2017-2018学年广东省深圳市龙华区七年级(上)期末数学试卷
- 格式:docx
- 大小:156.37 KB
- 文档页数:17
2017-2018学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.计算(a2)3的结果是()A. B. C. D.2.“西伯利亚阔口罐病毒”是法国一个病毒学家团队发现的,是目前人类已知的第三种超大型病毒,该病毒直径超过0.0000005米,可以在光学显微镜下观察到,数据0.0000005米用科学记数法表示为()A. 米B. 米C. 米D. 米3.下列图形是一些银行的标志图,其中是轴对称图形的是()A. B. C. D.4.下列多项式的乘法中,可以用平方差公式计算的是()A. B. C.D.5.如图,“因为∠1=∠2,所以a∥b”,其中理由依据是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线平行D. 对顶角相等,两直线平行6.下列事件中是确定事件的是()A. 经过有交通信号灯的路口,遇到绿灯B. 从一个只装有红球的袋子中摸出一个白球C. 打开电视机,正在播放俄罗斯世界杯D. 一个数的绝对值为正数7.已知一个三角形的两边之长分别为3cm和7cm,第三边的长为整数,则该三角形的周长可能是()A. 12cmB. 13cmC. 17cmD. 20cm8.小亮从家到达离家5km的市图书馆后,在市图书馆阅读了一段时间的书,然后返回家中,下列图象,能描述小亮与家之间的距离s(km)与时间t(h)的关系的是()A. B.C. D.9.如图,已知∠1=∠2,那么添加以下哪一个条件仍不能判断△ABC≌△ADC的是()A.B.C.D.10.下列说法中正确的是()A. 全等三角形的周长相等B. 从直线外一点到这条直线的垂线段,叫做这点到直线的距离C. 两条直线被第三条直线所截,同位角相等D. 等腰三角形的对称轴是其底边上的高11.将边长分别为a和b的两个正方形如图所示放置,则图中阴影部分的面积是()A. B. C. D.12.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.计算(-4a2b)÷(-2b)的结果是______14.在一个不透明的箱子里有黄色、白色的小球共10个,在不允许将球倒出来的情况下,为估计其中白球的个数,小刚摇匀后从中随机摸出一个球记下颜色,再把它放回箱子中,不断重复上述摸球过程,共摸球400次,其中80次摸到白球,可估计箱子中大约白球的个数有______个15.如图,△ABC中,AB=AC,∠BAC=40°,AD是中线,BE是高,AD与BE交于点F,则∠AFE=______.16.如图,已知直线a∥b,将一块含30°角的三角板如图放置,若∠1=26°,则∠2=______三、计算题(本大题共1小题,共4.0分)17.如图,已知△ABC.①请用尺规作图法作出AC边的垂直平分线,交AB于D点;(保留作图痕迹,不要求写作法)②在(1)的条件下,连接CD,若AB=15,BC=8,求△BCD的周长.四、解答题(本大题共7小题,共48.0分)18.计算:(1)()-2×(-1)4+|-9|×(2018-3.14)0;(2)(a+b)(a-2b)-a(a-b)+(3b)219.先化简,再求值:[(3x+y)(3x-y)-(3x-y)2]÷(-2y),其中x=-1,y=201820.填空:把下面的推理过程补充完整,并在括号内注明理由,如图,已知△ABC中,E、F分别是AB、AC上的两点,且EF∥BC,D为EF上一点,且BD=CD,ED=FD,请说明BE=CF.解:∵BD=CD(已知)∴∠DBC=∠DCB(______)∵EF∥BC(已知)∴∠EDB=∠DBC∠FDC=______(______)∴∠EDB=∠FDC(等量代换)在△EBD和△FCD中,∴△EBD≌△FCD(______)∴BE=CF(______)21.甲、乙两人玩“石头、剪刀、布”的游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“石头”、“剪刀”、“布”的卡片张数分别为3、5、7.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种卡片不分胜负(1)若甲先摸,则他摸出“石头”的概率是______;(2)若甲先摸出“石头”,则乙再摸出“石头”的概率是______;(3)若甲先摸出了“石头”,则乙获胜的概率是______;(4)若甲先摸,则他摸出哪种卡片获胜的可能性最大?请说明理由.22.某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是______,因变量是______;(2)无人机在75米高的上空停留的时间是______分钟;(3)在上升或下降过程中,无人机的速度______为米/分;(4)图中a表示的数是______;b表示的数是______;(5)图中点A表示______.23.如图,已知C、D是线段AB上的两点,且AC=BD,AE∥BF,AE∥BF,AE=BF,写出DE与CF之间的关系,并证明你的结论.24.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以lcms的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:(a2)3=a6.故选:B.直接利用幂的乘方运算法则计算得出答案.此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.2.【答案】C【解析】解:0.0000005米=5×10-7米,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.【答案】D【解析】解:(3x+y)(y-3x)=y2-9x2,故选:D.利用平方差公式的结构特征判断即可.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.【答案】B【解析】解:因为∠1=∠2,所以a∥b(内错角相等,两直线平行),故选:B.根据平行线的判定解答即可.本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.6.【答案】B【解析】解:A、经过有交通信号灯的路口,遇到绿灯是随机事件,故A错误;B、从一个只装有红球的袋子中摸出一个白球是不可能事件,故B正确;C、打开电视机,正在播放俄罗斯世界杯是随机事件,故C错误;D、一个数的绝对值为正数是随机事件,故D错误;故选:B.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.【答案】C【解析】【分析】根据三角形任意两边之和大于第三边,两边之差小于第三边解答.此题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和.【解答】解:∵7-3=4,7+3=10,∴4<第三边<10,∵第三边为整数,∴第三边可以为:5,6,7,8,9共5个,即周长可以为:15cm,16cm,17cm,18cm,19cm,故周长可能是:17cm.故选C.8.【答案】D【解析】解:小亮从家到市图书馆,s随着时间的增加而增大,小亮在市图书馆阅读了一段时间的书,s不随着时间的变化而变化,小亮从市图书馆返回家中,s随着时间的增加而减小,故选:D.根据题目中的描述可以得到s与t的关系,从而可以解答本题.本题考查函数图象,解题的关键是明确题意,利用数形结合的思想解答.9.【答案】D【解析】解:∵∠1=∠2,∴∠ACB=∠ACD,∵AC=AC,A、添加BC=DC,可根据SAS判定△ABC≌△ADE,故正确;B、添加∠BAC=∠DAC,可根据ASA判定△ABC≌△ADE,故正确;C、添加∠B=∠D,可根据AAS判定△ABC≌△ADE,故正确;D、添加AB=AD,SSA不能判定△ABC≌△ADE,故错误.故选:D.本题要判定△ABC≌△ADE,已知AC=AC,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.【答案】A【解析】解:A、∵全等三角形的对应边分别相等,∴全等三角形的周长相等,故本选项符合题意;B、从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故本选项不符合题意;C、两条平行线被第三条直线所截,同位角才相等,故本选项不符合题意;D、等腰三角形的对称轴是其底边上的高所在的直线,故本选项不符合题意;故选:A.根据全等三角形的性质即可判断A;根据点到直线的距离的定义即可判断B;根据平行线的性质即可判断C;根据等腰三角形的性质即可判断D.本题考查了全等三角形的性质,点到直线的距离的定义,平行线的性质,等腰三角形的性质等知识点,能熟记知识点的内容是解此题的关键.11.【答案】A【解析】=a2+b2-b2-(a+b)a-(a-b)a解:∵S阴影∴S=b2阴影故选:A.由阴影部分面积等于两个正方形面积的和减去三个三角形面积.本题考查了完全平方公式的几何背景,关键是利用面积法解决问题12.【答案】C【解析】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°-∠EAD=180°-70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.依据SAS可证明ABE≌△ACD,由全等三角形的性质可得到∠AEB=∠ADC,则∠AEF+∠ADC=180°,然后依据四边形的内角和为360°可求得∠BFD的度数,然后再证明∠AEC=∠DAC,最后,依据等腰三角形的性质可得到AC与DE的关系.本题主要考查的是全等三角形的性质和判定、等腰三角形的性质、四边形的内角和,熟练掌握相关知识是解题的关键.13.【答案】2a2【解析】解:(-4a2b)÷(-2b)=2a2.故答案为:2a2.直接利用整式的除法运算法则计算得出答案.此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.14.【答案】2【解析】【解答】解:设箱子中白球有x个,根据题意,得:=,解得:x=2,即箱子中白球有2个,故答案为:2.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.15.【答案】70°【解析】解:∵AB=AC且AD是中线,∴∠CAD=∠BAC=20°,∵BE是高,∴∠AEB=90°,∴∠AFE=70°,故答案为:70°.由等腰三角形三线合一知∠CAD=∠BAC=20°,根据∠AEB=90°可得答案.本题主要考查等腰三角形的性质,解题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.16.【答案】34°【解析】解:如图,过B作BD∥a,则BD∥b,∴∠2=∠ABD,∠1=∠CBD=26°,又∵∠ABC=60°,∴∠ABD=60°-26°=34°,∴∠2=34°,故答案为:34°.过B作BD∥a,则BD∥b,即可得到∠2=∠ABD,∠1=∠CBD=26°,再根据∠ABC=60°,即可得到∠ABD=60°-26°=34°,进而得出∠2=34°.本题考查了平行线的性质,平行公理,熟记性质并作出辅助线是解题的关键.17.【答案】解:(1)①如图,点D为所作;②∵点D为AC的垂直平分线与AB的交点,∴CD=AD∴BD+CD=BD+AD=AB=15,∴△BCD的周长=BD+CD+BC=AB+BC=15+8=23.【解析】①利用基本作图作AC的垂直平分线即可;②利用线段垂直平分线的性质得到CD=AD,然后利用等线段代换得到△BCD的周长AB+BC=23.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).18.【答案】解:(1)原式=9×1+9×1=18;(2)原式=a2-ab-2b2-a2+ab+9b2=7b2.【解析】(1)直接利用负指数幂的性质以及绝对值的性质和零指数幂的性质分别化简得出答案;(2)直接利用多项式的乘法运算法则以及积的乘方运算法则分别计算得出答案.此题主要考查了实数运算以及整式的乘法运算,正确掌握相关运算法则是解题关键.19.【答案】解:原式=(9x2-y2-9x2+6xy-y2)÷(-2y)=(6xy-2y2)÷(-2y)=-3x+y,当x=-1,y=2018时,原式=-3×(-1)+2018=2021.【解析】先算括号内的乘法,合并同类项,算除法,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.【答案】等边对等角;∠DCB;两直线平行,内错角相等;SAS;全等三角形的对应边相等【解析】解:∵BD=CD(已知)∴∠DBC=∠DCB(等边对等角)∵EF∥BC(已知)∴∠EDB=∠DBC∠FDC=∠DCB(两直线平行,内错角相等)∴∠EDB=∠FDC(等量代换)在△EBD和△FCD中,,∴△EBD≌△FCD(SAS)∴BE=CF(全等三角形的对应边相等),故答案为:等边对等角;∠DCB;两直线平行,内错角相等;SAS;全等三角形的对应边相等.根据SAS、等腰三角形的性质、平行线的性质证明两个三角形全等即可.本题考查全等三角形的判定和性质、等腰三角形的性质、平行线的性质等知识,解题的关键是熟练掌握基本知识解决问题,属于中考常考题型.21.【答案】解:(1);(2);(3);(4)摸出剪刀的可能性最大,理由如下∵P(石头获胜)==,++=,P(剪刀获胜)=++=,P(布获胜)=++又∵<<,∴甲摸出剪刀获胜的可能性最大.【解析】【分析】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.(1)用“石头”的卡片数量除以总数量可得;(2)用剩余的“石头”卡片的数量除以剩余卡片总数量即可得;(3)用“布”卡片的数量除以剩余的卡片总数量即可得;(4)分别计算出石头、剪刀、布获胜的概率,比较大小即可得.【解答】解:(1)若甲先摸,则他摸出“石头”的概率是=,故答案为;(2)若甲先摸出“石头”,则乙再摸出“石头”的概率是=,故答案为;(3)若甲先摸出了“石头”,则乙获胜的概率是=,故答案为;(4)见答案,∴甲摸出剪刀获胜的可能性最大.22.【答案】时间(或t);高度(或h);5;25;2;15;在第6分钟时,无人机的飞行高度为50米【解析】解:(1)横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或h);(2)无人机在75米高的上空停留的时间是12-7=5分钟;(3)在上升或下降过程中,无人机的速度=25米/分;(4)图中a表示的数是分钟;b表示的数是分钟;(5)图中点A表示在第6分钟时,无人机的飞行高度为50米;故答案为:时间(或t);高度(或h);5;25;2;15;在第6分钟时,无人机的飞行高度为50米.(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留的时间12-7=5分钟即可;(3)根据速度=路程除以时间计算即可;(4)根据速度的汽车时间即可;(5)根据点的实际意义解答即可.此题考查函数图象问题,从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.23.【答案】解:DE∥CF,且DE=CF,证明:∵AC=BD,∴AC+CD=BD+CD,即:AD=BC,∵AE∥BF,∴∠A=∠B,∵AE=BF,∴△ADE≌△BCF,∴DE=CF,∠ADE=∠BDF,∴DE∥CF.【解析】结论:DE=CF,DE∥CF.只要证明△ADE≌△BCF即可解决问题;本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.24.【答案】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,…………………………1分∴BE=AB-AD=7-2=5,∵AD=5,∴BE=AD,………………………………………2分∵∠A=∠B=90°,∴△BEF≌△ADE;………………………………3分②由①得DE=EF,∠BEF=∠ADE,……………………4分∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°-(∠BEF+∠AED)=90°,……………………5分∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;……………………………………………………6分(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则,∴x=,t=.……………………8分(说明:每正确写出一对x、t的值,给1分.)【解析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE 时,分别根据AD=BE,AE=BF,列方程组可得结论.本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.。
深圳市七年级上册数学期末试卷及答案-百度文库一、选择题1.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查2.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 3.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .74.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =135.计算:2.5°=( )A .15′B .25′C .150′D .250′6.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >07.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4C .﹣2D .﹣4 9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 10.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+111.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-112.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB . A .1个B .2个C .3个D .4个 二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.把53°30′用度表示为_____.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.16.已知23,9n m n a a -==,则m a =___________.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.如果一个数的平方根等于这个数本身,那么这个数是_____.20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?27.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.28.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.29.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.30.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM上,D在线段BM上)()1若4AM cm=,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)()2当点C、D运动了2s,求AC MD+的值.()3若点C、D运动时,总有2MD AC=,则AM=________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B .【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.2.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.3.D解析:D【解析】【分析】将x 与y 的值代入原式即可求出答案.【详解】当x=﹣13,y=4, ∴原式=﹣1+4+4=7故选D .【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.4.D解析:D【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程3x ﹣1=0,移项得:3x =1,解得:x =13, 故选:D .【点睛】 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C .【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.6.C解析:C【解析】【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |,∴a +b <0,ab <0,a ﹣b <0,a ÷b <0.故选:C .7.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误;选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】 本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 8.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x ﹣9﹣3=0,解得:x =4,故选:B .【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°.故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.10.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.11.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.21.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解.【详解】(1)①∵∠AOC =30°,∴∠BOC =180°﹣30°=150°,∵OP 平分∠BOC ,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ =15°,∠AOQ =15°,∴OQ 平分∠AOC ;(2)∵OC 平分∠POQ ,∴∠COQ =12∠POQ =45°. 设∠AOQ =3t ,∠AOC =30°+6t ,由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得:t =5,当30+6t ﹣3t =225,也符合条件,解得:t =65,∴5秒或65秒时,OC 平分∠POQ ;(3)设经过t 秒后OC 平分∠POB ,∵OC 平分∠POB ,∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°,∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t ,∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.26.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.27.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒ 则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒ 72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45, 综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.28.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.29.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.30.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .又∵AN ﹣BN=AB ,∴MN=AB=12,∴MN AB =1212=1. 综上所述:MN AB =13或1. 【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】 试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM 平分∠AOC,ON 平分∠BOC,∴∠NOC=12 ∠BOC,∠COM=12∠COA. ∵∠CON+∠COM=∠MON, ∴∠MON=12(∠BOC+∠AOC)=12α; ②当OC 在∠AOB 外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
2016-2017学年广东省深圳市龙华新区七年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)﹣的相反数是()A.2 B.﹣2 C.﹣ D.2.(3分)2016年天猫双11落下帷幕,总成交额最终定格在120700000000元,是8年来成交额首次突破1000亿大关,数据120700000000元用科学记数法表示为()A.12.07×1010B.1.207×1011C.1.207×1012D.1.207×10123.(3分)某企业去年产值p万元,今年比去年增产10%,今年产值是()A.p(1+10%)万元B.(p+10%)万元C.万元D.万元4.(3分)如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.经过两点有且只有一条直线D.两点之间,线段最短5.(3分)若﹣x m y n+4与5x2y是同类项,则n m的值为()A.﹣9 B.6 C.9 D.166.(3分)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等7.(3分)据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,是数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查8.(3分)如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形9.(3分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.(3分)下列说法中正确的是()A.若|a|=﹣a,则a一定是负数B.单项式x3y2z的系数为1,次数是6C.若AP=BP,则点P是线段AB的中点D.若∠AOC=∠AOB,则射线OC是∠AOB的平分线11.(3分)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时12.(3分)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B 三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN 的度数是()A.30°B.45°C.55°D.60°二、填空题(每小题3分,共12分)13.(3分)如果收入10元记作+10元,那么支出80元记作元.14.(3分)将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“们”字相对的字是.15.(3分)若x=2是方程ax+3bx﹣10=0的解,则3a+9b的值为.16.(3分)将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n个图案中棋子的个数为.三、解答题(本题共7小题,共52分)17.(8分)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)﹣22﹣|﹣12|×(﹣)18.(8分)(1)化简:5(x2+2xy)﹣2(x2﹣xy)(2)先化简,再求代数式的值:3(a2b+ab2)﹣(4a2b﹣2)﹣(3ab2+2),其中a=﹣3,b=2.19.(8分)(1)解方程:7x﹣5=3x+5(2)解方程:=1﹣.20.(6分)自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:(1)请将条形统计图1补充完整;(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为度;(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为kg.21.(6分)如图,已知线段AB、a、b,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=a;(2)在射线BA上截取线段AD,使AD=b;若AB=4cm,a=3cm,b=5cm,且E 为CD的中点,则AE=cm.22.(9分)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B 种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?23.(7分)数轴上有A、B、C三点,其中点C为线段AB的中点,O为原点.(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为;(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为.2016-2017学年广东省深圳市龙华新区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)(2016秋•深圳期末)﹣的相反数是()A.2 B.﹣2 C.﹣ D.【解答】解:﹣的相反数是,故选:D.2.(3分)(2016秋•深圳期末)2016年天猫双11落下帷幕,总成交额最终定格在120700000000元,是8年来成交额首次突破1000亿大关,数据120700000000元用科学记数法表示为()A.12.07×1010B.1.207×1011C.1.207×1012D.1.207×1012【解答】解:120700000000=1.207×1011.故选:B.3.(3分)(2016秋•深圳期末)某企业去年产值p万元,今年比去年增产10%,今年产值是()A.p(1+10%)万元B.(p+10%)万元C.万元D.万元【解答】解:根据题意可得今年产值=(1+10%)p万元,故选A4.(3分)(2016秋•深圳期末)如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.经过两点有且只有一条直线D.两点之间,线段最短【解答】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选C5.(3分)(2016秋•深圳期末)若﹣x m y n+4与5x2y是同类项,则n m的值为()A.﹣9 B.6 C.9 D.16【解答】解:由题意可知:m=2,n+4=1∴m=2,n=﹣3,∴n m=(﹣3)2=9故选(C)6.(3分)(2016•荆门)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4;从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,左视图面积最小,故B正确;故选:B.7.(3分)(2016秋•深圳期末)据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,是数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查【解答】解:A、对所有参观者发放问卷进行调查费人力、物力和时间较多,故A错误;B、对所有参观者中的成年人发放问卷进行调查调查不具代表性、广泛性,故B 错误;C、在主会场入口随机发放问卷进行调查具代表性、广泛性,故C正确;D、在无人机展厅随机发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.8.(3分)(2016秋•深圳期末)如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【解答】解:∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:A.9.(3分)(2016秋•深圳期末)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以【解答】解:表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是折线统计图,故选:A.10.(3分)(2016秋•深圳期末)下列说法中正确的是()A.若|a|=﹣a,则a一定是负数B.单项式x3y2z的系数为1,次数是6C.若AP=BP,则点P是线段AB的中点D.若∠AOC=∠AOB,则射线OC是∠AOB的平分线【解答】解:A、若|a|=﹣a,则a一定是负数或零,故本选项错误;B、单项式x3y2z的系数为1,次数是:3+2+1=6,故本选项正确;C、若AP=BP,则点P是线段AB的中点或垂直平分线上的点,故本选项错误;D、如图所示,OC不是∠AOB的平分线,但是也符合∠AOC+∠BOC=∠AOB,故本选项错误;故选:B.11.(3分)(2016秋•深圳期末)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时【解答】解:设当两车相距100千米时,甲车行驶的时间为x小时,根据题意得:900﹣(110+90)x=100或(110+90)x﹣900=100,解得:x=4或x=5.故选D.12.(3分)(2016秋•深圳期末)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°【解答】解:∵BM为∠ABC的平分线,∴∠CBM=∠ABC=×60°=30°,∵BN为∠CBE的平分线,∴∠CBN=∠EBC=×(60°+90°)=75°,∴∠MBN=∠CBN﹣∠CBM=75°﹣30°=45°.故选:B.二、填空题(每小题3分,共12分)13.(3分)(2016秋•深圳期末)如果收入10元记作+10元,那么支出80元记作﹣80元.【解答】解:如果收入10元记作+10元,那么支出80元记作﹣80元.故答案为:﹣80.14.(3分)(2016秋•深圳期末)将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“们”字相对的字是梦.【解答】解:因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“我”与“中”是相对面,“们”与“梦”是相对面,“的”与“国”是相对面.故答案为:梦.15.(3分)(2016秋•深圳期末)若x=2是方程ax+3bx﹣10=0的解,则3a+9b的值为15.【解答】解:把x=2代入方程ax+3bx﹣10=0得:2a+6b=10,即a+3b=5,所以3a+9b=3×5=15,故答案为:15.16.(3分)(2016秋•深圳期末)将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n个图案中棋子的个数为(n+1)2.【解答】解:∵第(1)个图案需要棋子数为:4=22个;第(2)个图案需要棋子数为:32=9个;第(3)个图案需要棋子数为:42=16个;第(4)个图案需要棋子数为:52=25个;…∴第(n)个图案需要棋子数为:(n+1)2个;故答案为:(n+1)2.三、解答题(本题共7小题,共52分)17.(8分)(2016秋•深圳期末)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)﹣22﹣|﹣12|×(﹣)【解答】解:(1)﹣13﹣(﹣22)+(﹣28)=﹣13+22﹣28=9﹣28=﹣19(2)﹣22﹣|﹣12|×(﹣)=﹣4﹣12×(﹣)=﹣4﹣12×+12×=﹣4﹣8+9=﹣12+9=﹣318.(8分)(2016秋•深圳期末)(1)化简:5(x2+2xy)﹣2(x2﹣xy)(2)先化简,再求代数式的值:3(a2b+ab2)﹣(4a2b﹣2)﹣(3ab2+2),其中a=﹣3,b=2.【解答】解:(1)原式=5x2+10xy﹣5x2+2xy=12xy;(2)原式=3a2b+3ab2﹣2a2b+1﹣3ab2﹣2=a2b﹣1,当a=﹣3,b=2时,原式=(﹣3)2×2﹣1=17.19.(8分)(2016秋•深圳期末)(1)解方程:7x﹣5=3x+5(2)解方程:=1﹣.【解答】解:(1)移项得7x﹣3x=5+5,合并同类项得4x=10,系数化为1得x=;(2)去分母得3(x+1 )=6﹣2(2x﹣2 ),去括号得3x+3=6﹣4x+4,移项得3x+4x=6+4﹣3,合并同类项得7x=7,系数化为1得x=1.20.(6分)(2016秋•深圳期末)自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:(1)请将条形统计图1补充完整;(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为10.8度;(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为1320kg.【解答】解:(1)由条形图可知40~50的频数为100﹣(5+15+40+10)=30,如图所示,(2)“有害垃圾C”所占的百分比为1﹣(48%+32%+17%)=3%,∴表示“有害垃圾C”所在扇形的圆心角度数为360°×3%=10.8°,故答案为:10.8;(3)∵2750×48%=1320(kg),∴可回收的垃圾约为1320kg,故答案为:1320.21.(6分)(2016秋•深圳期末)如图,已知线段AB、a、b,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=a;(2)在射线BA上截取线段AD,使AD=b;若AB=4cm,a=3cm,b=5cm,且E 为CD的中点,则AE=1cm.【解答】解:(1)如图所示:延长线段AB到C,使BC=a;(2)如图所示:在射线BA上截取线段AD,使AD=b;∵AB=4cm,a=3cm,b=5cm,∴DC=4+3+5=12(cm),∵E为CD的中点,∴DE=6cm,∴AE=DE﹣AD=6﹣5=1(cm).故答案为:1.22.(9分)(2016秋•深圳期末)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B 种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?【解答】解:(1)设购买一等座票x张,则购买二等座票(50﹣x)张,根据题意得:24x+18(50﹣x)=1026,解得:x=21,∴50﹣x=29.答:购买一等座票21张,购买二等座票29张.(2)①设A种品牌足球的售价为y元/个,则B种品牌足球的售价为(y﹣20)元/个,根据题意得:5y=6(y﹣20),解得:y=120,∴y﹣20=100.答:A种品牌足球的售价为120元/个,B种品牌足球的售价为100元/个.②设购买A种品牌足球z个,则购买B种品牌足球(20﹣z)个,根据题意得:(120﹣120×0.8)z+(100﹣100×0.8)(20﹣z)=420,解得:z=5,∴20﹣z=15.答:购买A种品牌足球5个,购买B种品牌足球15个.23.(7分)(2016秋•深圳期末)数轴上有A、B、C三点,其中点C为线段AB 的中点,O为原点.(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为1;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为﹣3.5;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为;(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为﹣12或﹣4.【解答】解:(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为=1;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为=﹣3.5;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则C为﹣2,a的值为﹣2×2﹣8=﹣12;C为2,a的值为2×2﹣8=﹣4.故答案为:(1)1;(2)﹣3.5;(3);(4);(5)﹣12或﹣4.参与本试卷答题和审题的老师有:2300680618;gbl210;1987483819;神龙杉;HJJ;dbz1018;曹先生;HLing;szl;zjx111;sjzx;放飞梦想;sks;三界无我(排名不分先后)菁优网2017年5月15日。
深圳市七年级上册数学期末试卷及答案-百度文库一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,3 5.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-26.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=68.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 9.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,210.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4 B .﹣2C .4D .212.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=213.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<014.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .115.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 19.因式分解:32x xy -= ▲ . 20.16的算术平方根是 . 21.若2a +1与212a +互为相反数,则a =_____. 22.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 23.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.24.计算:3+2×(﹣4)=_____.25.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.26.观察“田”字中各数之间的关系:则c 的值为____________________.27.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.28.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)29.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.33.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.34.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 35.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)37.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】试题分析:384 000=3.84×105. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】-++(3)(5)=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.6.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.8.C解析:C 【解析】 【分析】三棱柱的侧面展开图是长方形,底面是三角形. 【详解】解:由图可得,该展开图是由三棱柱得到的, 故选:C . 【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.9.D解析:D 【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.C解析:C 【解析】 【分析】根据面动成体可得长方形ABCD 绕CD 边旋转所得的几何体. 【详解】解:将长方形ABCD 绕CD 边旋转一周,得到的几何体是圆柱, 故选:C .【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1)=4;故选C .【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.13.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a <b <0<c ,且|a |>|c |>|b |则A. a +b <0正确,不符合题意;B. a +c <0正确,不符合题意;C .a -b>0错误,符合题意;D. b -c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.14.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 15.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A .【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题16.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.17.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).20.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 21.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.22.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.23.5【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.24.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14026.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
七年级上册深圳深圳市龙华中学数学期末试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点在线段上, .(1)如图1,,两点同时从,出发,分别以,的速度沿直线向左运动;①在还未到达点时,求的值;②当在右侧时(点与不重合),取中点,的中点是,求的值;(2)若是直线上一点,且 .求的值.【答案】(1)解:①AP=AC-PC,CQ=CB-QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC-2PC=2AP,∴②设运动秒,分两种情况A: 在右侧,,分别是,的中点,,∴B: 在左侧,,分别是,的中点,,∴(2)解:∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD-BD|=BD-AD=AB= CD,∴CD=6x,∴;②当D在AC之间时,|AD-BD|=BD-AD= CD,∴2x+CD-x+CD= CD,x=- CD(不成立),③当D在BC之间时,|AD-BD|=AD-BD= CD,∴x+CD-2x+CD= CD,CD= x,∴;|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,∴CD=;④当D在B的右侧时,|AD-BD|=BD-AD= CD,∴2x-CD-x-CD= CD,CD=6x,∴ .综上所述,的值为或或或【解析】【分析】(1)由线段的和差关系,以及QB=2PC,BC=2AC,即可求解;(2)设AC=x,则BC=2x,∴AB=3x,D点分四种位置进行讨论,①当D在A点左侧时,②当D在AC之间时,③当D在BC之间时,④当D在B的右侧时求解即可.2.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中∠OMN=30°,∠NOM=90°)(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t;(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【答案】(1)解:直线ON平分∠AOC;理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB=60°,又∵OM⊥ON,∴∠MON=90°,∴∠BON=30°,∴∠CON=120°+30°=150°,∴∠COD=30°,∴OD平分∠AOC,即直线ON平分∠AOC(2)解:由(1)可知∠BON=30°,∠DON=180°因此ON旋转60°或240°时直线ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40(3)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°【解析】【分析】(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.4.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时与点Q相距4个单位长度?【答案】(1)-20;10-5t(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP= AP+ BP= (AP+BP)= AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP= AP- BP= (AP-BP)= AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【解析】【解答】(1)解:∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数为10-5t;故答案为:-20,10-5t;【分析】(1)根据数轴上两点间的距离计算方法即可算出点B所表示的数,根据路程等于速度乘以时间得出PA=5t,然后用OA-AP即可算出点P所表示的数;(2)线段MN的长度不发生变化,都等于15.理由如下:分类讨论:①当点P在点A、B两点之间运动时,根据线段中点的定义及线段的和差,由MN=MP+NP= AP+ BP=(AP+BP)= AB 即可得出结论;②当点P运动到点B的左侧时:根据线段中点的定义及线段的和差,由 MN=MP-NP= AP- BP= (AP-BP)= AB 得出结论;(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度,此题其实质就是一个追击问题,需要分类讨论:①点P、Q相遇之前,根据P点运动的路程-Q点运动的路程等于它们之间之间的距离,列出方程,求解即可;②点P、Q相遇之后,根据Q 点运动的路程-P点运动的路程等于它们之间之间的距离,列出方程,求解即可,综上所述即可得出答案。
2016-2017学年广东省深圳市龙华区七年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)﹣的相反数是()A.2 B.﹣2 C.﹣ D.2.(3分)2016年天猫双11落下帷幕,总成交额最终定格在120700000000元,是8年来成交额首次突破1000亿大关,数据120700000000元用科学记数法表示为()A.12.07×1010B.1.207×1011C.1.207×1012D.1.207×10123.(3分)某企业去年产值p万元,今年比去年增产10%,今年产值是()A.p(1+10%)万元B.(p+10%)万元C.万元D.万元4.(3分)如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.经过两点有且只有一条直线D.两点之间,线段最短5.(3分)若﹣x m y n+4与5x2y是同类项,则n m的值为()A.﹣9 B.6 C.9 D.166.(3分)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等7.(3分)据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,某数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查8.(3分)如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形9.(3分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.(3分)下列说法中正确的是()A.若|a|=﹣a,则a一定是负数B.单项式x3y2z的系数为1,次数是6C.若AP=BP,则点P是线段AB的中点D.若∠AOC=∠AOB,则射线OC是∠AOB的平分线11.(3分)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时12.(3分)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B 三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN 的度数是()A.30°B.45°C.55°D.60°二、填空题(每小题3分,共12分)13.(3分)如果收入10元记作+10元,那么支出80元记作元.14.(3分)将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“们”字相对的字是.15.(3分)若x=2是方程ax+3bx﹣10=0的解,则3a+9b的值为.16.(3分)将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n个图案中棋子的个数为.三、解答题(本题共7小题,共52分)17.(8分)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)﹣22﹣|﹣12|×(﹣)18.(8分)(1)化简:5(x2+2xy)﹣2(x2﹣xy)(2)先化简,再求代数式的值:3(a2b+ab2)﹣(4a2b﹣2)﹣(3ab2+2),其中a=﹣3,b=2.19.(8分)(1)解方程:7x﹣5=3x+5(2)解方程:=1﹣.20.(6分)自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:(1)请将条形统计图1补充完整;(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为度;(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为kg.21.(6分)如图,已知线段AB、a、b,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=a;(2)在射线BA上截取线段AD,使AD=b;若AB=4cm,a=3cm,b=5cm,且E 为CD的中点,则AE=cm.22.(9分)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B 种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?23.(7分)数轴上有A、B、C三点,其中点C为线段AB的中点,O为原点.(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为;(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为.2016-2017学年广东省深圳市龙华区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)﹣的相反数是()A.2 B.﹣2 C.﹣ D.【解答】解:﹣的相反数是,故选:D.2.(3分)2016年天猫双11落下帷幕,总成交额最终定格在120700000000元,是8年来成交额首次突破1000亿大关,数据120700000000元用科学记数法表示为()A.12.07×1010B.1.207×1011C.1.207×1012D.1.207×1012【解答】解:120700000000=1.207×1011.故选:B.3.(3分)某企业去年产值p万元,今年比去年增产10%,今年产值是()A.p(1+10%)万元B.(p+10%)万元C.万元D.万元【解答】解:根据题意可得今年产值=(1+10%)p万元,故选:A.4.(3分)如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.经过两点有且只有一条直线D.两点之间,线段最短【解答】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选:C.5.(3分)若﹣x m y n+4与5x2y是同类项,则n m的值为()A.﹣9 B.6 C.9 D.16【解答】解:由题意可知:m=2,n+4=1∴m=2,n=﹣3,∴n m=(﹣3)2=9故选:C.6.(3分)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4;从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,左视图面积最小,故B正确;故选:B.7.(3分)据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,某数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查【解答】解:A、对所有参观者发放问卷进行调查费人力、物力和时间较多,故A错误;B、对所有参观者中的成年人发放问卷进行调查调查不具代表性、广泛性,故B 错误;C、在主会场入口随机发放问卷进行调查具代表性、广泛性,故C正确;D、在无人机展厅随机发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.8.(3分)如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【解答】解:∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:A.9.(3分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以【解答】解:表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是折线统计图,故选:A.10.(3分)下列说法中正确的是()A.若|a|=﹣a,则a一定是负数B.单项式x3y2z的系数为1,次数是6C.若AP=BP,则点P是线段AB的中点D.若∠AOC=∠AOB,则射线OC是∠AOB的平分线【解答】解:A、若|a|=﹣a,则a一定是负数或零,故本选项错误;B、单项式x3y2z的系数为1,次数是:3+2+1=6,故本选项正确;C、若AP=BP,则点P是线段AB的中点或垂直平分线上的点,故本选项错误;D、如图所示,OC不是∠AOB的平分线,但是也符合∠AOC+∠BOC=∠AOB,故本选项错误;故选:B.11.(3分)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时【解答】解:设当两车相距100千米时,甲车行驶的时间为x小时,根据题意得:900﹣(110+90)x=100或(110+90)x﹣900=100,解得:x=4或x=5.故选:D.12.(3分)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B 三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN 的度数是()A.30°B.45°C.55°D.60°【解答】解:∵BM为∠ABC的平分线,∴∠CBM=∠ABC=×60°=30°,∵BN为∠CBE的平分线,∴∠CBN=∠EBC=×(60°+90°)=75°,∴∠MBN=∠CBN﹣∠CBM=75°﹣30°=45°.故选:B.二、填空题(每小题3分,共12分)13.(3分)如果收入10元记作+10元,那么支出80元记作﹣80元.【解答】解:如果收入10元记作+10元,那么支出80元记作﹣80元.故答案为:﹣80.14.(3分)将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“们”字相对的字是梦.【解答】解:因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“我”与“中”是相对面,“们”与“梦”是相对面,“的”与“国”是相对面.故答案为:梦.15.(3分)若x=2是方程ax+3bx﹣10=0的解,则3a+9b的值为15.【解答】解:把x=2代入方程ax+3bx﹣10=0得:2a+6b=10,即a+3b=5,所以3a+9b=3×5=15,故答案为:15.16.(3分)将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n个图案中棋子的个数为(n+1)2.【解答】解:∵第(1)个图案需要棋子数为:4=22个;第(2)个图案需要棋子数为:32=9个;第(3)个图案需要棋子数为:42=16个;第(4)个图案需要棋子数为:52=25个;…∴第(n)个图案需要棋子数为:(n+1)2个;故答案为:(n+1)2.三、解答题(本题共7小题,共52分)17.(8分)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)﹣22﹣|﹣12|×(﹣)【解答】解:(1)﹣13﹣(﹣22)+(﹣28)=﹣13+22﹣28=9﹣28=﹣19(2)﹣22﹣|﹣12|×(﹣)=﹣4﹣12×(﹣)=﹣4﹣12×+12×=﹣4﹣8+9=﹣12+918.(8分)(1)化简:5(x2+2xy)﹣2(x2﹣xy)(2)先化简,再求代数式的值:3(a2b+ab2)﹣(4a2b﹣2)﹣(3ab2+2),其中a=﹣3,b=2.【解答】解:(1)原式=5x2+10xy﹣5x2+2xy=12xy;(2)原式=3a2b+3ab2﹣2a2b+1﹣3ab2﹣2=a2b﹣1,当a=﹣3,b=2时,原式=(﹣3)2×2﹣1=17.19.(8分)(1)解方程:7x﹣5=3x+5(2)解方程:=1﹣.【解答】解:(1)移项得7x﹣3x=5+5,合并同类项得4x=10,系数化为1得x=;(2)去分母得3(x+1 )=6﹣2(2x﹣2 ),去括号得3x+3=6﹣4x+4,移项得3x+4x=6+4﹣3,合并同类项得7x=7,系数化为1得x=1.20.(6分)自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:(1)请将条形统计图1补充完整;(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为10.8度;(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为1320kg.【解答】解:(1)由条形图可知40~50的频数为100﹣(5+15+40+10)=30,如图所示,(2)“有害垃圾C”所占的百分比为1﹣(48%+32%+17%)=3%,∴表示“有害垃圾C”所在扇形的圆心角度数为360°×3%=10.8°,故答案为:10.8;(3)∵2750×48%=1320(kg),∴可回收的垃圾约为1320kg,故答案为:1320.21.(6分)如图,已知线段AB、a、b,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=a;(2)在射线BA上截取线段AD,使AD=b;若AB=4cm,a=3cm,b=5cm,且E 为CD的中点,则AE=1cm.【解答】解:(1)如图所示:延长线段AB到C,使BC=a;(2)如图所示:在射线BA上截取线段AD,使AD=b;∵AB=4cm,a=3cm,b=5cm,∴DC=4+3+5=12(cm),∵E为CD的中点,∴DE=6cm,∴AE=DE﹣AD=6﹣5=1(cm).故答案为:1.22.(9分)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B 种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?【解答】解:(1)设购买一等座票x张,则购买二等座票(50﹣x)张,根据题意得:24x+18(50﹣x)=1026,解得:x=21,∴50﹣x=29.答:购买一等座票21张,购买二等座票29张.(2)①设A种品牌足球的售价为y元/个,则B种品牌足球的售价为(y﹣20)元/个,根据题意得:5y=6(y﹣20),解得:y=120,∴y﹣20=100.答:A种品牌足球的售价为120元/个,B种品牌足球的售价为100元/个.②设购买A种品牌足球z个,则购买B种品牌足球(20﹣z)个,根据题意得:(120﹣120×0.8)z+(100﹣100×0.8)(20﹣z)=420,解得:z=5,∴20﹣z=15.答:购买A种品牌足球5个,购买B种品牌足球15个.23.(7分)数轴上有A、B、C三点,其中点C为线段AB的中点,O为原点.(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为1;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为﹣3.5;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为;(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为﹣12或﹣4.【解答】解:(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为=1;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为=﹣3.5;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则C为﹣2,a的值为﹣2×2﹣8=﹣12;C为2,a的值为2×2﹣8=﹣4.故答案为:(1)1;(2)﹣3.5;(3);(4);(5)﹣12或﹣4.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。
深圳市龙华中学人教版七年级上册数学期末试卷及答案 一、选择题 1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 3.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+4.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .22C .2D .325.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .16.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )A .50°B .130°C .50°或 90°D .50°或 130°7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -8.下列调查中,最适合采用全面调查(普查)的是( )A .对广州市某校七(1)班同学的视力情况的调查B .对广州市市民知晓“礼让行人”交通新规情况的调查C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱10.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥 11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1 二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14.已知23,9n m n a a -==,则m a =___________.15.若方程11222m x x --=++有增根,则m 的值为____. 16.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.17.A 学校有m 个学生,其中女生占45%,则男生人数为________. 18.﹣225ab π是_____次单项式,系数是_____. 19.计算7a 2b ﹣5ba 2=_____.20.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.21.-2的相反数是__.22.若523m x y +与2n x y 的和仍为单项式,则n m =__________.23.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2014-2015学年广东省深圳市龙华新区七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2015•陆良县一模)﹣3的倒数是()A.ﻩB.﹣C.3ﻩD.﹣32.(3分)(2014秋•深圳期末)据深圳市统计局统计数据显示,2014年10月深圳市“新能源产业增加值”为34亿元,数据34亿元用科学记数法表示为()A.3.4×109元B.3.4×108元ﻩC.0.34×109元ﻩD.34×108元3.(3分)(2014秋•深圳期末)如图是一个几何体的三视图,则该几何体是()A.长方体B.三棱柱ﻩC.圆柱ﻩD.圆锥4.(3分)(2014秋•深圳期末)某食品本月的均价为x元/kg,较上月的均价上涨了2元/kg,则该食品上月的均价是()A.元/kg B.x(1﹣2%)元/kgﻩC.(x+2)元/kg D.(x﹣2)元/kg5.(3分)(2014秋•深圳期末)如图是深圳地铁交通图的一部分,小明要坐地铁从世界之窗站到科学馆站,他选择了坐地铁1号线直达,用数学知识解释其选择的原因,可以为()A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做这两点之间的距离D.过一点有无数条直线6.(3分)(2014秋•深圳期末)若﹣2x m y n+2与3x2y是同类项,则nm的值为()A.9ﻩB.1ﻩC.﹣1ﻩD.07.(3分)(2014秋•深圳期末)2015年1月1日,《深圳经济特区促进全民健条例》正式实施,小颖为了了解她所在小区(约有3000人)市民的运动健身情况,她应采用的收集数据的方式是()A.对小区所有成年人发放问卷进行调查B.对小区内所有中小学生发放问卷进行调查C.在小区出入口对出入居民随机发放问卷进行调查D.挨家挨户发放问卷进行调查8.(3分)(2014秋•深圳期末)用平面去截如图所示的三棱柱,截面形状不可能是()A.三角形ﻩB.四边形 C.五边形D.六边形9.(3分)(2014秋•深圳期末)有理数a、b在数轴上的位置如图所示,则下列结论中错误的是()A.a+b>0B.a﹣b>0 C.ab>0D.|a|>|b|10.(3分)(2014秋•深圳期末)下列说法中正确的是()A.若|a|=|b|,则a=bB.若ac=bc,则a=bC.若线段AC=BC,则点C是线段AB的中点D.过n边形的一个顶点有(n﹣3)条对角线11.(3分)(2014秋•深圳期末)A、B两地相距600km,甲车以60km/h的速度从A地驶向B地,2h后,乙车以100km/h的速度沿着相同的道路从A地驶向B地.设乙车出发x 小时后追上甲车,根据题意可列方程为()A.60(x+2)=100xﻩB.60x=100(x﹣2)C.60x+100(x﹣2)=600ﻩD.60(x+2)+100x=60012.(3分)(2014秋•深圳期末)将一个边长为1的正方形按如图所示的方法进行分割:部分①是整个正方形面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,…,依此类推,通过计算此图形中部分①、部分②、部分③…的面积之和,可得到式子+…的近似值为()A.0.5ﻩB.1ﻩC.2ﻩD.4二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2014秋•深圳期末)如果向东走30米记作+30米,那么向西走20米记作米.14.(3分)(2014秋•深圳期末)已知x=2是方程x+2y+4=0的解,则y= .15.(3分)(2014秋•深圳期末)对于有理数a、b,定义运算“★”;a★b=,例如:2★1,因为2>1,所以2★1=22+12=5,若(x+1)★3=﹣12,则x= .16.(3分)(2014秋•深圳期末)把两个三角尺ABC与DEF按如图所示那样拼在一起,其中点D在BC上,DM为∠CDE的平分线,DN为∠BDF的平分线,则∠MDN的度数是.三、解答题(共7小题,满分52分)17.(8分)(2014秋•深圳期末)计算:(1)45+(﹣30)﹣(﹣15)(2)(﹣1)2015+|﹣24|×()18.(8分)(2014秋•深圳期末)(1)化简:2(a2﹣b2)+(b2﹣a2)(2)先化简,再求代数式的值:x2﹣2(xy﹣y2+1)+3(xy﹣y2),其中x、y满足(x﹣2)2+|y+1|=0.19.(8分)(2014秋•深圳期末)(1)解方程:12x﹣4=9x+4(2)解方程:.20.(6分)(2014秋•深圳期末)阅读可以分成四种方法,A:信息式阅读法,B:文学作品阅读法,C:经典著作阅读法,D:麻醉性阅读法.某数学学习小组为了解市民到市图书馆所常采用的阅读方法,随机对部分市民进行了一次“常用阅读方法”的调查,并对调查的数据进行整理后,绘制出了如下两幅尚不完整的统计图,图1,图2.请你根据统计图所提供的信息解答下列问题:(1)该学习小组此次共调查市民的人数有人;(2)请补全图1中的条形统计图;(3)图2的扇形统计图中,“A:信息式阅读法”所在扇形的圆心角度数为.21.(6分)(2014秋•深圳期末)如图,平面上有四个点P、A、B、C,根据下列语句画图. (1)画射线PA、PB;(2)连接AB,交射线PC于点D;(3)连接AC并延长AC交PB于点E;(4)取一点F,使F既在射线PA上又在射线BC上.22.(6分)(2014秋•深圳期末)如图,已知数轴上点A表示的数为6,点B表示的数为﹣3,C为线段AB上一点,且AC=2BC,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)数轴上点C表示的数是,点P表示的数是(用含字母t的代数式表示);(2)当t=2时,线段PC的长为个单位长度;(3)当点P为AC的中点时,t= ;(4)当t= 时,PC=2PA.23.(10分)(2014秋•深圳期末)列方程解应用题(1)表中是“深圳市路边临时停车位使用费收费标准”,上周六上午9:00,小亮妈妈把车停在深圳中心书城路边临时停车位(属一类区域).离开时,她发现共需要缴纳停车费30元,则她停车的时间是多少小时?深圳市路边临时停车车位使用费收费标准时段收费标准(元/半小时)一类区域二类区域三类区域首半小时首半小时后首半小时首半小时后首半小时首半小时后工作日白天 5 10 3 6 2 4非工作日(7:30~21:00)2 4 1.5 2.5 11.5 晚上(21:00~次日7:30)免费(2)“旺旺”商场计划销售某品牌的衣服,每件若以原定价的3折销售,则亏20元,每件若以原定价的3.5折销售,则赚10元.①该种品牌的衣服原定价是多少元?②“元旦”期间,“旺旺”商场对该品牌衣服举办“1换2倍”的优惠促销活动,共售出了80件该品牌衣服,那么“旺旺”商场在“元旦”期间销售该品牌衣服共获利多少元?2014-2015学年广东省深圳市龙华新区七年级(上)期末数学试卷参考答案一、选择题(共12小题,每小题3分,满分36分)12.B;10.D;ﻩ11.B;ﻩ1.B;ﻩ2.A;ﻩ3.C;ﻩ4.D;ﻩ5.A;ﻩ6.B;ﻩ7.C;ﻩ8.D;ﻩ9.C;ﻩ二、填空题(共4小题,每小题3分,满分12分)13.-20;14.-3; 15.-3;1ﻩ6.135°;ﻩ三、解答题(共7小题,满分52分)17.; 18. ;19ﻩ.;20.80; 135°;2ﻩ1. ;22.0;2ﻩt-3;1ﻩ;3; 3.5或7.5;2ﻩ3. ;ﻩ。
深圳市龙华中学人教版七年级上册数学期末试卷及答案 一、选择题 1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3b D .若23a b =,则2a =3b 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( )A .B .C .D .5.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5927.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°8.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上9.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .10.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )212.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 13.3的倒数是( )A .3B .3-C .13D .13- 14.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45° 15.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.18.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.19.如果一个数的平方根等于这个数本身,那么这个数是_____.20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.22.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.23.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.24.-2的相反数是__.25.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.26.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.27.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .28.若4a +9与3a +5互为相反数,则a 的值为_____.29.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.33.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)34.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.35.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.36.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.37.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.38.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b ,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C .【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式. 3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A. 点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式. 5.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.6.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.7.A解析:A【解析】【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题.【详解】解:延长CD 交直线a 于E .∵a ∥b ,∴∠AED =∠DCF ,∵AB ∥CD ,∴∠DCF =∠ABC =70°,∴∠AED =70°∵∠ADC =∠AED +∠DAE ,∴∠ADC >70°,故选A .【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.9.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意.故选:C .【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a b c c>,故D 选项错误, 故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 11.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.12.D解析:D【解析】【分析】设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】设应从乙处调x 人到甲处,依题意,得:30+x =2(24﹣x ).故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.13.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.15.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.二、填空题16.1或5.【解析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.17.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:459<<,23∴<<,a2∴=,b3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.21.11cm.【解析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.22.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.23.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.24.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.25.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.26.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.27.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.28.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.29.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式. 解析:416x +【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x +++++++=+故答案为416x +.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.30.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】 (1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健33.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.34.(1)3456;45678S S=+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n项的钢管数.【详解】(1)3456;45678S S=+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++。
2017-2018学年广东省深圳市龙华区七年级(上)期末数学试卷
一、选择题(本大题共有12小题,每小题3分,共36分,每小题有四个选项,
其中只有一个是正确的)
1.(3分)如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A.﹣20B.+20C.﹣10D.+10
2.(3分)如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()
A.B.C.D.
3.(3分)已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()
A.15×107km B.1.5×107km C.1.5×108km D.0.15×109km 4.(3分)小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()
A.(4a+2b)米B.(5a+2b)米C.(6a+2b)米D.(a2+ab)米5.(3分)下列两种现象:
①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;
②过马路时,行人选择横穿马路而不走人行天桥
其中可用“两点之间线段最短”来解释的现象是()
第1页(共17页)。