大学概率论习题二详解
- 格式:doc
- 大小:789.50 KB
- 文档页数:10
概率论与数理统计习题二参考答案1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=×===P X P36261616161)"1,2""2,1(")3(1=×+×=∪==P X P 363616161616161)"1,3""2,2""3,1(")4(1=×+×+×=∪∪==P X P …… 所以X 1的分布律为X 1 2 3 4 5 6 7 8 9 10 11 12 P k 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 X 2可取的数有1、2、3、4、5、6P (X 2=1)=P ()="1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"∪∪∪∪∪∪∪∪∪∪3611所以X 2的分布律为 X 2 1 2 3 4 5 6 P k 11/36 9/36 7/36 5/36 3/36 1/36 2、10只产品中有2只是次品,从中随机地抽取3只,以X 表示取出次品的只数,求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P3、进行重复独立试验。
概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。
求X的分布律。
解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。
由于骰子是公正的,每个面出现的概率都是1/6。
因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。
求Y的概率密度函数。
解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。
解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。
解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。
求X的分布律和期望值。
解答:X服从参数为n和p的二项分布。
其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。
第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
第2章一维随机变量 习题2一. 填空题:1.设 离 散 型 随 机 变 量 ξ 的 分 布 函 数 是 (){}x P x F ≤=ξ, 则 用 F (x) 表 示 概 {}0x P =ξ = __________。
解:()()000--x F x F 2.设 随 机 变 量 ξ 的 分 布 函 数 为 ()()+∞<<∞-+=x arctgx x F π121 则 P{ 0<ξ<1} = ____14_____。
解: P{ 0<ξ<1} = =-)0(F )1(F 143.设 ξ 服 从 参 数 为 λ 的 泊 松 分 布 , 且 已 知 P{ ξ = 2 } = P{ ξ = 3 },则 P{ ξ = 3 }= ___2783e - 或 3.375e -3____。
4.设 某 离 散 型 随 机 变 量 ξ 的 分 布 律 是 {}⋅⋅⋅===,2,1,0,!k k C k P Kλξ,常 数 λ>0, 则 C 的 值 应 是 ___ e -λ_____。
解:{}λλλλξ-∞=∞=∞==⇒=⇒=⇒=⇒==∑∑∑e C Ce k C k Ck P KK KK K 11!1!105 设 随 机 变 量 ξ 的 分 布 律 是 {}4,3,2,1,21=⎪⎭⎫⎝⎛==k A k P kξ则 ⎭⎬⎫⎩⎨⎧<<2521ξP = 0.8 。
解:()A A k P k 161516181412141=⎪⎭⎫ ⎝⎛+++==∑=ξ 令15161A = 得 A =1615()()212521=+==⎪⎭⎫ ⎝⎛<<ξξξp p P 8.041211516=⎥⎦⎤⎢⎣⎡+=6.若 定 义 分 布 函 数 (){}x P x F ≤=ξ, 则 函 数 F(x)是 某 一 随 机 变 量 ξ 的 分 布 函 数 的 充 要 条 件 是F ( x ) 单 调 不 减 , 函 数 F (x) 右 连 续 , 且 F (- ∞ ) = 0 , F ( + ∞ ) = 17. 随机变量) ,a (N ~2σξ,记{}σ<-ξ=σa P )(g ,则随着σ的增大,g()σ之值 保 持 不 变 。
概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
概率论第二章习题参考解答1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为⎪⎩⎪⎨⎧≥<≤<=11105.000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3因此分布律由下表所示ξ0 1 P 1/32/3而分布函数为⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ⎩⎨⎧≥<=ax a x x F 10)(, 它的图形为4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)(1),(2)代入(3)得:2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为)3,2,1(271)(3=⨯==-i i P i ξ或列表如下:5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.解: 基本事件总数为420C n =,有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为ii i C C n -=4155, 则001.01731911718192051234)4(031.0171952121545171819201234)3(2167.01718191415231212141545171819201234)2(4696.01718191314151231314155171819201234)1(2817.01719137123412131415171819201234)0(445420115354202152542031515420415=⋅⋅=⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===C C P C C C P C C C P C C C P C C P ξξξξξ 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有),3,2,1(1331310)(1=⎪⎭⎫⎝⎛⋅===-i pq i P i i ξ7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品已经全部代换为正品, 因此必然抽到正品, 这样ξ的取值为1,2,3,4.不难算出,0027.0131132133)4(0328.01312132133)3(1953.01311133)2(7692.01310)1(=⋅⋅===⋅⋅===⋅=====ξξξξP P P Pξ的分布律如下表所示:8. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有P (ξ=i )=p (1-p )i , (i =0,1,2,…)9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P {ξ<1|ξ≠0}.解: 根据概率函数的性质有1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P即1167854321=+++cc c c 得2.3125163716710128167854321==+++=+++=c 设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则32.0258167852121}2{}1{}1{}1{)0{}01{)()(}0|1{==++==+=+-=-==≠≠⋂<==≠<ξξξξξξξξξP P P P P P B P AB P P 10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31327/6217/410)(x x x x x F第9题:当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=⨯=c 当0≤x <1时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)=5405.03125.243214321=⎪⎭⎫ ⎝⎛+=+c c 当1≤x <2时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=8108.03125.2854321854321=⎪⎭⎫ ⎝⎛++=++c c c 当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤--<=21218108.0105405.0012162.010)(x x x x x x F 11. 已知ξ~⎪⎩⎪⎨⎧<<=其它1021)(x xx ϕ, 求ξ的分布函数F (x ), 画出F (x )的图形.解: 当x <0时: F (x )=0;当0≤x <1时:xx xt x t dt t dt t dt dt t x F xxx=-==+-⋅==+==+--∞-∞-⎰⎰⎰⎰00012112121210)()(12102100ϕ 当x ≥1时: F (x )=1 综上所述, 最后得⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F 图形为12. 已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P {ξ≤0.5}; P (ξ=0.5);F (x ).解: 25.005.020)(}5.0{225.0025.005,0|=-==+==≤⎰⎰⎰∞-∞-x xdx dx dx x P ϕξ, 因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0,求F (x ): 当x <0时, F (x )=0 当0≤x <1时, 220|20)()(x t tdt dt dt t x F xxx==+==⎰⎰⎰∞-∞-ϕ 当x ≥1时, F (x )=1 综上所述, 最后得:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度⎪⎩⎪⎨⎧≥=其它0100100)(2x x x ϕ, 某一个电子设备内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:3215010012100100)()150(|150121502150==+-===≥∞++-+∞+∞⎰⎰x dx xdx x P ϕξ 则3个这样的电子管构成贝努里独立试验概型, 试验三次发生三次的概率为2963.027832)3(33==⎪⎭⎫⎝⎛=p14. 设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Ax x x F 求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ).解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F P (0.3<ξ<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4概率密度φ(x )为⎩⎨⎧<≤='=其它0102)()(x x x F x ϕ15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0, 得A +Barctg (-∞)=02=-πB A(1)再由F (+∞)=1,得12)arctg(=+=+∞+πB A B A(2)综和(1),(2)两式解得π1,21==B A 即x x F arctg 121)(π+=5.0214411111)1()1()11()1|(|==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==--=--=<<-=<πππππξξarctg arctg F F P P2111)()(x x F x +⋅='=πϕ16. 服从拉普拉斯分布的随机变量ξ的概率密度||)(x Ae x -=ϕ, 求系数A 及分布函数F (x ).解: 这实际上是一个分段函数, φ(x )可重新写为⎩⎨⎧<≥=-0)(x Aex Ae x xxϕ 根据性质1)(=⎰+∞∞-dx x ϕ, 又因φ(x )为偶函数, 因此有1222)(|==-==∞+-+∞-+∞∞-⎰⎰A Aedx Aedx x x xϕ, 则有A =1/2因此⎪⎩⎪⎨⎧<≥==--02102121)(||x e x e ex x x x ϕ.求分布函数F (x ). 当x <0时, 有xxtxt x e e dt e dt t x F 212121)()(====∞-∞-∞-⎰⎰ϕ当x ≥0时, 有x x xtxt t x e e e dt e dt e dt t x F ----∞-∞--=+-=-=+==⎰⎰⎰21121212121212121)()(00ϕ 综上所述, 最后得⎪⎩⎪⎨⎧≥-<=-0211021)(x e x ex F x x17. 已知⎩⎨⎧<<+-=其它01031212)(~2x x x x ϕξ, 计算P {ξ≤0.2|0.1<ξ≤0.5}解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而)()()|(B P AB P B A P =, 而事件AB ={ξ≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2} 因此有148.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()364(d )31212()(}2.01.0{)(2.01.0232.01.022.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-==≤<=⎰⎰x x x xx x dx x P AB P ϕξ256.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()364(d )31212()(}5.01.0{)(5.01.0235.01.025.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-===≤<=⎰⎰x x x xx x dx x P B P ϕξ最后得5781.0256.0148.0)()()|(}5.01.0|2.0{====≤<≤B P AB P B A P P ξξ18. 已知xxce x +-=2)(~ϕξ, 确定常数c .解: 首先证明普阿松广义积分π=⎰+∞∞--x e xd 2, 因为函数2x e -并不存在原函数, 因此需要一技巧. 令⎰+∞∞--=x eI x d 2, 则⎰⎰⎰+∞∞-+∞∞-+-+∞∞--=⎥⎦⎤⎢⎣⎡=y x e x e I y x x d d d )(22222作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且θd d d d r r y x =, 因此有πππθπ====∞+-+∞-+∞-⎰⎰⎰020202222)d(212rr r e r e rdr ed I , 所以I =π.现确定常数c , 由性质1)(=⎰+∞∞-dx x ϕ,1d d 41)21(414141212222====⎰⎰⎰+∞∞---+∞∞-+-⋅⋅+-+∞∞-+-πcedx ecex cex cex x x xx得421πe c =19. 已知⎩⎨⎧>>=-其它)0()(~λλϕξλa x e c x x, 求常数c 及P {a -1<ξ≤a +1}.解: 由性质1)(=⎰+∞∞-dx x ϕ得1d d 0)(|==-=+=-∞+-+∞-∞-+∞∞-⎰⎰⎰aax ax ace ce x e c x dx x λλλλϕ 解得 aec λ=, 因此有⎩⎨⎧>>=--其它)0()()(λλϕλa x e x a x则λλλλλλϕξ---+---+--=-==+==+≤<-⎰⎰⎰⎰e e due x ex x x a a P u u a aa x a a a a 1d d 0d )()11(|111)(111求边缘概率分布, 与是否独立?解: 按下表计算ξ与η的边缘分布:得的边缘分布如下表所示:当i =1及j =0时,因202.026.0}0{}1{0}0,1{)2(0)1(110⨯====≠====ηξηξP P p p P p因此ξ与η相互间不独立.21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数. 若ξ与η的联合分布如下表所示: 试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等;(3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数. 则事件A 发生的概率为上表中头两排概率之和52.008.006.005.004.002.001.009.007.005.003.001.001.0)(104=++++++++++++==∑∑==i j ij p A P事件B 发生的概率为上表中从0行0列开始的斜对角线之和14.006.005.002.001.0)(3=+++==∑=i ii p B P事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):89.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得312132)2|2()2()2,2(312132)2|1()2()1,2(31131)1|2()1()2,1(0031)1|1()1()1,1(22211211=⨯=========⨯=========⨯=========⨯========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P p23. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而η只取0,31,1这三个值, 因此总共可构成九个. 概率分布表及η的边缘分布计算如下即η的边缘分布率如下表所示24. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 第一次取到号码1,2,3的概率为P{ξ=1}=P(ξ=3)=1/4P{ξ=2}=1/2在第一次取到号码i条件下,第二次取到号码j的概率各为P{η=1|ξ=1}=P{η=3|ξ=3}=0P{η=2|ξ=1}=P{η=2|ξ=3}=2/3P{η=3|ξ=1}=P{η=1|ξ=3}=1/3P{η=1|ξ=2}=P{η=3|ξ=2}=1/3P{η=2|ξ=2}=1/3则p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6p13=P{ξ=1,η=3}=P{ξ=1}P{η=3|ξ=1}=1/12p21=P{ξ=2,η=1}=P{ξ=2}P{η=1|ξ=2}=1/6p22=P{ξ=2,η=2}=P{ξ=2}P{η=2|ξ=2}=1/6p23=P{ξ=2,η=3}=P{ξ=2}P{η=3|ξ=2}=1/6p31=P{ξ=3,η=1}=P{ξ=3}P{η=1|ξ=3}=1/12p32=P{ξ=3,η=2}=P{ξ=3}P{η=2|ξ=3}=1/6p33=P{ξ=3,η=3}=P{ξ=3}P{η=3|ξ=3}=025. 表示随机地在1-4的4个整数中取出的一个整数,η表示在1-ξ中随机地取出的一个整数值,求(ξ,η)的联合概率分布.解: 因ξ取四个数中的任何一个概率相等, 因此有P{ξ=i}=1/4, (i=1,2,3,4)而在ξ=i的条件下, (i=1,2,3,4), η取1到i的概率也相同,为1/i, 即P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)因此有p ij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4; j=1-i),联合概率分布如下表所示:26. 已知(ξ,η)~⎪⎩⎪⎨⎧≤≤+=其它04,0)sin(),(πϕy x y x c y x ,试确定常数c 并求η的边缘概率密度.解: 根据性质1),(=⎰⎰+∞∞-+∞∞-dydx y x ϕ, 有1)12(]220122[)]4sin([sin )]4cos([cos )]cos([)sin(40440404040=-=+--=+-=+-=+-=+⎰⎰⎰⎰c c x x c x x dx c y x dx c dydx y x c ππππππππ解得12)12)(12(12121+=+-+=-=c ,因此,⎪⎩⎪⎨⎧≤≤++=其它04,0)sin()12(),(πϕy x y x y x求η的边缘概率密度: 当40π≤≤y 时:)8sin(22)12()]4cos()[cos 12()cos()12()sin()12(),()(4042ππϕϕκπ+-+==+-+==++-=++==⎰⎰∞+∞-y y y y x dx y x dx y x y上式后一等式利用了三角函数公式2sin 2sin2cos cos A B A B B A -+=-, 而计算三角函数8sin π的值, 又是在已知224cos=π的前提下,利用半角公式2cos 12sin θθ-=得222222124cos18sin-=-=-=ππ当y 取区间]4,0[π之外的值时, 0)(1=y ϕ.因此最后得:⎪⎩⎪⎨⎧≤≤+-+=其它040)8sin(22)12()(2ππϕy y y27. 已知ξ服从参数p =0.6的0-1分布, 在ξ=0及ξ=1条件下, 关于η的条件分布分别如下二表所示:求二元随机变量(,)的联合概率分布, 以及在≠1时关于的条件分布. 解: 根据题意已知P {ξ=0}=1-p =1-0.6=0.4, P {ξ=1}=p =0.6 则根据乘法法则有:p 01=P {ξ=0,η=1}=P {ξ=0}P {η=1|ξ=0}=0.4×(1/4)=0.1 p 02=P {ξ=0,η=2}=P {ξ=0}P {η=2|ξ=0}=0.4×(1/2)=0.2 p 03=P {ξ=0,η=3}=P {ξ=0}P {η=3|ξ=0}=0.4×(1/4)=0.1 p 11=P {ξ=1,η=1}=P {ξ=1}P {η=1|ξ=1}=0.6×(1/2)=0.3 p 12=P {ξ=1,η=2}=P {ξ=1}P {η=2|ξ=1}=0.6×(1/6)=0.1 p 13=P {ξ=1,η=3}=P {ξ=1}P {η=3|ξ=1}=0.6×(1/3)=0.2由表中可以算出P {η≠1}=1-P {η=1}=1-(p 01+p 11)=1-0.4=0.6 P {ξ=0,η≠1}=p 02+p 03=0.2+0.1=0.3 P {ξ=1,η≠1}=p 12+p 13=0.1+0.2=0.3 因此有5.06.03.0}1{}1,1{}1|1{5.06.03.0}1{}1,0{}1|0{==≠≠==≠===≠≠==≠=ηηξηξηηξηξP P P P P P则在η≠1时关于ξ的条件分布律如下表所示:28. 第22题中的两个随机变量ξ与η是否独立?当ξ=1时η的条件分布是什么?: , 因为 P {ξ=1}=1/3, P {η=1}=1/3 而P {ξ=1,η=1}=0≠P {ξ=1}P {η=1} 在ξ=1条件下, 因13/13/1}1{}2,1{}1|2{03/10}1{}1,1{}1|1{================ξηξξηξηξξηP P P P P P因此在此条件下η服从单点分布或退化分布, 只取值为2, 取值为2的条件概率为1.=p i (1)p j (2), 算得联合分布律如下表所示 根据此联合分布律可算出43129611211)2/1,2/1()1,1(1)0(1)0(121484481161)1,0()3,2()1(==--==-==-=-=-==+-=≠+==+===+=-===+ηξηξηξηξηξηξηξP P P P P P P30. 测量一矩形土地的长与宽, 测量结果得到如下表所示的分布律(长与宽相互独立), 求周解: 因ζ=2ξ+2η, 可知ζ的取值为96,98,100,102,104, 又因ξ与η独立, 因此有 P {ζ=96}==P {ξ=29}P {η=19}=0.3×0.3=0.09P {ζ=98}=P {ξ=29}P {η=20}+P {ξ=30}P {η=19}=0.3×0.4+0.5×0.3=0.27 P {ζ=100}=P {ξ=29}P {η=21}+P {ξ=30}P {η=20}+P {ξ=31}}P {η=19}==0.3×0.3+0.5×0.4+0.2×0.3=0.35P {ζ=102}=P {ξ=30}P {η=21}+P {ξ=31}P {η=20}=0.3×0.5+0.2×0.4=0.23 P {ζ=104}=P {ξ=31}P {η=21}=0.2×0.3=0.06η的分布.解: 因周长=2πR , 面积=πR , 因此当半径R 取值10,11,12,13时, ξ的取值为62.83, 69.12,32. 一个商店每星期四进货, 以备星期五,六,日3天销售, 根据多周统计, 这3天销售件数 ξ问三天销售总量∑==31i iξη这个随机变量可以取哪些值?如果进货45件, 不够卖的概率是多少? 如果进货40件, 够卖的概率是多少?解: 因η的取值为ξ1,ξ2,ξ3三个随机变量可能取值之和, 因此可能的取值为从10+13+17=40到12+15+19=46之间的每一个整数值, 即40,41,42,43,44,45,46. 因此, 如进货15件, 不够卖的概率在η取值为46时出现, 即 P {η=46}=P {ξ1=12}P {ξ2=15}P {ξ3=19}=0.1×0.1×0.1=0.001 如进货40件, 够卖的概率发生在η取值为40时出现, 即P {η=40}=P {ξ1=10}P {ξ2=13}P {ξ3=17}=0.2×0.3×0.1=0.006 33. 求出第22题中ξ+η的分布律.ξ与η的联合分布律如下表: 则P {+=2}=P {=1,=1}=0P {ξ+η=3}=P {ξ=1,η=2}+P {ξ=2,η=1}=2/3 P {ξ+η=4}=P {ξ=2,η=2}=1/334. 求出第23题中ξ-η的分布律 解: 因(ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12.因此ξ-η也只取0-0=0, -1-1=-2, -1-1/3=-4/3, 2-0=2这四个值, 相应的概率也还是依次为1/6, 35. 已知P {ξ=k }=a /k , P {η=-k }=b /k (k =1,2,3), ξ与独立, 确定a ,b 的值; 求出(ξ,η)的联合概率分布以及ξ+η的概率分布. 解: 由概率分布的性质有131211}{31=⎪⎭⎫⎝⎛++==∑=a k P k ξ, 解得 5455.0116312111==++=a,191411}{31=⎪⎭⎫⎝⎛++=-=∑=b k P k η 解得 7347.04936914111==++=b 因此有P {ξ=1}=0.5455, P {ξ=2}=0.5455/2=0.2727, P {ξ=3}=0.1818 P {η=-1}=0.7347, P {η=-2}=0.1837, P {η=-3}=0.0816 因ξ与η独立, 则有p 11=P {ξ=1,η=-1}=P {ξ=1}P {η=-1}=0.5455×0.7347=0.4008 p 12=P {ξ=1,η=-2}=P {ξ=1}P {η=-2}=0.5455×0.1837=0.1002 p 13=P {ξ=1,η=-3}=P {ξ=1}P {η=-3}=0.5455×0.0816=0.0445 p 21=P {ξ=2,η=-1}=P {ξ=2}P {η=-1}=0.2727×0.7347=0.2004 p 22=P {ξ=2,η=-2}=P {ξ=2}P {η=-2}=0.2727×0.1837=0.0501 p 23=P {ξ=2,η=-3}=P {ξ=2}P {η=-3}=0.2727×0.0816=0.0223 p 31=P {ξ=3,η=-1}=P {ξ=3}P {η=-1}=0.1818×0.7347=0.1336 p 32=P {ξ=3,η=-2}=P {ξ=3}P {η=-2}=0.1818×0.1837=0.0333 p 33=P {ξ=3,η=-3}=P {ξ=3}P {η=-3}=0.1818×0.0816=0.0148计算+的概率分布: P {ξ+η=-2}=p 13=0.0445P {ξ+η=-1}=p 12+p 23=0.1002+0.0223=0.1225P {ξ+η=0}=p 11+p 22+p 33=0.4008+0.0501+0.0148=0.4657 P {ξ+η=1}=p 21+p 32=0.2004+0.0333=0.2337 P{ξ+η=2}=p 31=0.1336即ξ+η的概率分布率如下表所示36. 已知服从区间[0,1]上的均匀分布, 求的函数=3+1的概率分布. 解: 根据题意知ξ的概率密度φξ(x )为⎩⎨⎧≤≤=其它0101)(x x ξϕ 则η的分布函数为)31(}31{}13{}{)(-=-≤=≤+=≤=x F x P x P x P x F ξηξξη 对其求导得η的概率密度与ξ的概率密度间的关系为⎪⎩⎪⎨⎧≤≤=⎪⎩⎪⎨⎧≤-≤=-=-'='=其它其它041310131031)31(31)31(31)()(x x x x F x F x ϕϕξηη即η服从在区间[1,4]上的均匀分布.37. 已知ξ~⎪⎩⎪⎨⎧>+=其它0)1(2)(2x x x πϕ, ξηln =, 求η的概率密度.解: 求η的分布函数F η(x )为)(}{}{ln }{)(x x e F e P x P x P x F ξηξξη=≤=≤=≤=因e x 总大于0, 而当x 大于0时F ξ(x )为x t t t dt t x F x xxarctg 2arctg 2d )1(2)()(|002πππϕξ==+==⎰⎰∞- 因此有x x e e F x F arctg 2)()(πξη==则η的概率密度为其分布函数的求导:xx ee x F x 212)()(+⋅='=πϕηη。
大学概率论习题二详解(A )1、从1,2,3,4四个数码中先后任意取出两个数码(每次取一个,取后不还原),写出下列每个随机变量可能的取值: (1)=X 两个数码的数字和;(2)=Y 第一个数码与第二个数码的数字差; (3)=Z 数码为偶数的个数;(4)=W 数码为1数的个数。
解(1)3,4,5,6,7; (2),,,123---321,,; (3)0,1,2; (4)0,1 2、随机投两颗骰子,以X 表示其点数之和,写出X 可能的取值及其概率,并求)9(>X P .解 X 可能的取值:2,3,…,12;取这些值的概率:12987323613361,,,,,,/)(/)()( ==⎩⎨⎧--==i i i i i X P 18591210===>∑=i i X P X P )()( 3、设随机变量X 的分布列为4,3,2,1,2)(===i Ci X P i求C 的值。
解∑==4112i iC15/16=C4、某人进行射击,每次射击的命中率为0.02,独立射击400次,求至少击中两次的概率。
解 设击中次数为X ,则).,(~020400B X)()()()(101212=-=-=<-=≥X P X P X P X P3994009800204009801.).(.--= 99720.≈5、某厂需要12只集成电路装配仪表,要到外地采购,已知该型号集成电路的不合格品率为0.1,问需要采购几只才能以99%的把握保证其中合格的集成电路不少于12只?解 设采购n 只,不合格品数为X ,显然).,(~10n B X以题意∑-=-=-≤=≥-1290101212n k k n k k nCn X P X n P ..)()(n 取多少呢?取15=n ,94440312.)()(=≤=≥-X P X n P 取16=n ,98300412.)()(=≤=≥-X P X n P 取17=n ,99530512.)()(=≤=≥-X P X n P可见,只需要采购17只就能有99%把握保证其中合格的集成电路不少于12只。
6、在500个人的团队中,求恰有6个人的生日在元旦的概率。
解 每一个人的生日在元旦的概率3651=p ,则该团队中生日在元旦的人数),(~3651500B X 。
依题意要求494665003651136516)()()(-==C X P 由于36991.=np ,采用泊松分布近似≈=)6(X P 0023063699163699166.!.!.≈=--e eλλ7、从某商店过去的销售记录知道:某种商品每月的销售数可以用参数10=λ的泊松分布来描述,为了以%95以上的把握保证不脱销,问商店在月初至少应进多少件?(已知9166.0!1010140≈-=∑e k k k ,9513.0!1010150≈-=∑e k k k )解 令商店该商品的月销售量为X ,设每月进货N 件。
则)(~10P X 。
依题意要求95.0)(≥≤N X P即 95010100.!≥-=∑e k Nk k查泊松分布表得,14=N 和15时,有 950916601010140..!<≈-=∑e k k k ,95095130101015..!>≈-=∑e k k k 于是,为了以%95以上的把握保证不脱销,商店在月底至少应进15件 8、若随机变量X 只取一个值a ,即 1==)(a X P 求X 的分布函数)(x F ,并作出图形。
解 X 的分布函数为:ax ax x F <≥⎩⎨⎧=01)(9、在10台计算机中有2台感染了病毒,现在一台一台地抽样检查,求在发现首台未感染病毒者时已经检查过计算机的台数X 的分布函数.解 先求X 的概率分布.易见,X 有0,1,2等3个可能值,且.;; 451458541}2{45891082}1{54108}0{=--===⨯⨯=====X X X P P P 于是X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=≤=.,;,;,;,2 1 214544 1054 0 0 }{)(x x x x x X x F P10、已知随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5 1 524320410 0 )(x x x x x F ,,,, 求随机变量X 的概率分布。
解 易见)(x F 有0,2,5等3个间断点,故随机变量X 有3个可能值.由于{}{}{},,,41431)05()5(5424143)02()2(241)00()0(0=-=--===-=--===--==F F X F F X F F X P P P 可见随机变量X 的概率分布为⎪⎪⎭⎫ ⎝⎛414241520~X . 11、已知连续型随机变量X 的分布函数⎪⎩⎪⎨⎧>≤≤<=1,110,0,0)(2x x Ax x x F求(1)系数A ;(2)X 落入)7.0,3.0(内的概率;(3)X 的密度函数。
解 (1)因为11=+→)(lim x F x ,A F =)(1 又连续型随机变量X 的分布函数)(x F 连续 则1=A(2)X 的分布函数为:⎪⎩⎪⎨⎧>≤≤<=1110002x x x x x F )(故4030703070703022...).().()..(=-=-=<<F F X P(3)X 的密度函数为:⎩⎨⎧≤≤=其它1002x x x p )( 12、已知连续型随机变量X 的分布函数(柯西分布) Barctgx A x F +=)( 求(1)系数A 、B ;(2))1(≤X P ;(3)X 的密度函数。
解 (1)12=+=+∞→πBA x F x )(lim02=-=-∞→πBA x F x )(lim解得 50.=A ,π1=B(2)X 的分布函数为arctgx x F π121+=)( 因此,21111=--=≤)()()(F F X P (3)X 的密度函数为)()(211x x p +=π 13、设随机变量X 的概率密度函数为⎩⎨⎧=,0,)(x x p λ 其他20<<x ,求(1)常数λ;(2))31(<<X P ;(3)X 的分布函数)(x F 。
解 (1)122==⎰λλxdx 2/1=λ(2) )(31<<X P 432121==⎰xdx(3)X 的分布函数2200141)()(2≥<≤<⎪⎩⎪⎨⎧==⎰∞-x x x x dt t x F xφ 14、设随机变量X 的密度函数为+∞<<∞-=-x ce x p x,)(求(1)常数c ;(2))10(<<X P 。
解 (1)1220===⎰⎰+∞-+∞∞--c dx e c dx cex x21/=c(2))(10<<X P )(e dx e x 11212110-==⎰-15、设随机变量X 的密度⎩⎨⎧<<=其他10,0,2)(x x x f 现对X 进行n 次独立重复观测,以n v 表示观测值不大于1.0的次数,求n v 的概率分布。
解 令01.02)1.0(1.00==≤=⎰xdx X P p)01.0,(~n B v n即n k q p qp C k v P kn kkn n ,,1,0,99.0,01.0,)( =====-16、某型号电子管寿命(小时)为一随机变量,密度函数为其它100,0,100)(2≥⎪⎩⎪⎨⎧=x x x p某一电子设备内配有3个这样的电子管,求电子管使用150小时都不需要更换的概率。
解 令=i A “第i 个电子管不需要更换”,X 为电子管的使用寿命=)(321A A A P 331321)]150([)]([)()()(≥==X P A P A P A P A P而321001)150(1)150(1501002=-=<-=≥⎰dx x X P X P 所以278)32()(3321==A A A P或 令=i X “第i 个电子管的使用寿命”,则278)150()150()150(321=≥≥≥X P X P X P 。
17、设随机变量X 和Y 相互独立,且都服从[1,3]上的均匀分布。
记事件}{a X A ≤=,}{a Y B >=,已知97)(=+B A P ,求常数a 。
解 97)211(211)()()()()(=----=-+=+a a B P A P B P A P B A P 解得37,35=a18、设随机变量X 服从参数21=λ的指数分布,计算:(1))3(≥X P ;(2))36(>>X X P 。
解 ⎪⎩⎪⎨⎧≤>-=-01)(21x x ex F x (1)23)3(1)3(-=-=≥e F X P (2) 由指数分布的无记忆性得)36(>>X X P 23)3(-=≥=e X P 19、设随机变量)1,0(~N X ,求:(1))33.202.0(≤≤X P ;(2))2(-<X P ;(3))3(>X P 。
解 (1)482105080099010020332332020...).().()..(=-=Φ-Φ=≤≤X P(2)022809772012122..)()()(=-=Φ-=-Φ=-<X P (3))()()(333>+-<=>X P X P X P)()(313Φ-+-Φ= )(322Φ-=9987022.⨯-= 00260.=20、设随机变量)10,50(~2N X ,(1)求)20(≤X P ;(2)求)70(>X P ;(3)求常数a ,使得90.0)(=<a X P 。
解(1))(20≤X P 00130998701313105020..)()()(=-=Φ-=-Φ=-Φ=(2))()(70170≤-=>X P X P 977201211050701.)()(-=Φ-=-Φ-= 02280.=(3)9001050.)()(=-Φ=<a a X P 查表得2811050.≈-a 862.≈a21、某种电子元件在电源电压不超过200伏,200~240伏,超过240伏三种情况下损坏的概率分别为0.1,0.001及0.2,设电源电压)25,220(~2N X ,求:(1)此种电子元件的损坏率;(2)此种电子元件损坏时,电源电压在200~240伏的概率。
解 令1A =“电压不超过200伏”2A =“电压在200~240伏” 3A =“电压过240伏” =B “电子元件损坏”2119.0)8.0(1)8.025220()200()(1=Φ-=-<-=<=X P X P A P2119.0)8.0(1)8.025220()240()(3=Φ-=>-=>=X P X P A P5762.0)(2=A P(1))()()()()()()(332211A B P A P A B P A P A B P A P B P ++=064.02.02119.0001.05762.01.02119.0=⨯+⨯+⨯=(2)009.0)()()()(222==B P A B P A P B A P22、已知X 的密度函数是)(x p X ,且14-=X Y ,求Y 的密度函数)(x p Y 。