西南石油大学油藏工程方案
- 格式:doc
- 大小:1.42 MB
- 文档页数:17
油藏工程课程设计一、课程目标知识目标:1. 让学生掌握油藏工程的基本概念、原理和方法;2. 使学生了解油气藏开发过程,理解油藏参数对开发效果的影响;3. 引导学生掌握油藏数值模拟技术,培养学生运用数值模拟解决实际问题的能力。
技能目标:1. 培养学生运用油藏工程方法分析油气藏开发数据,提高数据处理和分析能力;2. 培养学生运用所学知识解决实际油藏开发问题的能力,提高创新意识和实践能力;3. 培养学生团队协作能力,学会与他人合作共同完成项目。
情感态度价值观目标:1. 培养学生对油藏工程领域的兴趣,激发学生探索油气藏开发奥秘的热情;2. 增强学生的环保意识,让学生认识到油气资源开发与环境保护的重要性;3. 培养学生严谨的科学态度,树立正确的价值观,认识到科学技术对社会发展的推动作用。
课程性质:本课程为专业课,旨在让学生系统地学习油藏工程的基本理论和方法,提高解决实际问题的能力。
学生特点:学生具备一定的地质、石油工程基础知识,具有一定的分析问题和解决问题的能力。
教学要求:结合课程性质和学生特点,采用理论教学与实践教学相结合的方法,注重培养学生的实际操作能力和团队合作精神。
通过本课程的学习,使学生能够达到以上设定的课程目标,为将来从事油气藏开发工作打下坚实基础。
二、教学内容本课程教学内容主要包括以下几部分:1. 油藏工程基本概念与原理:介绍油气藏的定义、分类及特点,阐述油藏工程的基本任务和方法。
- 教材章节:第一章 油藏工程概述- 内容:油气藏概念、分类、特点;油藏工程任务、方法。
2. 油气藏开发过程及参数影响:分析油气藏开发过程,探讨油藏参数对开发效果的影响。
- 教材章节:第二章 油气藏开发过程及参数- 内容:开发过程、开发策略;油藏参数、影响分析。
3. 油藏数值模拟技术:讲解油藏数值模拟的基本理论、方法及其在油藏开发中的应用。
- 教材章节:第三章 油藏数值模拟- 内容:数值模拟原理、方法;应用实例分析。
石油工程油藏工程方案设计一、油藏地质条件分析在进行油藏工程方案设计之前,首先需要对油藏地质条件进行深入分析。
主要包括油藏类型、油藏成藏时期、油气的物理化学性质、储量分布规律、渗透率、孔隙度、地层压力等方面的分析。
在这方面收集到的数据将直接影响油藏开发方式的选择、注采工艺的设计和汇采模式的确定。
同时,根据地质条件的不同,结合地震勘探和测井资料,我们可以对油藏进行三维建模,为后续的油藏工程方案设计提供可靠的依据。
二、油藏开发方式选择根据油藏地质条件,可以选择不同的油藏开发方式。
按照开发方式的不同,可以分为传统开采、非常规开采和次生采油等。
传统开采方式通常包括原油采收、人工注水、油气调解、采收管道等设施。
非常规开采则包括页岩气、凝析气、油砂等新型开采方式。
次生采油是指通过各种技术手段对原有采油方式进行改进和优化的方式。
在选择油藏开发方式时需要综合考虑油气勘探开发规模、勘探成本、经济效益和环境保护等因素,确定最优的开发方式。
三、注采工艺设计注采工艺包括注水、注聚合物、注气等方式。
其中注水是最为常见的一种方式,是通过向油层中注入水,以维持油层压力,推动原油向井口运移的一种方式。
注聚合物则是通过向油层中注入聚合物溶液,增大油层的有效厚度,增加原油的采收率。
注气是指向油层中注入气体,以推动原油向井口运移。
在注采工艺的设计中,需要综合考虑地层条件、注采能力、资源利用效率和环境保护等方面的因素,确定最佳的注采工艺。
四、汇采模式确定在油藏开发中,通常采用多口汇采模式。
在汇采模式的选择上,需要考虑油藏地质条件、开发规模、井位分布、采油方式等因素。
同时,还需要充分考虑油藏开采后期的管理维护和产量稳定性等问题。
一般来说,通过合理的汇采模式设计,可以提高油气采收率,降低生产成本,提高采油效果。
综上所述,油藏工程方案设计是一项综合性的工作,需要充分考虑地质条件、油藏开发方式、注采工艺和汇采模式等多方面因素。
只有通过科学的规划和合理的设计,才能有效地提高油气采收率,降低生产成本,实现石油勘探开发的经济效益和环保效益。
教案编写补充说明1、教案编写基本要求。
教师应以最新的课程教学大纲为依据,在深入钻研教材,了解学生基本情况的基础上,根据课程的内容和特点,并结合个人的教学经验和教学风格,按照校教字〔2005〕86号《西南石油大学授课教案规范及要求》的规定,编写出具有自身特色的教案。
(1)教案格式应包括以下六大部分:第一部分:封面第二部分:课程表第三部分:课程教学大纲第四部分:授课日历第五部分:分课次教学内容及教学组织与设计第六部分:授课总结(2)关于第五部分——教案内容的说明。
教学内容组织与过程设计(简称教学设计)是教案的核心内容,是授课教师教学思想、教学方法及教学组织能力的具体体现。
包括一堂课自始至终的全部内容,可分为导入新课、新课讲授、巩固应用和作业布置等方面,各部分可注明教学方法与手段、时间分配、思考题和习题等。
教学内容组织与过程设计按文字多少分为详案和略案;按表现形式可表现为三种类型:一是体现教学思路、教学方法手段等教学设计内容的分课次讲稿;二是将教学设计独立出来,构成教学设计加讲稿的形式;三是采用PPT上课的课程,可采用教学设计加PPT的形式。
2、教案必须做到五个一致。
(1)统一使用院系确定的最新课程教学大纲。
(2)教学《授课日历》中的“授课内容、重点、难点、作业、实验”必须与课程教学大纲规定的内容一致。
(3)《教案》内容中的“授课内容、重点、难点、作业、实验”必须与课程教学大纲规定的内容及《授课日历》中填写的一致。
(4)课堂讲授内容必须与课程教学大纲规定的内容及教案编写的内容一致。
(5)必须按照院系确定的最新课程教学大纲命制课程考试试题。
西南石油大学教案课程名称油藏工程任课教师王怒涛院(系) 石油工程学院教研室石油工程教研室2008年8月28日课程表“油藏工程原理”64学时分配情况讲课:绪论+第一章油气藏概述 3 学时第二章油气藏岩石 4 学时第三章油气藏流体3学时第四章油气藏压力与温度4学时第五章气藏物质平衡5学时第六章油藏物质平衡10学时第七章油井试井10学时第八章气井试井3学时第九章产量递减规律4学时第十章含水上升规律6学时第十一章底水油藏开发2学时第十二章油藏工程设计10学时总课时:64学时考试:(另外安排时间)总计64 学时《油藏工程》教学大纲一、课程基本信息1、课程英文名称:Reservoir Engineering2、课程类别:专业课程3、课程学时:总学时684、学分:45、先修课程:油藏地质学,油层物理,油气层渗流力学,物理化学6、适用专业:石油工程7、大纲执笔:开发研究所,李传亮8、大纲审批:石油工程学院学术委员会9、制定(修订)时间:2005.9二、课程的目的与任务:《油藏工程》是石油工程专业必修的一门专业课,其主要任务是培养学生的油藏工程意识和能力,让学生学会通过油气藏静、动态资料的综合分析,从整体上认识油气藏和把握油气运动规律,并为科学开发油气藏制定出最佳方案。
油藏工程方案的主要内容一、油藏评价1. 地质勘探:首先,需要进行地质勘探工作,包括地质剖面绘制、岩心取样分析、岩石物理测井等工作,以了解油藏地质特征、储量和分布情况。
2. 油藏评价:通过地震勘探、岩心分析、水驱试验等手段,对油藏进行评价,包括识别油藏类型、确定储量、评估开发潜力等。
3. 油藏模拟:利用数值模拟软件(如Eclipse等)进行油藏模拟,模拟油藏开发后的产量、注水效果等情况,为开发方案设计提供依据。
二、开发方案设计1. 井网布局:根据油藏特征、地质结构和生产需求,设计合理的井网布局方案,确定主要开发井、注水井、监测井等位置。
2. 采油方式:根据油藏类型和地质条件,选择合适的采油方式,包括常规采油、水驱采油、压裂采油等。
3. 人工措施:设计人工措施方案,包括水平井、多级压裂、CO2驱替等,以提高油藏开采效率。
4. 环保措施:设计合理的环保措施,包括污水处理、废气处理、固体废物处理等,确保油藏开发过程不对环境造成负面影响。
三、生产管理和监测1. 生产管理:建立健全的生产管理体系,包括生产目标制定、生产计划编制、现场生产管理等,确保油藏开发按计划进行。
2. 生产监测:建立实时监测系统,对油井产量、油藏压力、水驱效果等进行实时监测,及时调整生产方案。
3. 安全管理:严格遵守安全生产规定,加强安全管理,保障生产人员的人身安全和设备的正常运行。
四、环境保护1. 水资源保护:采取措施避免地下水污染,合理利用地下水资源,减少对地下水的开采和污染。
2. 大气污染控制:采取措施减少油田生产对大气环境的影响,包括降低烟气排放、加强尾气处理等。
3. 土壤保护:建立土壤保护制度,避免土壤污染,采取措施减少工程对土壤的影响。
通过以上工作,一套完整的油藏工程方案得以形成。
在实际油藏开发中,需要根据具体油藏情况和环境要求进行具体的方案设计和实施,从而确保油藏资源得到有效的开发和利用,同时最大限度地保护环境。
前言油藏工程课程设计是石油工程课程设计的一部分,是本专业重要的教学环节之一。
课程设计的主要目的是:综合学生三年来基础课,技术基础课和专业课所学的理论知识,以及生产实习所获得的知识,对给定的油藏,进行油藏工程设计,从而接受油藏工程师的初步训练和工程意识的培养。
由于学生平时所学知识都是分门别类和抽象的,与实际应用还相差甚远,如何把这些知识综合起来,并应用于生产实践,学生需要一个理论联系实际和锻炼工程能力的学习环节,课程设计便是实现这一目的的良好机会。
世界上没有完全相同的两个油藏,因此,通过一次课程设计,不可能解决所有的工程问题。
但是,世界上也没有完全不同的两个油藏,每一个油藏工程设计都要经历类似的步骤和程序,油藏工程设计的方法和原理都是相通的,因此,任何一个油藏的工程设计都能够让学生得到油藏工程师最基本的训练。
油藏是一个深埋地下而无法进行直接观察和描述的地质实体,人们所说的油藏都是根据各种间接资料所描述出来的概念模型。
资料有多寡,思路有不同,方法也迥异。
因此,不同时间,不同人做出的油藏工程设计也必将有所不同。
油藏工程的课程设计并不要求学生拘泥于局部的细节,而是要学生对设计有一个宏观和整体的把握。
只要设计思路正确,设计最大限度地使用了现有资料,并灵活运用了所学理论和方法,设计就是一个好的设计,课程设计也就达到了预期的目的。
一个油藏的发现是以油藏上第一口油井的出油为标志的,第一口出油井通常称为发现井。
在油藏被发现以后,即进入油藏开发阶段。
一个油藏的开发,大致要经历以下几个阶段:油藏发现、油藏评价、开发方案设计与实施、开发监测与调整,油藏废弃。
油藏开发之前,首先要做开发方案设计,对油藏开发做出全面部署。
油藏往往并不是孤立存在的,在同一地质背景下形成的若干个油藏组成一个油田。
石油开发实际上并不是以一个油藏为研究对象的,而往往以一个油藏组合即一个油田为研究对象,所以,以油藏工程设计在矿场上通常被成做油田开发设计。
本次油藏工程设计分为两章内容,分别是油藏评价、油藏工程设计。
第一章油藏评价第一节油藏概况XN油藏地处西南地区腹地,地面交通方便,人口密集,工业化程度较高。
油藏位于西南盆地中央隆起为三叠系上统地层。
该地区在首次地震勘探以后认为可能含油,并于2000年1月完成第一口探井X1井,完钻深度5000m,7″套管完井。
并于同年4月对4820m—4840m进行完井测试,测试结果为折算日产油200t,日产气2.1×104m3,油为中质原油。
从而转入对XN油藏的正式开发。
现在油区内二维地震测网密度已达1×1km.第二节油藏地质特征2.1 构造特征从图1.2.1中可以看出XN油藏属于鼻状背斜构造,背斜长半轴2.9km,短半轴100m。
背斜呈南北走向,两翼倾角分别为2.29°,3.43°近于水平,中央稍微隆起。
储层岩石厚度为20m,背斜顶端位于地层4720米深处,溢出点深度4800米。
如图1.2.2所示该背斜被断层截断,断层东西走向,向东北弯曲,在X1井,X2井直线方向上断层倾角为0.46°,基本是水平断开的逆断层,断裂面为弯曲面。
图1.2.1过X1-X2井地层剖面图图1.2.2过X1井横向剖面图2.2 储层特征XN油藏储岩石电阻率为 3.8Ωm.储层岩石颗粒粒度分布见表 1.2.1和图1.2.3与图1.2.4所示。
该储渗透率变异系数为0.3-0.4,为中等非均质。
又由粒度分布图可以看出,该碎屑岩为含粗砂的细-中砂岩。
2.3 油层特征XN 油藏储层岩石属于砂岩,从X1和X2井岩心取样分析可以知道砂岩的成分为:石英:76%,长石:4%,岩屑:20%(其中:泥质:5%,灰质:7%)。
分析180块样品,分析数据得出储集层粘土矿物平均粘土含量3.83%,其中:高岭石:75%,绿泥石:83%,伊利石:15%,蒙脱石:2%。
2.4 油藏流体性质图1.2.4 储层岩石颗粒粒度分布10 20 3040 含量(%)XN 油藏为底水油藏,油水界面位于4870m ,油层渗透率为0.21μ㎡,为中等渗透率。
该油藏为边水油藏,油水界面位于地深4770米出,油层厚度为20米,其中X1井打通油层,X2穿越油水界面。
由相渗曲线及毛管压力曲线分析可以得出储层束缚水饱和度为30%,残余油饱和度为25%。
2000年06月20日对X1井油水常规物性PVT 取样综合分析,取样井:取样深度:4800.0m ,分析结果:M P a P b 10=,08.1=oi B ,2080.0cm g =ρ,286.0cm g os =ρ,MPa C 40106-⨯=,s mPa P b o ⋅=0.1)(μ,s mPa P i o ⋅=5.1)(μ。
2000年06月30日对X1井分离器取原油样品分析,分析结果:s mPa os ⋅=5.6μ,287.0cm g os =ρ,C T s 20-=,含蜡:4.03%,含硫:0.7%,胶质+沥青质:10%,初溜点:50°C 。
2000年06月30日对X1井进行天然气取样分析,取样点为分离器分析结果%,20%,1%,3%,4%,6%,40,98.0254321=======N C C C C C g s CO 2=25%。
2000年06月对X2井进行地层水取样分析,取样点为测试器,分析结果:ppMHCO ppM SO ppM Cl ppM M ppM C ppM N g a a 569,23,148220,502,8935,8464132422=====-+-+++5.6,10.13==pH g w ρ。
由取样数据分析可以知道地下水类型是海洋环境的地下水。
2.5 渗流物理特征对岩石润湿性进行测试,取80块样品分析得出的平均数据为:吸水指数:0.70,吸油指数:0.10。
说明岩石为强水吸性,亲水岩石。
油藏的相渗曲线见图1.2.5,对岩心作相对渗透率测试,分析数据得出油水相渗曲线。
在等渗点相对渗透率为0.155,等渗点含水饱和度为59.7%,残余油饱和度为0时水相相对渗透率为0.3,表明水的渗流能力中等,进一步说明岩石亲水性较强。
毛管压力曲线见图1.2.6,根据测试数据分析得出毛管排驱压力较小,约为0.0005MPa ,饱和中值压力约为0.02MPa ,最小湿相饱和度为30%,低斜直线段倾角较小,表明岩石孔隙度较大,油相进入岩石较容易,岩石粒度分选好,孔隙分布均匀。
根据相渗曲线特征数据由wcorwc D S S S E ---=11得wcor wc D S S S E ---=11643.03.01)75.01(3.01=----= 其中:E D ——水驱油效率;wc S ——束缚水饱和度; or S ——残余油饱和度。
驱油效率约为0.643,为高驱油效率油层。
此外还对岩石润湿性进行了测试,其结果为:敏感性指数:SI=(ki-k)/ki,速敏指数SIv=0.08,水敏指数SIw=0.10。
进而分析得出该油层为弱速敏,弱水敏油藏2.6 油藏压力和温度在油藏3300米到4800米深井段做压力测试,在压深关系曲线(见图1.2.7)上得出压力梯度为7.84MPa/Km,油层压力方程为P=7.83D+15(油相压深表示),压力系数为0.89为正常压力,同时分析得出油藏位于同一压力系统.在油藏3300米到4800米深井段做温度测试,在压温关系曲线(见图1.2.8)上得出温度梯度为20.8℃/Km,原始地层温度即为实测地层温度。
第三节储量计算与评价3.1储量参数论证本油藏面积由XN油藏砂岩顶面构造图描出圈闭面积,然后在坐标纸中查格km(见图1.3.1 XN油藏砂岩顶面构造图)。
油计算出面积,计算的面积为10.692藏的高度由测井数据可知道为20m。
油藏的孔隙度和渗透率由测井数据根据算术平均法可以确定为20%和0.205μ㎡。
油藏储量计算的其他数据由PVT 取样综合分析数据和原油性质数据可以知道原油地层体积系数为1.08,地面标准脱气原油密度为0.862cm g ,气油比由试采和PVT 取样综合分析数据可知道是8633/m m图1.3.1 XN 油藏砂岩顶面构造图3.2 储量计算原油储量可由式1.3.1计算oioswc O B S h A N ρφ)1(-= 1.3.1t 46105.251508.186.0)3.01(2.0201069.10⨯=⨯-÷⨯⨯⨯=)/(1035.269.10105.25152640km t A N O ⨯=⨯==Ω其中:N ——油藏地质储量,t ;O A ——油藏含油面积,3m ;h ——储集层厚度,m ,计算公式为n hh j∑=1.3.2 wc S ——油藏束缚水饱和度,小数;os ρ——地面脱气原油密度,2cm g ;oi B ——原始条件下的地层原油体积系数,无量纲;o Ω——石油地质储量丰度,2/km t溶解气储量的计算公式为式1.3.3oisios wc O s B R S h A G ρφ)1(-= 1.3.33861063.2108.18680.0)3.01(2.0201069.10m ⨯=⨯⨯-⨯⨯⨯⨯=其中:s G ——溶解气地质储量,3m ;si R ——原始条件下地层原油溶解气油比,33m m ,计算公式为os V V gssi R =1.3.4 其中:gs V——原油溶解的气体体积(地面条件下),3m ;os V ——地面脱气原油体积,3m ;3.3 采收率预算现场常用经验公式进行预测:1316.0)(214289.0OR KE μ=其中:R E ——采收率;K ——储层渗透率,D ;o μ——原油粘度,s mPa ⋅-310;1316.0)(214289.0OR KE μ=1316.0)5.1205(214289.0= =40.93%3.4 储量评价(1)储量规模t N 71052.2⨯= 381063.21m G ⨯=属于中型油田 (2)储量丰度)/(1035.269.10105.25152640km t A N O ⨯=⨯==Ω为高丰度(3)储层埋深m D 4000>属于超深层油气藏 (4)地层压力系数8.0=α 2.18.0<≤α 属于正常压力 (5)单位厚度采油指数65.02050.797=⨯=⋅∆=h P q J 为中等产能(6)流度μks mPa m K⋅⨯===-/107.1365.1205.023μμλ为高流度(7)储层孔隙度%20=φ为高孔隙度 (8)储层渗透率2205.0m K μ=为高渗透率第二章 油藏工程设计第一节 产能分析1.1 单井产能X1井试采数据(试产日期:2000.06.01)油井产能大小是通过单井产能试井测试资料分析加以确定的,矿场上通常将稳定试井资料或非稳定试井资料整理成油气井产能曲线或IPR 曲线,然后确定油气井的采油指数、产水指数、油井最大潜能、气井绝对无阻流量等。