幂相乘、积的乘方、乘法公式是解题的关键.2.(2021·四川成都市·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n = C .()34m m m -⋅= D .()222m n m n +=+ 【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.3.(2021·陕西中考真题)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=,故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.4.(2021·上海中考真题)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.5.(2021·浙江杭州市·中考真题)因式分解:214y -=( ) A .()()1212y y -+ B .()()22y y -+ C .()()122y y -+ D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2020·柳州市柳林中学中考真题)下列多项式中,能用平方差公式进行因式分解的是( ) A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2【答案】A【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-.7.(2021·湖北宜昌市·中考真题)从前,古希腊一位庄园主把一块边长为a 米(6a >)的正方形土地租给租户张老汉.第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( ) A .没有变化B .变大了C .变小了D .无法确定【答案】C【分析】分别求出2次的面积,比较大小即可.【详解】原来的土地面积为2a 平方米,第二年的面积为2(6)(6)36a a a +-=- 22(36)360a a --=-<∴ 所以面积变小了,故选C .【点睛】本题考查了列代数式,整式的运算,平方差公式,代数式大小的比较,正确理解题意列出代数式并计算是解题的关键.8.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果. 【详解】解:∵22=b a b a a b ab ++,∴()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.9.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .+100%2x y ⨯C .+3100%20x y ⨯D .+3 100%10+10x y x y⨯ 【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:10%30%3100%1010x y x y x y x y++=⨯++,故选:D . 【点睛】本题考查列代数式,理解题意是解题的关键.10.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D . 【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=,∴4925122ab -==,故选:C . 【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C 【分析】根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=,再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=,..., ∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=,此时132132⨯=mg ,故选C . 【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n ++=+,整理得9m +4n =0, ()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.13.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92 【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C . 【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.14.(2020·四川眉山市·中考真题)已知221224a b a b +=--,则132a b -的值为( ) A .4 B .2 C .2- D .4-【答案】A 【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 【详解】∵221224a b a b +=--∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =- ∴把a 和b 代入132a b -得:131(2)42⨯-⨯-=故选:A 【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.15.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∴应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.16.(2020·湖南娄底市·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189【答案】C 【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴= 9,b ∴= 由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+= 1898170.x ∴=⨯+= 故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键. 17.(2020·湖南郴州市·中考真题)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.【详解】第一个图形空白部分的面积是x 2-1,第二个图形的面积是(x+1)(x -1).则x 2-1=(x+1)(x -1).故选:B .【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键. 18.(2020·湖北中考真题)根据图中数字的规律,若第n 个图中出现数字396,则n =( )A .17B .18C .19D .20【答案】B【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n 为正整数即成立,否则舍去.【详解】根据图形规律可得:上三角形的数据的规律为:2(1)n n +,若2(1)396n n +=,解得n 不为正整数,舍去;下左三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去; 下中三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下右三角形的数据的规律为:(4)n n +,若(4)396n n +=,解得18n =,或22n =-,舍去,故选:B .【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键.19.(2020·山东潍坊市·中考真题)若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .1 【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可.【详解】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.20.(2020·河南中考真题)电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于( )A .302BB .308BC .10810B ⨯D .30210B ⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.21.(2020·江苏无锡市·中考真题)若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-5 【答案】C【分析】将两整式相加即可得出答案.【详解】∵2x y +=,3z y -=-,∴()()1x y z y x z ++-=+=-,∴x z +的值等于1-,故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(2020·湖南中考真题)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【详解】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点睛】本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.23.(2020·山东枣庄市·中考真题)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.24.(2020·山东日照市·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71【答案】C【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111)2+⨯⨯+70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.25.(2019·湖北中考真题)一列数按某规律排列如下:1121231234 ,,,,,,,,,1213214321…,若第n个数为57,则n=()A.50B.60C.62D.71【答案】B【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234,,,,,,,,,1213214321,…,可写为: 1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…, ∵57的分子和分母的和为12, ∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,,1110987654321, ∴第n 个数为57,则123410560n =++++⋯++=,故选B . 【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.26.(2019·重庆中考真题)按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,【答案】D 【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3; B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m -1=3;D 选项不满足m≤n ,则y=2n -1=1; 故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值. 27.(2019·四川绵阳市·中考真题)已知4m a =,8n b =,其中m ,n 为正整数,则262m n +=( ) A .2abB .2a b +C .23a bD .23a b + 【答案】A【分析】先变形262m n +成4m 与8n 的形式,再将已知等式代入可得.【详解】解:∵4m a =,8n b =,∴2626222m n m n +=⨯()()22322m n =⋅248m n =⋅()248m n =⋅2ab =,故选A . 【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与同底数幂的乘法运算法则. 28.(2019·广西柳州市·中考真题)定义:形如a bi +的数称为复数(其中a 和b 为实数,i 为虚数单位,规定21i =-),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如2222(13)1213(3)16916986i i i i i i i +=+⨯⨯+=++=+-=-+,因此,2(13)i +的实部是﹣8,虚部是6.已知复数2(3)mi -的虚部是12,则实部是( )A .﹣6B .6C .5D .﹣5 【答案】C【分析】先利用完全平方公式得出(3-mi )2=9-6mi+m 2i 2,再根据新定义得出复数(3-mi )2的实部是9-m 2,虚部是-6m ,由(3-mi )2的虚部是12得出m=-2,代入9-m 2计算即可.【详解】解:∵222222(3)323()9696mi mi mi mi m i m mi -=-⨯⨯+=-+=--∴复数2(3)mi -的实部是29m -,虚部是6m -,∴612m -=,∴2m =-,∴2299(2)945m -=--=-=.故选C .【点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.二.填空题目1.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a +++=,则20212020a b =___________. 【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a +++=,变形得()230a ++=, ∴130,03a b +=-=,∴13,3a b =-=, ∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.2.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】由题意规律可得:2399100222222++++=-. ∵1002=m ∴23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=.…… ∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=① 12310022222S ++++=② ②-①,得10021S -=∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.3.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 【答案】-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.4.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.5.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3, 第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,... 第n 个图形中的黑色圆点的个数为()12n n +, 则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275. 【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.6.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________. 【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m ,A 饮料增加的销售占六月份销售总额的115,A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3,,B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭ B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy 六月份A 种预计的销售额1315415xy xy xy +⨯=,六月份预计的销售数量()1041+20%y 3xy x ÷= ∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x =故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键7.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∴第n 个等式为:()22211n n n -=-- 故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.8.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________. 【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.9.(2021·陕西中考真题)分解因式:3269x x x ++=______.【答案】()23x x +【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案.【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +.【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.10.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11.(2020·四川绵阳市·中考真题)因式分解:x 3y ﹣4xy 3=_____.【答案】xy (x+2y )(x ﹣2y )【分析】原式提取公因式xy ,再利用平方差公式分解即可;【详解】解:x 3y ﹣4xy 3,=xy (x 2﹣4y 2),=xy (x+2y )(x ﹣2y ).故答案为:xy (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(2020·湖南中考真题)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.【答案】x=2或x=﹣或x=﹣1.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1故答案为:x=2或x=﹣或x=﹣1【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.13.(2020·贵州黔南布依族苗族自治州·中考真题)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=_______.【答案】9【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【详解】由题意知:单项式a m﹣2b n+7与单项式﹣3a4b4是同类项,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故填:9.【点睛】此题主要考查了合并同类项,正确得出m,n的值是解题关键.14.(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.【答案】65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.(2020·四川绵阳市·中考真题)若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案. 【详解】解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.(2020·山东威海市·中考真题)如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.【答案】m 、n 同为奇数或m 、n 同为偶数【分析】几何图形,观察A 型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m 、n 满足的条件.【详解】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数,故答案为:m、n同为奇数或m、n同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.17.(2020·宁夏中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【分析】根据题意得出a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【详解】解:由题意可得在图1中:a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,∵(b-a)2=3 a2-2ab+b2=3,∴15-2ab=3 2ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.18.(2020·湖南长沙市·中考真题)某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为___________________.【答案】9。
专题02整式及因式分解(优选真题80题)一、单选题1(2023·湖南·统考中考真题)计算:3a 2=()A.5a B.3a 2C.6a 2D.9a 22(2023·四川广安·统考中考真题)下列运算中,正确的是()A.a 2+a 4=a 6B.3a 3⋅4a 2=12a 6C.2a +b 2=4a 2+b 2D.-2ab 2 3=-8a 3b 63(2023·湖南怀化·统考中考真题)下列计算正确的是()A.a 2⋅a 3=a 5B.a 6÷a 2=a 3C.ab 3 2=a 2b 9D.5a -2a =34(2023·山东滨州·统考中考真题)下列计算,结果正确的是()A.a 2⋅a 3=a 5B.a 2 3=a 5C.(ab )3=ab 3D.a 2÷a 3=a5(2023·山东临沂·统考中考真题)下列运算正确的是()A.3a -2a =1B.(a -b )2=a 2-b 2C.a 5 2=a 7D.3a 3⋅2a 2=6a 5.6(2023·山东枣庄·统考中考真题)下列运算结果正确的是()A.x 4+x 4=2x 8B.-2x 2 3=-6x 6C.x 6÷x 3=x 3D.x 2⋅x 3=x 67(2023·四川内江·统考中考真题)对于正数x ,规定f (x )=2x x +1,例如:f (2)=2×22+1=43,f 12=2×1212+1=23,f (3)=2×33+1=32,f 13 =2×1313+1=12,计算:f 1101 +f 1100 +f 199 +⋯+f 13 +f 12+f (1)+f (2)+f (3)+⋯+f (99)+f (100)+f (101)=()A.199B.200C.201D.2028(2022·西藏·统考中考真题)按一定规律排列的一组数据:12,-35,12,-717,926,-1137,⋯.则按此规律排列的第10个数是()A.-19101B.21101C.-1982D.21829(2022·江苏南通·统考中考真题)已知实数m ,n 满足m 2+n 2=2+mn ,则(2m -3n )2+(m +2n )(m -2n )的最大值为()A.24B.443C.163D.-410(2022·湖南益阳·统考中考真题)下列各式中,运算结果等于a 2的是()A.a 3-aB.a +aC.a •aD.a 6÷a 311(2023·四川·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了(a +b )n 展开式的系数规律.1 (a +b )0=11 1 (a +b )1=a +b1 2 1 (a +b )2=a 2+2ab +b 21 3 3 1 (a +b )3=a 3+3a 2b +3ab 2+b 3当代数式x 4-12x 3+54x 2-108x +81的值为1时,则x 的值为()A.2B.-4C.2或4D.2或-412(2022·黑龙江牡丹江·统考中考真题)观察下列数据:12,-25,310,-417,526,⋯,则第12个数是()A.12143B.-12143C.12145D.-1214513(2022·广东广州·统考中考真题)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒⋯⋯若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为()A.252B.253C.336D.33714(2022·内蒙古赤峰·统考中考真题)已知x +2 x -2 -2x =1,则2x 2-4x +3的值为()A.13B.8C.-3D.515(2022·湖北鄂州·统考中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,⋯⋯,请你推算22022的个位数字是()A.8B.6C.4D.216(2022·广西玉林·统考中考真题)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.23C.2D.017(2022·湖北武汉·统考中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方--九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是()A.9B.10C.11D.1218(2022·新疆·统考中考真题)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.10419(2022·四川南充·中考真题)已知a>b>0,且a2+b2=3ab,则1a+1b2÷1a2-1b2的值是()A.5B.-5C.55D.-5520(2022·重庆·统考中考真题)对多项式x-y-z-m-n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x-y)-(z-m-n)=x-y-z+m+n,x-y-(z-m)-n=x -y-z+m-n,⋯,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.321(2022·内蒙古·中考真题)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,⋯根据其中的规律可得70+71+⋯+72022的结果的个位数字是()A.0B.1C.7D.822(2021·江苏镇江·统考中考真题)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B323(2023·四川·统考中考真题)下列说法正确的是()A.多边形的外角和为360°B.6a2b-2ab2=2ab(3a-2b)C.525000=5.25×103D.可能性很小的事情是不可能发生的24(2022·湖北荆门·统考中考真题)对于任意实数a,b,a3+b3=(a+b)(a2-ab+b2)恒成立,则下列关系式正确的是()A.a3-b3=(a-b)(a2+ab+b2)B.a3-b3=(a+b)(a2+ab+b2)C.a3-b3=(a-b)(a2-ab+b2)D.a3-b3=(a+b)(a2+ab-b2)25(2022·山东济宁·统考中考真题)下面各式从左到右的变形,属于因式分解的是()A.x2-x-1=x(x-1)-1B.x2-1=(x-1)2C.x2-x-6=(x-3)(x+2)D.x(x-1)=x2-x26(2022·青海·统考中考真题)下列运算正确的是()A.3x2+4x3=7x5B.x+y2=x2+y2C.2+3x=9x2-4 D.2xy+4xy2=2xy1+2y2-3x27(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.5428(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,⋯,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.2629(2021·内蒙古·统考中考真题)若x=2+1,则代数式x2-2x+2的值为()A.7B.4C.3D.3-2230(2021·湖北随州·统考中考真题)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.169二、填空题31(2023·湖南永州·统考中考真题)2a2与4ab的公因式为.32(2023·甘肃武威·统考中考真题)因式分解:ax2-2ax+a=.33(2023·浙江台州·统考中考真题)因式分解:x2-3x=.34(2023·上海·统考中考真题)分解因式:n2-9=.35(2023·浙江嘉兴·统考中考真题)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:.36(2022·湖北恩施·统考中考真题)因式分解:a3-6a2+9a=.37(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a、b,a※b=xa+yb.若2※-2=1,则-3※3的值是.38(2023·四川内江·统考中考真题)已知a、b是方程x2+3x-4=0的两根,则a2+4a+b-3=.39(2023·四川内江·统考中考真题)若a、b互为相反数,c为8的立方根,则2a+2b-c=.40(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、⋯⋯、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷⋯⋯)等,甲烷的化学式为CH4,乙烷的化学式为C2H6,丙烷的化学式为C3H8⋯⋯,其分子结构模型如图所示,按照此规律,十二烷的化学式为.41(2023·浙江·统考中考真题)如图,分别以a ,b ,m ,n 为边长作正方形,已知m >n 且满足am -bn =2,an +bm =4.(1)若a =3,b =4,则图1阴影部分的面积是;(2)若图1阴影部分的面积为3,图2四边形ABCD 的面积为5,则图2阴影部分的面积是.42(2023·山东临沂·统考中考真题)观察下列式子1×3+1=22;2×4+1=32;3×5+1=42;⋯⋯按照上述规律,=n 2.43(2023·山东枣庄·统考中考真题)若x =3是关x 的方程ax 2-bx =6的解,则2023-6a +2b 的值为.44(2023·湖南岳阳·统考中考真题)观察下列式子:12-1=1×0;22-2=2×1;32-3=3×2;42-4=4×3;52-5=5×4;⋯依此规律,则第n (n 为正整数)个等式是.45(2023·天津·统考中考真题)计算7+6 7-6 的结果为.46(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且m -n >1,则称这个正整数为“智慧优数”.例如,16=52-32,16就是一个智慧优数,可以利用m 2-n 2=(m +n )(m -n )进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.47(2023·四川凉山·统考中考真题)已知x 2-2x -1=0,则3x 3-10x 2+5x +2027的值等于.48(2023·四川成都·统考中考真题)若3ab -3b 2-2=0,则代数式1-2ab -b 2a 2÷a -ba 2b,的值为.49(2023·重庆·统考中考真题)对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵7-1=6,3-1=2,∴7311是“天真数”;四位数8421,∵8-1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记P M =3a +b +c +d ,Q M =a -5,若P MQ M能被10整除,则满足条件的M 的最大值为.50(2020·贵州黔南·中考真题)若a m -2b n +7与-3a 4b 4是同类项,则m -n =.51(2022·山东济南·统考中考真题)利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图1,BD 是矩形ABCD 的对角线,将△BCD 分割成两对全等的直角三角形和一个正方形,然后按图2重新摆放,观察两图,若a =4,b =2,则矩形ABCD 的面积是.52(2022·内蒙古鄂尔多斯·统考中考真题)按一定规律排列的数据依次为12,45,710,1017⋯⋯按此规律排列,则第30个数是.53(2022·湖南益阳·统考中考真题)已知m ,n 同时满足2m +n =3与2m -n =1,则4m 2-n 2的值是.54(2022·青海·统考中考真题)木材加工厂将一批木料按如图所示的规律依次摆放,则第n 个图中共有木料根.55(2022·山东聊城·统考中考真题)如图,线段AB =2,以AB 为直径画半圆,圆心为A 1,以AA 1为直径画半圆①;取A 1B 的中点A 2,以A 1A 2为直径画半圆②;取A 2B 的中点A 3,以A 2A 3为直径画半圆③⋯按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为.56(2022·湖北恩施·统考中考真题)观察下列一组数:2,12,27,⋯,它们按一定规律排列,第n 个数记为a n ,且满足1a n +1a n +2=2a n +1.则a 4=,a 2022=.57(2022·内蒙古包头·中考真题)计算:a 2a -b +b 2-2aba -b =.58(2022·内蒙古包头·中考真题)若一个多项式加上3xy +2y 2-8,结果得2xy +3y 2-5,则这个多项式为.59(2022·山东威海·统考中考真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则m n =.60(2022·黑龙江大庆·统考中考真题)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“ ”的个数是.三、解答题61(2023·新疆·统考中考真题)计算:(1)-1 3+4-2-2 0;(2)a +3 a -3 -a a -2 .62(2023·浙江嘉兴·统考中考真题)(1)解不等式:2x -3>x +1.(2)已知a 2+3ab =5,求(a +b )(a +2b )-2b 2的值.63(2023·浙江宁波·统考中考真题)计算:(1)(1+38)0+|-2|-9.(2)(a +3)(a -3)+a (1-a ).64(2023·浙江金华·统考中考真题)已知x =13,求2x +1 2x -1 +x 3-4x 的值.65(2023·四川凉山·统考中考真题)先化简,再求值:(2x +y )2-2x +y 2x -y -2y x +y ,其中x =122023,y =22022.66(2023·四川南充·统考中考真题)先化简,再求值:a -2 a +2 -a +2 2,其中a =-32.67(2023·重庆·统考中考真题)计算:(1)x x +6 +x -3 2;(2)3+n m ÷9m 2-n 2m.68(2022·内蒙古·中考真题)先化简,再求值:3x -1-x -1 ÷x 2-4x +4x -1,其中x =3.69(2022·湖北襄阳·统考中考真题)先化简,再求值:(a +2b )2+(a +2b )(a -2b )+2a (b -a ),其中a =3-2,b =3+2.70(2022·贵州安顺·统考中考真题)(1)计算(-1)2+(π-3.14)0+2sin60°+1-3 -12.(2)先化简,再求值:(x +3)2+(x +3)(x -3)-2x (x +1),其中x =12.71(2022·贵州六盘水·统考中考真题)计算:(1)32+13 0+13-1;(2)若a +1 2+b -2 +c +3=0,求a b +c 的值.72(2022·广东广州·统考中考真题)已知T =(a +3b )2+(2a +3b )(2a -3b )+a 2(1)化简T ;(2)若关于x 的方程x 2+2ax -ab +1=0有两个相等的实数根,求T 的值.73(2022·湖北荆门·统考中考真题)已知x +1x=3,求下列各式的值:(1)x -1x 2;(2)x 4+1x 4.74(2022·山东济宁·统考中考真题)已知a =2+5,b =2-5,求代数式a 2b +ab 2的值.75(2022·吉林·统考中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )-6(m +1).解:m (A )-6(m +1)=m 2+6m -6m -6=.76(2023·山东临沂·统考中考真题)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M 型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M 型平板电脑价值多少元?(2)小敏若工作m 天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m 的代数式表示)?77(2023·浙江嘉兴·统考中考真题)观察下面的等式:32-12=8×1,52-32=8×2,72-52=8×3,92-72=8×4,⋯(1)写出192-172的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(3)请运用有关知识,推理说明这个结论是正确的.78(2023·安徽·统考中考真题)【观察思考】【规律发现】请用含n 的式子填空:(1)第n 个图案中“”的个数为;(2)第1个图案中“★”的个数可表示为1×22,第2个图案中“★”的个数可表示为2×32,第3个图案中“★”的个数可表示为3×42,第4个图案中“★”的个数可表示为4×52,⋯⋯,第n 个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n ,使得连续的正整数之和1+2+3+⋯+n 等于第n 个图案中“”的个数的2倍.79(2023·江苏连云港·统考中考真题)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:阶梯年用气量销售价格备注第一阶梯0∼400m 3(含400)的部分 2.67元/m 3若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加100m 3、200m 3.第二阶梯400∼1200m 3(含1200)的部分 3.15元/m 3第三阶梯1200m 3以上的部分3.63元/m 3(1)一户家庭人口为3人,年用气量为200m 3,则该年此户需缴纳燃气费用为元;(2)一户家庭人口不超过4人,年用气量为xm 3(x >1200),该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到1m 3)80(2022·湖北随州·统考中考真题)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2幕“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)公式①:a +b +c d =ad +bd +cd 公式②:a +bc +d =ac +ad +bc +bd公式③:a-b2=a2-2ab+b2公式④:a+b2=a2+2ab+b2图1对应公式,图2对应公式,图3对应公式,图4对应公式;(2)《几何原本》中记载了一种利用几何图形证明平方差公式a+ba-b=a2-b2的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)(3)如图6,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上任意一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥ADF点H过点B作BF⎳AC交EG的延长线于点F.记△BFG与△CEG的面积之和为S1,△ABD与△AEH的面积之和为S2.①若E为边AC的中点,则S1S2的值为;②若E不为边AC的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.11。
知识回顾专题04因式分解2023年中考数学必考考点总结考点一:因式分解1.因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。
2.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。
若多项式首项是负的,则公因式为负。
用各项除以公因式得到另一个式子。
②公式法:平方差公式:()()b a b a b a -+=-22。
完全平方公式:()2222b a b ab a ±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。
对于一个二次三项式c bx ax ++2,若满足21a a a ⋅=,21c c c ⋅=,且b c a c a =+1221,那么二次三项式c bx ax ++2可以分解为:()()22112c x a c x a c bx ax ++=++。
当1=a 时,二次三项式是c bx x ++2,此时只需21c c c ⋅=,且b c c =+21,则c bx x ++2可分解为:()()212c x c x c bx x ++=++。
④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。
(分组分解法一般针对四项及以上的多项式)3.因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。
(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。
四项及以上则考虑分组分解。
(3)检查因式分解是否分解完全。
必须分解到不能分解位置。
再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。
微专题1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.2.(2022•永州)下列因式分解正确的是()A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)【分析】根据因式分解的定义和因式分解常用的两种方法:提公因式法和公式法判断即可.【解答】解:A选项,ax+ay=a(x+y),故该选项不符合题意;B选项,3a+3b=3(a+b),故该选项符合题意;C选项,a2+4a+4=(a+2)2,故该选项不符合题意;D选项,a2与b没有公因式,故该选项不符合题意;故选:B.3.(2022•湘西州)因式分解:m2+3m=.【分析】直接利用提取公因式法分解因式即可.【解答】解:原式=m(m+3).故答案为:m(m+3).4.(2022•广州)分解因式:3a2﹣21ab=.【分析】直接提取公因式3a,进而分解因式得出答案.【解答】解:3a2﹣21ab=3a(a﹣7b).故答案为:3a(a﹣7b).5.(2022•常州)分解因式:x2y+xy2=.【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).6.(2022•柳州)把多项式a2+2a分解因式得()A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故选:A.7.(2022•菏泽)分解因式:x2﹣9y2=.【分析】直接利用平方差公式分解因式得出答案.【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).8.(2022•烟台)把x2﹣4因式分解为.【分析】利用平方差公式,进行分解即可解答.【解答】解:x2﹣4=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9=.【分析】将m+n看作整体,利用完全平方公式即可得出答案.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2=.【分析】直接利用平方差公式将原式变形,代入得出答案.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.11.(2022•衡阳)因式分解:x2+2x+1=.【分析】本题运用完全平方公式进行因式分解即可.【解答】解:x2+2x+1=(x+1)2,故答案为:(x+1)2.12.(2022•济南)因式分解:a2+4a+4=.【分析】利用完全平方公式进行分解即可.【解答】解:原式=(a+2)2,故答案为:(a+2)2.13.(2022•宁波)分解因式:x2﹣2x+1=.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣2)2.故选:D.15.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.16.(2022•绵阳)因式分解:3x3﹣12xy2=.【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).17.(2022•丹东)因式分解:2a2+4a+2=.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2.故答案为:2(a+1)2.18.(2022•辽宁)分解因式:3x2y﹣3y=.【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:3x2y﹣3y=3y(x2﹣1)=3y(x+1)(x﹣1),故答案为:3y(x+1)(x﹣1).19.(2022•恩施州)因式分解:a3﹣6a2+9a=.【分析】先提公因式a,再利用完全平方公式进行因式分解即可.【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,故答案为:a(a﹣3)2.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.【分析】原式提取公因式2022,再利用完全平方公式分解即可.【解答】解:原式=2022(x2﹣2x+1)=2022(x﹣1)2.故答案为:2022(x﹣1)2.21.(2022•常德)分解因式:x3﹣9xy2=.【分析】利用提公因式法和平方差公式进行分解,即可得出答案.【解答】解:x3﹣9xy2=x(x2﹣9y2)=x(x+3y)(x﹣3y),故答案为:x(x+3y)(x﹣3y).22.(2022•怀化)因式分解:x2﹣x4=.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.12【分析】根据十字相乘法可以将多项式39x2+5x﹣14分解因式,然后再根据多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),即可得到a、b、c的值,然后计算出a+2c的值即可.【解答】解:∵39x2+5x﹣14=(3x+2)(13x﹣7),多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),∴a=2,b=13,c=﹣7,∴a+2c=2+2×(﹣7)=2+(﹣14)=﹣12,故选:A.24.(2022•内江)分解因式:a4﹣3a2﹣4=.【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),故答案为:(a2+1)(a+2)(a﹣2).25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为.【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是.【分析】将a2b+ab2因式分解,然后代入已知条件即可求值.【解答】解:a2b+ab2=ab(a+b),∵ab=2,a+b=3,∴原式=2×3=6.故答案为:6.。
专题02整式运算及因式分解(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01代数式及其应用--------------------------------------------------------------------------------------------------------------1二、考点02整式及其运算-----------------------------------------------------------------------------------------------------------------6三、考点03因式分解----------------------------------------------------------------------------------------------------------------------20考点01代数式及其应用一、考点01代数式及其应用1.(2024·四川广安·中考真题)代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商【答案】C【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x -中的运算关系解答即可.【详解】解:代数式3x -的意义可以是3-与x 的积.故选C .2.(2023·湖南常德·中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .0【答案】A【分析】把2340a a +-=变形后整体代入求值即可.【详解】∵2340a a +-=,∴234+=a a ∴()222632332435a a a a +-=+-=⨯-=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.3.(2023·山东·中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .24.(2023·甘肃兰州·中考真题)关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=()A .-2B .2C .-4D .4【答案】A【分析】由一元二次方程根的情况可得240b c -=,再代入式子即可求解.【详解】∵关于x 的一元二次方程20x bx c ++=有两个相等的实数根∴240b c ∆=-=∴()2221242022b c b c -+=--=-=-,故选:A.【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.5.(2023·江苏·中考真题)若圆柱的底面半径和高均为a ,则它的体积是(用含a 的代数式表示).【答案】3πa 【详解】根据圆柱的体积=圆柱的底面积⨯圆柱的高,可得23ππV a a a == .故答案为:3πa .【点睛】本题主要考查代数式和整式的乘法运算,牢记整式乘法的运算性质是解题的关键.6.(2023·江苏·中考真题)若210a b +-=,则36a b +的值是.【答案】3【分析】根据已知得到2=1a b +,再代值求解即可.【详解】解:∵210a b +-=,∴2=1a b +,∴()36323a b a b +=+=,故答案为:3.【点睛】本题考查代数式求值,利用整体思想求解是解答的关键.7.(2024·山东济宁·中考真题)已知2210a b -+=,则241ba +的值是.8.(2023·江苏宿迁·中考真题)若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=.【答案】1012-【分析】根据完全平方公式得()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m -=-+---+--,再代值计算即可.【详解】解: ()()22202320242025m m -+-=()()2222[(2023)(2024)][(2023)(2024)]20232024m m m m m m ∴=-+--+----12025=-2024=-()()220232021041m m ∴=---故答案为:1012-.【点睛】本题考查完全平方公式的应用,求代数式值,掌握完全平方公式222()2a b a ab b ±=±+及其变式是解题本题的关键.9.(2024·江苏苏州·中考真题)若2a b =+,则()2b a -=.【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.10.(2024·四川成都·中考真题)若m ,n 为实数,且()240m +=,则()2m n +的值为.11.(2024·广东广州·中考真题)若2250a a --=,则2241a a -+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a --=,得225a a -=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a --= ,225a a ∴-=,()2224122125111a a a a ∴-+=-+=⨯+=,故答案为:11.12.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+=.【答案】7【分析】本题考查了求代数式的值.对已知等式变形得到2246x x -=,再整体代入计算求解即可.【详解】解:∵2230x x --=,∴223x x -=,∴2246x x -=,∴2241617x x -+=+=,故答案为:7.13.(2023·西藏·中考真题)按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)【答案】()32nn a+【分析】根据系数和字母的次数与单项式的序号关系写出即可.【详解】解:5a 系数为3125⨯+=,次数为1;28a 系数为3228⨯+=,次数为2;311a 系数为33211⨯+=,次数为3;414a 系数为34214⨯+=,次数为4;∴第n 个单项式的系数可表示为:32n +,字母a 的次数可表示为:n ,∴第n 个单项式为:()32nn a +.【点睛】本题考查数字变化类规律探究,掌握单项式的系数和次数并发现其变化规律是解题的关键.14.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;15.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.考点02整式及其运算二、考点02整式及其运算16.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=()A .aB .a-C .2aD .2a-【答案】D【分析】本题主要考查了整式的混合运算,先计算单项式乘以多项式,再合并同类项即可.【详解】解:22(1)2a a a --22222a a a =--2a=-故选:D .17.(2024·贵州·中考真题)计算23a a +的结果正确的是()A .5aB .6aC .25a D .26a 【答案】A【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .18.(2024·四川内江·中考真题)下列单项式中,3ab 的同类项是()A .33ab B .232a b C .22a b -D .3a b【答案】A【分析】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【详解】解:A .是同类项,此选项符合题意;B .字母a 的次数不相同,不是同类项,故此选项不符合题意;C .相同字母的次数不相同,不是同类项,故此选项不符合题意;D .相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A .19.(2024·四川广元·中考真题)如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】本题主要考查同类项和确定点的坐标,根据同类项的性质求出,m n 的值,再确定点(),m n 的位置即可【详解】解:∵单项式23m x y -与单项式422n x y -的和仍是一个单项式,∴单项式23m x y -与单项式422n x y -是同类项,∴24,23m n =-=,解得,2,1m n ==-,∴点(),m n 在第四象限,故选:D20.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【答案】D【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mznz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,A 、“20”左边的数是248⨯=,故本选项不符合题意;、“20”右边的“□”表示4,故本选项不符合题意;a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .21.(2024·云南·中考真题)下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .22.(2024·河北·中考真题)下列运算正确的是()A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .23.(2024·广东·中考真题)下列计算正确的是()A .2510a a a ⋅=B .824a a a ÷=C .257a a a-+=D .()5210a a =【答案】D【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .24.(2024·辽宁·中考真题)下列计算正确的是()A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+【答案】D【分析】根据合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式等知识点进行判定即可.【详解】A .3332a a a +=,故本选项原说法不符合题意;B .235a a a ⋅=,故本选项原说法不合题意;C .236()a a =,故本选项原说法不合题意;D .2(1)a a a a +=+,故本选项符合题意.故选:D .【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、单项式乘以多项式的运算,熟练掌握运算法则是解本题的关键.25.(2024·青海·中考真题)计算1220x x -的结果是()A .8xB .8x -C .8-D .2x 【答案】B【分析】此题考查了合并同类项.根据合并同类项法则计算即可.【详解】解:12208x x x -=-,故选:B .26.(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B .12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .27.(2022·山东德州·中考真题)已知2M a a =-,2N a =-(a 为任意实数),则M N -的值()A .小于0B .等于0C .大于0D .无法确定【答案】C【分析】本题主要考查了非负数的性质.熟练掌握整式的加减,完全平方式与配方法,非负数的性质,是解题的关键.根据完全平方式利用配方法把M N -的代数式变形,根据偶次方的非负性判断即可.【详解】M N -()22a a a -=--222a a =-+()211a =-+,∵()210a -≥,∴()2111a -+≥,∴M N -大于0,故选:C .28.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=【答案】B【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分29.(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b=C .83a b +=D .38a b=+【答案】A【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .30.(2024·湖南长沙·中考真题)下列计算正确的是()A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为.【答案】21-y 【分析】本题考查整式的加减运算,根据题意“一个多项式加上234y xy +-,结果是2325xy y +-”,进行列出式子:()()2232534xy y y xy +--+-,再去括号合并同类项即可.【详解】解:依题意这个多项式为()()2232534xy yy xy +--+-2232534xy y y xy =+---+21y =-.故答案为:21-y 32.(2024·河南·中考真题)请写出2m 的一个同类项:.【答案】m (答案不唯一)【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m33.(2024·重庆·中考真题)一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是.34.(2023·江苏泰州·中考真题)若230a b -+=,则2(2)4a b b +-的值为.【答案】6-【分析】由230a b -+=,可得23a b -=-,根据()2(2)422a b b a b +-=-,计算求解即可.【详解】解:由230a b -+=,可得23a b -=-,∴()2(2)442442226a b b a b b a b a b +-=+-=-=-=-,故答案为:6-.【点睛】本题考查了代数式求值.解题的关键在于正确的运算.35.(2024·天津·中考真题)计算86x x ÷的结果为.【答案】2x 【分析】本题考查同底数幂的除法,掌握同底数幂的除法,底数不变,指数相减是解题的关键.【详解】解:862x x x ÷=,故答案为:2x .36.(2024·上海·中考真题)计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .37.(2024·江苏苏州·中考真题)计算:32x x ⋅=.【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.38.(2023·江苏·中考真题)先化简,再求值:2(1)2(1)x x +-+,其中x =.【答案】21x -;1【分析】利用完全平方公式和整式加减的运算法则进行化简,根据平方根的性质即可求得答案.【详解】原式22122x x x =++--39.(2023·湖南·中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中3,3a b =-=.40.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b -+的值.41.(2024·陕西·中考真题)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -.【答案】222x y +,6【分析】本题考查了整式的混合运算以及求值.根据完全平方公式和单项式乘以多项式法则进行运算,再合并同类项,最后代入即可求解.【详解】解:()()22x y x x y ++-22222x xy y x xy=+++-222x y =+;当1x =,=2y -时,原式()22212246=⨯+-=+=.42.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.43.(2023·湖南·中考真题)先化简,再求值:()()()222233a a a a a -+-++,其中3a =-.345.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )6(1)m -+.解:m (A )6(1)m -+2666m m m =+--=.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷,解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.46.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.47.(2024·甘肃·中考真题)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.【答案】2a b +,3【分析】本题主要考查了整式的化简求值,先根据平方差公式和完全平方公式去小括号,然后合并同类项,再根据多项式除以单项式的计算法则化简,最后代值计算即可.【详解】解:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦()()22224442a ab b a b b⎡⎤=++--÷⎣⎦()22224442a ab b a b b =++-+÷()2422ab b b=+÷2a b =+,当2a =,1b =-时,原式()2213=⨯+-=.考点03因式分解三、考点03因式分解48.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .49.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .50.(2023·山东·中考真题)下列各式从左到右的变形,因式分解正确的是()A .22(3)69+=++a a a B .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+【答案】C【分析】根据因式分解的概念可进行排除选项.【详解】解:A 、22(3)69+=++a a a ,属于整式的乘法,故不符合题意;B 、()24444a a a a -+=-+,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C 、()()22555ax ay a x y x y -=+-,属于因式分解,故符合题意;D 、因为()()22242828a a a a a a -+=+-≠--,所以因式分解错误,故不符合题意;故选C .【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.51.(2023·河北·中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B 【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.52.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.53.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +54.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.55.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.56.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.57.(2024·甘肃临夏·中考真题)因式分解:214x -=.58.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.59.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b c m n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.60.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.。
53§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是()A.3x(x2-4x+4) C.3x(x+2)(x-2)B.3x(x-4)2 D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案D2.(2015·山东临沂,,分)多项式mx2-m与多项式x2-2x+1的公因式是()A.x-1 C.x2-1B.x+1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形C.直角三角形B.等腰直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)25.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是()A.x2-y2=(x-y)2 C.xy-x=x(y-1)B.a2+a+1=(a+1)2 D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是()A.x2-1 C.x2-2x+1B.x(x-2)+(2-x) D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是()A.a(a-4) C.a(a+2)(a-2)B.(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是()A.x2+1 C.x2+x+1B.x2+2x-1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.3因式分解一、选择题1.(2013·浙江湖州一模,6,3分)把ab2-a3因式分解,结果正确的是()A.a(b2-a2) C.a(b+a)(b-a)B.a(b-a)2 D.a(a-b)(a+b)解析原式=a(b2-a2)=a(b+a)(b-a).故选C.答案C2.(2013·北京密云一模,1,3分)把多项式2x2+8x+8分解因式,结果正确的是()A.(2x+4)2 C.2(x-2)2B.2(x+4)2 D.2(x+2)2解析原式=2(x2+4x+4)=2(x+2)2,故选D.答案D3.(2013·浙江湖州期末检测,3,3分)练习中,王莉同学做了如下4道因式分解题,你认为王莉做得不够完整的一道是A.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)() B.x2+2xy+y2=(x+y)2D.ab2-6ab+9a=a(b-3)2解析观察A可知,x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底.故选A.答案A4.(2015·浙江嘉兴4月质检,6,3分)因式分解3y2-6y+3,结果正确的是()A.3(y-1)2C.(3y-3)2解析先提公因式3,再用公式法.答案A B.3(y2-2y+1) D.3(y-1)23 a5.(2014· 广东,4,3 分)把 x 3-9x 分解因式,结果正确的是( )A .x (x 2-9)C .x (x +3)2B .x (x -3)2D .x (x +3)(x -3)解析 x 3-9x =x (x 2-9)=x (x +3)(x -3).答案 D6.(2014· 浙江杭州下城一模,5,3 分)分解因式 a 4-2a 2+1 的结果是( )A .(a 2+1)2C .a 2(a 2-2)B .(a 2-1)2D .(a +1)2(a -1)2解析 a 4-2a 2+1=(a 2-1)2=[(a +1)(a -1)]2 =(a +1)2(a -1)2.故选 D.答案 D二、填空题1 7.(2015· 浙江金华模拟,11,4 分)分解因式:2x 2-8=________.解析 1 1 12x 2-8=2(x 2-16)=2(x +4)(x -4).1答案 2(x +4)(x -4)8.(2014· 江苏连云港,12, 分)若 ab =3,-2b =5,则 a 2b -2ab 2 的值是________.解析 ∵ab =3,a -2b =5,则 a 2b -2ab 2=ab (a -2b )=3×5=15.答案 15三、解答题9.(2013· 江苏泰州一模,19,6 分)因式分解:2x 2-12x +18.解 原式=2(x 2-6x +9)=2(x -3)2.§1.3因式分解一、选择题1.(原创题)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是() A.m+1B.2m C.2D.m+2解析原式=(m-1)(m+1+1)=(m-1)(m+2),∴余下的部分是m+2.故选D.答案D2.(改编题)把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2 C.m(x-4)2B.m(x+3)(x-3) D.m(x-3)2解析原式=m(x2-6x+9)=m(x-3)2.故选D.答案D3.(原创题)已知a+b=53,a-b=38,则a2-b2的值为A.15B.38C.53D.2014解析∵原式=(a+b)(a-b)=53×38=2014,故选D.答案D4.(改编题)将m2(a-2)+m(2-a)分解因式,正确的是() ()A.(a-2)(m2-m) C.m(a-2)(m-1)B.m(a-2)(m+1) D.m(2-a)(m-1)解析原式=m2(a-2)-m(a-2)=m(a-2)(m-1).故选C.答案C5.(改编题)a4b-2a3b+a2b分解因式的正确结果为()A.a2b(a2-2a+1) C.a3b(a-2)B.a2b(a-1)(a+1) D.a2b(a-1)22 0142 1 007 2 014 2 0142 ⎝2 014+2 014⎭解析 原式=a 2b (a 2-2a +1)=a 2b (a -1)2,故选 D.答案 D二、填空题6.(原创题)在实数范围内分解因式:x 4-25=________.解析 x 4-25=(x 2-5)·(x 2+5)=(x 2+5)(x + 5)(x - 5).答案 (x 2+5)(x + 5)(x - 5)7.(改编题)分解因式:4x (x -1)+1=________.解析 原式=4x 2-4x +1=(2x -1)2.答案 (2x -1)28.(原创题)分解因式 3a 2-27=________.解析 原式=3(a 2-9)=3(a +3)(a -3).答案 3(a +3)(a -3)9.(原创题)已知 x 2+kx +16 是完全平方式,则 k =________.解析 设 x 2+kx +16=(x ±4)2,解得 k =±8.答案 ±8三、解答题10.(改编题)给出三个多项式 A =x 2+2xy ,B =y 2+2xy ,C =x 2,请你任选两个进行加(或减)法运算(如:A -B ),再将结果分解因式.解 答案不唯一,如:法一 A -B =x 2+2xy -(y 2+2xy )=x 2-y 2=(x +y )·(x -y ).法二 B +C =y 2+2xy +x 2=(y +x )2.法三 A +C =x 2+2xy +x 2=2x 2+2xy =2x (x +y ).11.(原创题)计算: 2 0132 2 013 1 1+ × + .2 0132 2 013 1 1解 原式=2 0142+2×2 014×2 014+2 0142⎛2 013 1 ⎫2 = ⎪ =1.。