传热学-第四章 导热问题的数值解法
- 格式:pdf
- 大小:479.16 KB
- 文档页数:43
5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。
首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。
如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。
式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。
进行计算时,物理参数值存储在节点的位置上。
为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。
常用的方法由两种,即算术平均法与调和平均法。
1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。
控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。
第四章 导热问题的数值解法1、重点内容: ① 掌握导热问题数值解法的基本思路;② 利用热平衡法和泰勒级数展开法建立节点的离散方程。
2、掌握内容:数值解法的实质。
3、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。
由前述3可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。
但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。
随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1) 有限差分法 (2)有限元方法 (3)边界元方法数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。
如:几何形状、边界条件复杂、物性不均、多维导热问题。
分析解法与数值解法的异同点:1、 相同点:根本目的是相同的,即确定① t=f(x ,y ,z);② ),,,(τz y x g Q =。
2、 不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。
§4—1 数值求解的基本思路及稳态导热内节点离散方程的建立一、 解法的基本概念1、 实质对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
该方法称为数值解法。
这些离散点上被求物理量值的集合称为该物理量的数值解。
2、基本思路:数值解法的求解过程可用框图4-1表示。
由此可见:1)物理模型简化成数学模型是基础; 2)建立节点离散方程是关键;3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。